Switch to side-by-side view

--- a
+++ b/Code/All PennyLane QML Demos/20 Tensor Network 10 Qubit kkawchak.ipynb
@@ -0,0 +1,890 @@
+{
+  "cells": [
+    {
+      "cell_type": "code",
+      "execution_count": 91,
+      "metadata": {
+        "id": "omoggHOXqtzF"
+      },
+      "outputs": [],
+      "source": [
+        "# This cell is added by sphinx-gallery\n",
+        "# It can be customized to whatever you like\n",
+        "%matplotlib inline\n",
+        "# !pip install pennylane"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "9Z7Jd2A_qtzG"
+      },
+      "source": [
+        "Tensor-network quantum circuits {#tn_circuits}\n",
+        "===============================\n",
+        "\n",
+        "::: {.meta}\n",
+        ":property=\\\"og:description\\\": This demonstration explains how to\n",
+        "simulate tensor-network quantum circuits. :property=\\\"og:image\\\":\n",
+        "<https://pennylane.ai/qml/_images/thumbnail_tn_circuits.png>\n",
+        ":::\n",
+        "\n",
+        "::: {.related}\n",
+        "tutorial\\_variational\\_classifier Variational classifier\n",
+        ":::\n",
+        "\n",
+        "*Authors: Diego Guala*^1^ *, Esther Cruz-Rico*^2^ *, Shaoming Zhang*^2^\n",
+        "*, Juan Miguel Arrazola*^1^ *--- Posted: 29 March 2022. Last updated: 27\n",
+        "June 2022.*\n",
+        "\n",
+        "| ^1^ Xanadu, Toronto, ON, M5G 2C8, Canada\n",
+        "| ^2^ BMW Group, Munich, Germany\n",
+        "\n",
+        "This demonstration explains how to use PennyLane templates to design and\n",
+        "implement tensor-network quantum circuits as in Ref.. Tensor-network\n",
+        "quantum circuits emulate the shape and connectivity of tensor networks\n",
+        "such as matrix product states and tree tensor networks.\n",
+        "\n",
+        "We begin with a short introduction to tensor networks and explain their\n",
+        "relationship to quantum circuits. Next, we illustrate how PennyLane\\'s\n",
+        "templates make it easy to design, customize, and simulate these\n",
+        "circuits. Finally, we show how to use the circuits to learn to classify\n",
+        "the bars and stripes data set. This is a toy problem where the template\n",
+        "learns to recognize whether an image exhibits horizontal stripes or\n",
+        "vertical bars.\n",
+        "\n",
+        "Tensors and Tensor Networks\n",
+        "---------------------------\n",
