[b9e282]: / sub-packages / bionemo-esm2 / tests / bionemo / esm2 / conftest.py

Download this file

112 lines (90 with data), 4.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-Apache2
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pytest
from bionemo.esm2.data.tokenizer import get_tokenizer
from bionemo.testing.data.esm2 import create_mock_parquet_train_val_inputs, create_mock_protein_dataset
@pytest.fixture
def tokenizer():
"""Return the ESM2 tokenizer."""
return get_tokenizer()
@pytest.fixture
def dummy_protein_dataset(tmp_path):
"""Create a mock protein dataset."""
return create_mock_protein_dataset(tmp_path)
@pytest.fixture
def dummy_parquet_train_val_inputs(tmp_path):
"""Create a mock protein train and val cluster parquet."""
return create_mock_parquet_train_val_inputs(tmp_path)
@pytest.fixture
def dummy_data_per_token_classification_ft():
"""Fixture providing dummy data for per-token classification fine-tuning.
Returns:
list: A list of dummy data for per-token classification fine-tuning.
"""
data = [
(
"TLILGWSDKLGSLLNQLAIANESLGGGTIAVMAERDKEDMELDIGKMEFDFKGTSVI",
"EEEECCCCCHHHHHHHHHHHHHHHCCCEEEEEECCCHHHHHHHHHCCCCCCCCCEEE",
),
("LYSGDHSTQGARFLRDLAENTGRAEYELLSLF", "CCCCCHHHHHHHHHHHHHHCCCCCHHHHHHCC"),
("GRFNVWLGGNESKIRQVLKAVKEIGVSPTLFAVYEKN", "HHHHHCCCCCHHHHHHHHHHHHHHCCCHHHHHHHHHH"),
(
"DELTALGGLLHDIGKPVQRAGLYSGDHSTQGARFLRDLAENTGRAEYELLSLF",
"HHHHHHHHHHCCCHHHHHCCCCCCCCHHHHHHHHHHHHHHCCCCCHHHHHHCC",
),
(
"KLGSLLNQLAIANESLGGGTIAVMAERDKEDMELDIGKMEFDFKGTSVI",
"CHHHHHHHHHHHHHHHCCCEEEEEECCCHHHHHHHHHCCCCCCCCCEEE",
),
(
"LFGAIGNAISAIHGQSAVEELVDAFVGGARISSAFPYSGDTYYLPKP",
"HHHHHHHHHHHHHCHHHHHHHHHHHHCCCEECCCEEEECCEEEEECC",
),
(
"LGGLLHDIGKPVQRAGLYSGDHSTQGARFLRDLAENTGRAEYELLSLF",
"HHHHHCCCHHHHHCCCCCCCCHHHHHHHHHHHHHHCCCCCHHHHHHCC",
),
("LYSGDHSTQGARFLRDLAENTGRAEYELLSLF", "CCCCCHHHHHHHHHHHHHHCCCCCHHHHHHCC"),
("ISAIHGQSAVEELVDAFVGGARISSAFPYSGDTYYLPKP", "HHHHHCHHHHHHHHHHHHCCCEECCCEEEECCEEEEECC"),
(
"SGSKASSDSQDANQCCTSCEDNAPATSYCVECSEPLCETCVEAHQRVKYTKDHTVRSTGPAKT",
"CCCCCCCCCCCCCCCCCCCCCCCCCCEEECCCCEEECHHHHHHHHHCCCCCCCCEEECCCCCC",
),
]
return data
@pytest.fixture
def dummy_data_single_value_regression_ft(dummy_data_per_token_classification_ft):
"""Fixture providing dummy data for per-token classification fine-tuning.
Returns:
list: A list of dummy data for per-token classification fine-tuning.
"""
data = [(seq, len(seq) / 100.0) for seq, _ in dummy_data_per_token_classification_ft]
return data
@pytest.fixture
def dummy_data_single_value_classification_ft(dummy_data_per_token_classification_ft):
"""Fixture providing dummy data for per-token classification fine-tuning.
Returns:
list: A list of dummy data for per-token classification fine-tuning.
"""
data = [(seq, f"Class_{label[0]}") for seq, label in dummy_data_per_token_classification_ft]
return data
@pytest.fixture
def dummy_protein_sequences(dummy_data_per_token_classification_ft):
"""Fixture providing dummy data for per-token classification fine-tuning.
Returns:
list: A list of dummy data for per-token classification fine-tuning.
"""
data = [seq for seq, _ in dummy_data_per_token_classification_ft]
return data