Switch to side-by-side view

--- a
+++ b/Code/All PennyLane QML Demos/README.md
@@ -0,0 +1,29 @@
+The following are modifications or improvements to original notebooks prior to August 31, 2023. <br>
+All PennyLane Python Quantum Machine Learning Demos 8/31/23 [Seminar](https://www.chemicalqdevice.com/all-pennylane-python-quantum-machine-learning-demos-seminar). <br>
+Please refer to the authors' models for the published primary work.<br>
+[PL13 Equivariant Graph Original PennyLane Model](https://pennylane.ai/qml/demos/tutorial_equivariant_graph_embedding),<br>
+[PL14 Time Series Original PennyLane Model](https://pennylane.ai/qml/demos/tutorial_univariate_qvr), <br>
+[PL15 Geometric QML Original PennyLane Model](https://pennylane.ai/qml/demos/tutorial_geometric_qml),<br>
+[PL16 Generalization in QML Original PennyLane Model](https://pennylane.ai/qml/demos/tutorial_learning_few_data), <br>
+[PL17 Function Fitting Original PennyLane Model](https://pennylane.ai/qml/demos/function_fitting_qsp),<br>
+[PL18 Many Body Original PennyLane Model](https://pennylane.ai/qml/demos/tutorial_ml_classical_shadows),<br>
+[PL19 Learn from Experiments, Classification Original PennyLane Model](https://pennylane.ai/qml/demos/tutorial_learning_from_experiments),<br>
+[PL20 Tensor Network Original PennyLane Model](https://pennylane.ai/qml/demos/tutorial_tn_circuits),<br>
+[PL21 Approximate Kernel Original PennyLane Model](https://pennylane.ai/qml/demos/tutorial_classical_kernels),<br> 
+[PL22 Quantum GANs Original PennyLane Model](https://pennylane.ai/qml/demos/tutorial_quantum_gans),<br>
+[PL23 Unitary Designs Original PennyLane Model](https://pennylane.ai/qml/demos/tutorial_unitary_designs),<br>
+[PL24 Quantum Kernels, Classification Original PennyLane Model](https://pennylane.ai/qml/demos/tutorial_kernels_module),<br>
+[PL25 Haar Measure Original PennyLane Model](https://pennylane.ai/qml/demos/tutorial_haar_measure),<br>
+[PL26 Learn QNNs, Speed Original PennyLane Model](https://pennylane.ai/qml/demos/learning2learn),<br>
+[PL27 Kernel Scikit-Learn Original PennyLane Model](https://pennylane.ai/qml/demos/tutorial_kernel_based_training),<br>
+[PL28 Keras Layers Original PennyLane Model](https://pennylane.ai/qml/demos/tutorial_qnn_module_tf),<br>
+[PL29 Torch Layers Original PennyLane Model](https://pennylane.ai/qml/demos/tutorial_qnn_module_torch),<br>
+[PL30 Fourier Series Original PennyLane Model](https://pennylane.ai/qml/demos/tutorial_expressivity_fourier_series),<br>
+[PL31 Quantum Graph RNN Original PennyLane Model](https://pennylane.ai/qml/demos/tutorial_qgrnn),<br>
+[PL32 Quanvolutional NN Original PennyLane Model](https://pennylane.ai/qml/demos/tutorial_quanvolution),<br>
+[PL33 Ensemble Classification Original PennyLane Model](https://pennylane.ai/qml/demos/ensemble_multi_qpu),<br>
+[PL34 Quantum Transfer Learning Original PennyLane Model](https://pennylane.ai/qml/demos/tutorial_quantum_transfer_learning),<br>
+[PL35 Photonic Quantum NN Original PennyLane Model](https://pennylane.ai/qml/demos/quantum_neural_net),<br>
+[PL36 GANs Cirq TensorFlow Original PennyLane Model](https://pennylane.ai/qml/demos/tutorial_QGAN),<br>
+[PL37 Data-Reuploading Original PennyLane Model](https://pennylane.ai/qml/demos/tutorial_data_reuploading_classifier),<br>
+[PL38 Variational Classifier Original PennyLane Model](https://pennylane.ai/qml/demos/tutorial_variational_classifier).