+        "\n",
+        "Tensors are multi-dimensional arrays of numbers. Intuitively, they can\n",
+        "be interpreted as a generalization of scalars, vectors, and matrices.\n",
+        "Tensors can be described by their rank, indices, and the dimension of\n",
+        "the indices. The rank is the number of indices in a tensor --- a scalar\n",
+        "has rank zero, a vector has rank one, and a matrix has rank two. The\n",
+        "dimension of an index is the number of values that index can take. For\n",
+        "example, a vector with three elements has one index that can take three\n",
+        "values. This is vector is therefore a rank one tensor and its index has\n",
+        "dimension three.\n",
+        "\n",
+        "To define tensor networks, it is important to first understand tensor\n",
+        "contraction. Two or more tensors can be contracted by summing over\n",
+        "repeated indices. In diagrammatic notation, the repeated indices appear\n",
+        "as lines connecting tensors, as in the figure below. We see two tensors\n",
+        "of rank two connected by one repeated index, $k$. The dimension of the\n",
+        "repeated index is called the bond dimension.\n",
+        "\n",
+        "![image](../demonstrations/tn_circuits/simple_tn_color.PNG){.align-center\n",
+        "width=\"50.0%\"}\n",
+        "\n",
+        "The contraction of the tensors above is equivalent to the standard\n",
+        "matrix multiplication formula and can be expressed as\n",
+        "\n",
+        "$$C_{ij} = \\sum_{k}A_{ik}B_{kj},$$\n",
+        "\n",
+        "where $C_{ij}$ denotes the entry for the $i$-th row and $j$-th column of\n",
+        "the product $C=AB$.\n",
+        "\n",
+        "A tensor network is a collection of tensors where a subset of all\n",
+        "indices are contracted. As mentioned above, we can use diagrammatic\n",
+        "notation to specify which indices and tensors will be contracted\n",
+        "together by connecting individual tensors with lines. Tensor networks\n",
+        "can represent complicated operations involving several tensors with many\n",
+        "indices contracted in sophisticated patterns.\n",
+        "\n",
+        "Two well-known tensor network architectures are matrix product states\n",
+        "(MPS) and tree tensor networks (TTN). These follow specific patterns of\n",
