{ "cells": [ { "cell_type": "markdown", "id": "6614ed41-7f65-4495-aa3d-8fba22013597", "metadata": {}, "source": [ "Different learning rates, number of epochs, and batch sizes were explored, but the results did not change much." ] }, { "cell_type": "code", "execution_count": 1, "id": "9bff167f-c177-4f9f-9408-bd499f2d63e8", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import torch\n", "from sklearn.model_selection import train_test_split\n", "from torch.utils.data import TensorDataset, DataLoader\n", "from transformers import AutoTokenizer, AutoModelForSequenceClassification\n", "from tqdm import tqdm\n", "import torch.nn as nn" ] }, { "cell_type": "code", "execution_count": 2, "id": "c1d30e92-0aea-498c-8d3f-d8b24cf4aeeb", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Number of examples is: 560\n" ] }, { "data": { "text/html": [ "
\n", " | CANONICAL_SMILES | \n", "pIC50 | \n", "
---|---|---|
0 | \n", "Nc1nc(N)c2c(Sc3ccccc3)cccc2n1 | \n", "6.21 | \n", "
1 | \n", "COc1ccc(OC)c(Cc2sc3nc(N)nc(N)c3c2C)c1 | \n", "6.14 | \n", "
2 | \n", "CN(Cc1coc2nc(N)nc(N)c12)c3ccc(cc3)C(=O)N[C@@H]... | \n", "6.66 | \n", "
3 | \n", "Nc1nc(N)c2nc(CSc3ccc(cc3)C(=O)NC(CCC(=O)O)C(=O... | \n", "5.57 | \n", "
4 | \n", "Nc1nc(N)c2nc(CCSc3ccc(cc3)C(=O)NC(CCC(=O)O)C(=... | \n", "4.60 | \n", "