+        "connections between tensors and can be extended to have many or few\n",
+        "indices. Examples of these architectures with only a few tensors can be\n",
+        "seen in the figure below. An MPS is shown on the left and a TTN on the\n",
+        "right.\n",
+        "\n",
+        "![image](../demonstrations/tn_circuits/MPS_TTN_Color.PNG){.align-center\n",
+        "width=\"50.0%\"}\n",
+        "\n",
+        "These tensor networks are commonly used to efficiently represent certain\n",
+        "many-body quantum states. Every quantum circuit can be represented as a\n",
+        "tensor network, with the bond dimension dependent on the width and\n",
+        "connectivity of the circuit. Moreover, one can design quantum circuits\n",
+        "that have the same connectivity as well-known tensor networks like MPS\n",
+        "and TTN. We call these **tensor-network quantum circuits**. Note that\n",
+        "the connectivity of a tensor network is related to how entanglement is\n",
+        "distributed and how correlations spread in the resulting tensor-network\n",
+        "quantum circuit. We therefore design circuits based on the tensor\n",
+        "networks that best capture the information we want to extract.\n",
+        "\n",
+        "In tensor-network quantum circuits, the tensor network architecture acts\n",
+        "as a guideline for the shape of the quantum circuit. More specifically,\n",
+        "the tensors in the tensor networks above are replaced with unitary\n",
+        "operations to obtain quantum circuits, as illustrated in the figure\n",
+        "below.\n",
+        "\n",
+        "![image](../demonstrations/tn_circuits/MPS_TTN_Circuit_Color.PNG){.align-center\n",
+        "width=\"70.0%\"}\n",
+        "\n",
+        "Since the unitary operations $U_1$ to $U_3$ are in principle completely\n",
+        "general, it is not always clear how to implement them with a specific\n",
+        "gate set. Instead, we can replace the unitary operations with\n",
+        "variational quantum circuits determined by a specific template of\n",
+        "choice. The PennyLane tensor network templates allow us to do precisely\n",
+        "this: implement tensor-network quantum circuits with user-defined\n",
+        "circuit ansatze as the unitary operations. In this sense, just as a\n",
+        "template is a strategy for arranging parametrized gates, tensor-network\n",
+        "quantum circuits are strategies for structuring circuit templates. They\n",
+        "can therefore be interpreted as templates of templates, i.e., as\n",
+        "meta-templates.\n",
+        "\n",
+        "PennyLane Implementation\n",
+        "------------------------\n",
+        "\n",
+        "We now demonstrate how to use PennyLane to build and simulate\n",
+        "tensor-network quantum circuits.\n",
+        "\n",
+        "The first step is to define the circuit that will be broadcast into the\n",
+        "tensor network shape. We call this a block. The block defines a\n",
+        "variational quantum circuit that takes the position of tensors in the\n",
+        "network.\n"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": 92,
+      "metadata": {
+        "id": "PTO3jCY1qtzH"
+      },
+      "outputs": [],
+      "source": [
+        "import pennylane as qml\n",
+        "from pennylane import numpy as np\n",
+        "\n",
+        "\n",
+        "def block(weights, wires):\n",
+        "    qml.RX(weights[0], wires=wires[0])\n",
+        "    qml.RY(weights[1], wires=wires[1])\n",
+        "    qml.CNOT(wires=wires)"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "qJWWfT73qtzH"
+      },
+      "source": [
+        "With the block defined, we can build the full tensor-network quantum\n",
+        "circuit. The following code broadcasts the above block into the shape of\n",
+        "an MPS tensor network and computes the expectation value of a Pauli Z\n",
+        "operator on the bottom qubit.\n"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": 93,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 730
+        },
+        "id": "RB_v1htyqtzH",
+        "outputId": "a0d82e91-b3e6-4830-e7b6-9491ca11c687"
+      },
+      "outputs": [
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "<Figure size 2400x1200 with 1 Axes>"
+            ],
+            "image/png": "iVBORw0KGgoAAAANSUhEUgAACXQAAATECAYAAADBUh/EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeZhVdeE/8PfAsCO4gksJyuaGivteKplaWmC5i2JimvtSpqCioaaWuy2u4EKpJZqWS5oa7mLghuso7qmFkezDcH9/9HV+XsCdmXNn5vV6nvs8nc89c877nueeOfTM28+nqlQqlQIAAAAAAAAAAEDhWhUdAAAAAAAAAAAAgP9R6AIAAAAAAAAAAKgQCl0AAAAAAAAAAAAVQqELAAAAAAAAAACgQih0AQAAAAAAAAAAVAiFLgAAAAAAAAAAgAqh0AUAAAAAAAAAAFAhFLoAAAAAAAAAAAAqhEIXAAAAAAAAAABAhVDoAgAAAAAAAAAAqBAKXQAAAAAAAAAAABVCoQsAAAAAAAAAAKBCKHQBAAAAAAAAAABUCIUuAAAAAAAAAACACqHQBQAAAAAAAAAAUCEUugAAAAAAAAAAACqEQhcAAAAAAAAAAECFUOgCAAAAAAAAAACoEApdAAAAAAAAAAAAFUKhCwAAAAAAAAAAoEIodAEAAAAAAAAAAFQIhS4AAAAAAAAAAIAKodAFAAAAAAAAAABQIRS6AAAAAAAAAAAAKoRCFwAAAAAAAAAAQIVQ6AIAAAAAAAAAAKgQCl0AAAAAAAAAAAAVQqELAAAAAAAAAACgQih0AQAAAAAAAAAAVAiFLgAAAAAAAAAAgAqh0AUAAAAAAAAAAFAhFLoAAAAAAAAAAAAqhEIXAAAAAAAAAABAhVDoAgAAAAAAAAAAqBAKXQAAAAAAAAAAABVCoQsAAAAAAAAAAKBCKHQBAAAAAAAAAABUCIUuAAAAAAAAAACACqHQBQAAAAAAAAAAUCEUugAAAAAAAAAAACqEQhcAAAAAAAAAAECFUOgCAAAAAAAAAACoEApdAAAAAAAAAAAAFUKhCwAAAAAAAAAAoEIodAEAAAAAAAAAAFQIhS4AAAAAAAAAAIAKodAFAAAAAAAAAABQIRS6AAAAAAAAAAAAKoRCFwAAAAAAAAAAQIVQ6AIAAAAAAAAAAKgQCl0AAAAAAAAAAAAVQqELAAAAAAAAAACgQih0AQAAAAAAAAAAVAiFLgAAAAAAAAAAgAqh0AUAAAAAAAAAAFAhFLoAAAAAAAAAAAAqhEIXAAAAAAAAAABAhVDoAgAAAAAAAAAAqBAKXQAAAAAAAAAAABVCoQsAAAAAAAAAAKBCKHQBAAAAAAAAAABUCIUuAAAAAAAAAACACqHQBQAAAAAAAAAAUCEUugAAAAAAAAAAACqEQhcAAAAAAAAAAECFUOgCAAAAAAAAAACoEApdAAAAAAAAAAAAFUKhCwAAAAAAAAAAoEIodAEAAAAAAAAAAFQIhS4AAAAAAAAAAIAKodAFAAAAAAAAAABQIRS6AAAAAAAAAAAAKoRCFwAAAAAAAAAAQIVQ6AIAAAAAAAAAAKgQCl0AAAAAAAAAAAAVorroANAcvPXWW3nhhRdSU1NT/3rllVfywQcfZPbs2ZkzZ05KpVLRMT9Ru3bt0q5du3Tq1Ck9e/ZMr169yl6rrLJKqqqqio4JAAAAAAAAANCsVZUqvWUCFahUKuWJJ57IjTfemHHjxuXpp58uOlKD69mzZwYPHpxBgwZl0003TevWrYuOBAAAAAAAAADQ7Ch0wecwY8aM/OIXv8jo0aMzZcqUouMUplu3btljjz0yfPjwLLfcckXHAQAAAAAAAABoNhS64DOYP39+rr322vz0pz/NW2+9VXScitG1a9ecdNJJOfTQQ9O2bdui4wAAAAAAAAAANHkKXfApnnjiiRx44IF59NFHP3G/jh07plevXvWvVVddNd26dUv79u3Ttm3btGrVqpESf36lUilz587N7NmzM3Xq1Lz88supqampf02bNu0Tf75Pnz759a9/nW233baREgMAAAAAAAAANE8KXfAJ7r///uy444754IMPFvn+KqusksGDB2fQoEHZZJNN0rp160ZO2PBKpVKeeOKJjBs3LjfeeGOefvrpRe5XXV2da6+9NrvuumsjJwQAAAAAAAAAaD4UuuBj3HXXXfnOd76TmTNnLvTedtttl9NOOy3rr79+qqqqCkhXnBdeeCGnnnpqrr322oXea9WqVS6//PLst99+jR8MAAAAAAAAAKAZUOiCRbjtttsyaNCgzJkzp2y8b9++Oeecc7Ljjju2uCLXgh5++OEcccQRi1yK8te//nUOOuigAlIBAAAAAAAAADRtCl2wgPfeey+rrbZapk6dWja+884757rrrkv79u0LSlZ55s+fnyOOOCIXXXRR2Xh1dXUmTZqUNddcs6BkAAAAAAAAAABNU6uiA0ClOeaYYxYqc+222275wx/+oMy1gFatWuWCCy7IcccdVzY+b968HHjggZk/f35ByQAAAAAAAAAAmiaFLviIu+66K1dffXXZ2He+851ce+21adOmTUGpKltVVVXOOOOMHHnkkWXjDz74YC699NJiQgEAAAAAAAAANFGWXIT/U1dXl9VWWy0vvfRS/VjXrl3z3HPPZfnlly8wWdMwa9as9O/fPzU1NfVjXbt2TU1NTZZZZpkCkwEAAAAAAAAANB1m6IL/c88995SVuZLkzDPPVOb6jDp06JDf/OY3ZWPTpk3LDTfcUFAiAAAAAAAAAICmR6EL/s/vfve7su3+/ftn2LBhBaVpmgYOHJjvfve7ZWMLXlcAAAAAAAAAAD6eQhckmTNnTv74xz+WjQ0ZMiStWrlFPq999923bHv8+PF5/fXXC0oDAAAAAAAAANC0aKtAkttuuy3Tpk2r366qqsruu+9eYKKma4cddkjXrl3rt0ulUq677roCEwEAAAAAAAAANB0KXZDkrrvuKtvecsst85WvfKWgNE1bu3btsssuu5SNLXh9AQAAAAAAAABYNIUuSPLCCy+UbQ8cOLCgJM3DgtdvwesLAAAAAAAAAMCiKXRBFi4c9evXr6AkzcOC12/KlCmZM2dOQWkAAAAAAAAAAJoOhS5avFmzZuW1114rG+vbt29BaZqHPn36lG2XSqW89NJLBaUBAAAAAAAAAGg6FLpo8V566aWUSqWysQULSXw+SyyxRFZYYYWyMcsuAgAAAAAAAAB8OoUuWrw33nijbHv55ZdPp06dCkrTfPTq1ats+/XXXy8oCQAAAAAAAABA06HQRYs3a9assu0uXboUlKR5WWKJJcq2Z8+eXVASAAAAAAAAAICmQ6GLFm/BQlf79u0LStK8dOjQoWx7wesMAAAAAAAAAMDCFLpo8erq6sq227RpU1CS5qW6urpse968eQUlAQAAAAAAAABoOhS6gAZRVVVVdAQAAAAAAAAAgCZHoQsAAAAAAAAAAKBCKHQBAAAAAAAAAABUCIUuAAAAAAAAAACACqHQBQAAAAAAAAAAUCGqiw4A0FI8/vjjuf322zNx4sQ8/fTT+eCDD9K6dessu+yyWXfddbP++utn0KBBWXHFFYuOCgAAAAAAAAAURKELoAHNnz8/Y8aMyYUXXpiJEycucp/XX389EydOzJVXXpkjjjgi3/rWt3Lcccdls802a+S0AAAAAAAAAEDRLLkI0ECeffbZbLXVVtl///0/tsy1oLq6uvzpT3/K5ptvnh/96EeZNm1aA6cEAAAAAAAAACqJQhdAA/jzn/+cDTbYIA888MAXPsavf/3rbLzxxpkyZcriCwYAAAAAAAAAVDSFLoDF7JZbbsl3v/vdzJw580sf6/nnn8/Xvva1vPbaa4shGQAAAAAAAABQ6Vp8oeuxxx7LjjvumCWXXDKdOnXKJptskuuvv77oWLRAU6ZMSVVVVdmrTZs2WWmllbLrrrtmwoQJZft/8MEH6dmzZ9q3b5/Jkycv8phnnnlmqqqqcsABBzTGRyDJyy+/nD333DPz5s1bbMd87bXXsttuuy3WYwIAAAAAAAAAlalFF7ruueeebL755rn//vuz66675qCDDso///nP7LbbbvnlL39ZdDxaqF69euXkk0/OySefnCOPPDL9+vXLDTfckM022yx///vf6/dbYoklcsUVV2Tu3LnZd999Fyr7PPXUUznppJPSo0ePnHvuuY39MVqkurq6DBkyJNOnT1/sx3744YdzxhlnLPbjAgAAAAAAAACVpcUWuubNm5dhw4alVatW+fvf/55LLrkkv/zlL/PEE0+kb9++OeGEE/Lqq68WHZMWqHfv3hk5cmRGjhyZs88+O3/7299yxhlnpLa2NieeeGLZvttss00OOeSQTJgwIaeffnr9eG1tbYYMGZLa2tpceeWVWWKJJRr7Y7RIN910Ux544IEGO/7pp5+ef//73w12fAAAAAAAAACgeC220PW3v/0tNTU12XPPPbPuuuvWj3ft2jUnnHBC5s6dmzFjxhQXED7iBz/4QZLk8ccfX+i9M888M717986oUaMyadKkJMmpp56aSZMm5bDDDsvWW2/dmFFbtPPPP79Bjz979uxceumlDXoOAAAAAAAAAKBYLbbQde+99yZJtttuu4Xe++Y3v5kkue+++xozEnyq6urqhcY6duyY0aNH1y/3d//99+eMM85Iv3798vOf/7yAlC3Tyy+/nPHjxzf4eUaPHt3g5wAAAAAAAAAAitNiC10vvvhikqRPnz4Lvbf88sunc+fO9ftA0S677LIkyRZbbLHI9zfffPMcffTReeqppzJw4MAkyZgxY9KhQ4dGy9jSPfLII41ynueffz7vv/9+o5wLAAAAAAAAAGh8C0/300JMmzYtyf+WWFyULl261O/THJRKpcycObPoGBVpzpw5RUco89JLL2XkyJFJkhkzZuTxxx/PPffck+7du+fss8/+2J876aSTcvHFF2fWrFk59NBDs/HGGzdS4s9m7ty5mTFjRtExGsyDDz7YaOd64IEHLKUJAAAAAAAA0MJ07NgxVVVVRcegEbTYQldLM3PmzHTu3LnoGHwGNTU1OeWUU8rGll9++YwfPz69e/f+2J/7xS9+kVmzZiVJbr/99sycOTMdO3Zs0Kyfx1lnnZWzzjqr6BjNwk477VR0BAAAAAAAAAAa2fTp09OpU6eiY9AIWuySix/OzPVxs3D997///djZu6AhffOb30ypVEqpVMq7776bs88+O++++2523nnnTJ8+fZE/8/jjj+f0009Pv379cuyxx+all17K8ccf38jJAQAAAAAAAAD4slrsDF19+vRJkrz44otZf/31y9775z//menTp2ejjTYqIlqD6Nix48eWgVq6sWPH5sADDyw6xiItt9xyOfbYYzNt2rSMGjUqI0aMyHnnnVe2z5w5czJkyJCUSqWMGTMm6623Xu68885ceOGF2WWXXbLVVlsVE34BP/nJT3LSSScVHaPBHHXUUbn00ksb5Vx/+MMfsv322zfKuQAAAAAAAACoDJW0ShcNq8UWur72ta/ljDPOyJ133pndd9+97L077rijfp/moqqqyrR7H6Ndu3ZFR/hUJ5xwQq644or86le/ypFHHpmePXvWvzdixIhMnjw5xx9/fDbeeOMkyZgxY7LRRhtl//33z5NPPlkRv9Tbtm3brL+DG2+8caMVujbbbLNmfS0BAAAAAAAAoCVrsUsubrvttll11VUzduzYTJo0qX582rRpOf3009O2bdsMGTKkuIDwER06dMhxxx2X2tra/OxnP6sff+CBB3LOOeekf//+GTlyZP34uuuum+HDh6empibHHXdcAYlbnsaa0W+llVbKCius0CjnAgAAAAAAAAAaX4stdFVXV+eyyy7L/Pnzs9VWW+XAAw/MMccck3XWWScvvPBCTj/99LJZkKBoBx54YFZcccVcddVVqampyYwZM7LffvuldevWGTNmTNq2bVu2//DhwzNgwIBcfPHFue+++wpK3XKstdZaWWONNRr8PAvOKAgAAAAAAAAANC8tttCVJFtvvXXuv//+bL755rnuuuvy61//Ot27d8/vf//7HHPMMUXHgzLt27fP8ccfn3nz5uWUU07JT37yk7z00ksZMWJEBgwYsND+1dXVGTNmTNq0aZOhQ4dmxowZBaRuOaqqqnL44Yc36DlatWqVQw89tEHPAQAAAAAAAAAUq7roAEXbaKONcttttxUdA9KzZ8+USqVP3OfQQw8tK/RcfPHFn7h///79M2fOnMWSj0+3zz775Oyzz05NTU2DHH/o0KFmDgQAAAAAAACAZq5Fz9AFsDh17Ngx11xzTVq3br3Yj73qqqvm3HPPXezHBQAAAAAAAAAqi0IXwGK0ySab5Kyzzlqsx+zcuXN+97vfZYklllisxwUAAAAAAAAAKo9CF8BidvTRR+fss89eLMdacsklc/vtt2ejjTZaLMcDAAAAAAAAACqbQhdAAzj22GPzpz/9KSuuuOIXPsYWW2yRRx55JJtvvvliTAYAAAAAAAAAVDKFLoAGstNOO2Xy5Mk58sgjP9dyiausskp++9vf5r777kvfvn0bMCEAAAAAAAAAUGkUugAaUNeuXXPuuefm7bffzhVXXJFdd901ffr0Kdunbdu2WX/99TNs2LD89a9/zUsvvZQDDzwwrVr5FQ0AAAAAAAAALU110QEAWoJOnTpl6NChGTp0aJLk3//+d5ZddtkkybvvvpuuXbsWGQ8AAAAAAAAAqBCmfwEoQPv27ev/d3W1bi0AAAAAAAAA8D8KXQAAAAAAAAAAABVCoQsAAAAAAAAAAKBCKHQBAAAAAAAAAABUCIUuAAAAAAAAAACACqHQRYvXqlX5bVBXV1dQkuZl3rx5ZdsLXmcAAAAAAAAAABamYUGL1759+7LtWbNmFZSkeZk9e3bZdocOHQpKAgAAAAAAAADQdCh00eItWDSaMWNGQUmalwWvo0IXAAAAAAAAAMCnU+iixevevXvZ9ltvvZU5c+YUlKb5mDJlStl2t27digkCAAAAAAAAANCEKHTR4vXt27dse/78+Xn55ZcLStM8zJ49O6+++mrZWL9+/QpKAwAAAAAAAADQdCh00eJ16dIlyy+/fNnY888/X1Ca5uGll15KqVQqG1uwOAcAAAAAAAAAwMIUuiALl41eeOGFgpI0DwtevxVXXDGdO3cuKA0AAAAAAAAAQNOh0AVZuNB1//33F5SkeXjggQfKts3OBQAAAAAAAADw2Sh0QZLNN9+8bPv222/P+++/X1Capq2uri6///3vy8YWvL4AAAAAAAAAACyaQhckGTRoUNq1a1e/XVtbmz/+8Y8FJmq6xo8fn7feeqtsbI899igoDQAAAAAAAABA06LQBUm6du2ab33rW2Vj1157bUFpmrYFr9vaa6+dNddcs6A0AAAAAAAAAABNi0IX/J8FZ5G6995785e//KWgNE3T008/ndGjR5eNmZ0LAAAAAAAAAOCzqyqVSqWiQ0AlmDVrVr761a/m3//+d/1Yjx498swzz6RTp04FJmsa5s+fny222CIPPfRQ/Vh1dXVeeuml9OjRo8BklWnGjBnp3LlzkmT69Om+YwAAAAAAAABAEjN0Qb0OHTrk7LPPLht79dVXM2LEiIISNS2//vWvy8pcSfKTn/xEmQsAAAAAAAAA4HMwQxd8RKlUyjbbbJN77723bHzUqFE54YQTUlVVVUywCnfNNddkv/32S11dXf1Y79698+STT6ZDhw4FJqtcZugCAAAAAAAAABbFDF3wEVVVVfnNb36Ttm3blo2PGDEixx9/fPQfF/bb3/42Q4YMKStzJclvfvMbZS4AAAAAAAAAgM9JoQsW0K9fv/zyl79caPzMM8/MzjvvnBdffLGAVJXnnXfeyQEHHJCDDjpooaLbEUcckW233bagZAAAAAAAAAAATZdCFyzCoYcemosuumih8VtvvTVrrrlmfvzjH2fatGkFJCve7Nmzc+aZZ6ZPnz65/PLLF3r/6KOPzrnnnltAMgAAAAAAAACApq+qZA05+FijR4/OD37wg8yfP3+h99q3b59vfvObGTRoUHbaaacsvfTSBSRsHNOnT8/tt9+ecePG5c9//vPHltlOOumkjBw5MlVVVY2csOmZMWNGOnfunOR/17dTp04FJwIAAAAAAAAAKoFCF3yKG2+8MQcddFDee++9j92ndevWWX/99dO7d+/06tWr/tWtW7e0b98+7dq1S6tWlTshXqlUypw5czJ79uxMnTo1NTU1Za8JEyZk9uzZH/vznTp1ys9//vMceuihjZi6aVPoAgAAAAAAAAAWRaELPoNp06Zl1KhROf/881NbW1t0nIqy77775vTTT8+KK65YdJQmRaELAAAAAAAAAFiUyp0yCCpI165dc/bZZ+eZZ57J4MGD07p166IjFW7rrbfOY489ltGjRytzAQAAAAAAAAAsJmbogi9g6tSpueWWWzJu3Ljccccdn7gcYXPRunXrbL311hk0aFC+853vZKWVVio6UpNmhi4AAAAAAAAAYFEUuuBLmjFjRv7+97/nxRdfTE1NTf3rlVdeyZw5c4qO97lVV1enR48e6dWrV9lrq622ytJLL110vGZDoQsAAAAAAAAAWBSFLmhA8+bNy+zZszN79uxU+q3Wvn37tGvXLm3atElVVVXRcZo9hS4AAAAAAAAAYFGqiw4AzVl1dXU6d+5cX9wBAAAAAAAAAIBP0qroAAAAAAAAAAAAAPyPQhcAAAAAAAAAAECFUOgCAAAAAAAAAACoEApdAAAAAAAAAAAAFUKhCwAAAAAAAAAAoEIodAEAAAAAAAAAAFQIhS4AAAAAAAAAAIAKodAFAAAAAAAAAABQIRS6AAAAAAAAAAAAKoRCFwAAAAAAAAAAQIVQ6AIAAAAAAAAAAKgQCl0AAAAAAAAAAAAVQqELAAAAAAAAAACgQih0AQAAAAAAAAAAVAiFLgAAAAAAAAAAgAqh0AUAAAAAAAAAAFAhFLoAAAAAAAAAAAAqhEIXAAAAAAAAAABAhVDoAgAAAAAAAAAAqBAKXQAAAAAAAAAAABVCoQsAAAAAAAAAAKBCVBcdAJqD2bNn55VXXklNTU3965VXXskHH3yQ2bNnZ86cOSmVSkXH/ETt2rVLu3bt0qlTp/Ts2TO9evWqf6266qrp3Llz0RHhMymVSvnXv/5Vdj/W1NTkzTffzOzZszN79uzMmzev6JifqFWrVmnfvn3at2+fZZZZJquuump69+5df09+5StfSevWrYuOCQAAAAAAAEADUOiCL+jNN9/MTTfdlHHjxuXee+9NXV1d0ZEa1MYbb5zBgwdn0KBB6dOnT9FxoExdXV0efPDBjBs3LuPGjcuUKVOKjtSgunbtmm9961sZPHhwtt9++3Tq1KnoSAAAAAAAAAAsJlWlSp82CCrIvHnzctlll2X06NF55JFHio5TmDXXXDN77bVXjjjiiHTs2LHoOE3SjBkz6mc9mz59ukLOFzRlypSceeaZufHGG/Puu+8WHacQ7du3z3bbbZcjjzwyW2+9ddFxAAAAAAAAAPiSFLrgM7rzzjtz1FFHZfLkyUVHqRhf+cpX8vOf/zx77rlnqqqqio7TpCh0fTnTp0/PGWeckV/+8peZM2dO0XEqxqBBg3L22WenV69eRUcBAAAAAAAA4AtS6IJP8corr+Twww/Prbfe+qn7duvWLb169UqvXr2y6qqrplu3bmnfvn3atm2bVq1aNULaL6ZUKmXu3LmZPXt2pk6dmpdffjk1NTWpqanJm2+++ak/v8kmm+Tiiy/Oeuut1whpmweFri/ummuuyY9//OP885///MT92rRpk549e9bfkz169MgSSyyR9u3bp7q6uqJLiPPmzcucOXMya9asvPnmm/X3Y01NTaZPn/6JP9u2bdsceeSRGTlyZDp06NBIiQEAAAAAAABYXBS64BM89dRT+cY3vpF33nlnke937do1O+20UwYNGpSBAwemS5cujZyw4c2aNSvjx4/PjTfemJtuuuljr0XHjh1z8803Z+DAgY2csGlS6Pr8SqVSTjrppIwaNepj9+nfv38GDRqUQYMGpX///mndunUjJmx4pVIpb7zxRm699dbceOONueeee1JXV7fIfb/+9a/nT3/6U5ZYYolGTgkAAAAAAADAl6HQBR9jwoQJ+eY3v5mpU6cu9N6AAQPys5/9LN/4xjfStm3bAtIVo66uLg8++GBOOeWU3H333Qu9365du9xwww3ZaaedCkjXtCh0fT6lUinHHHNMzj333IXea926dX70ox/l8MMPT+/evQtIV5ypU6dm7NixOeWUU/Kvf/1rofc32WST3HbbbVlyySUbPxwAAAAAAAAAX4hCFyzCgw8+mB122CH//e9/y8a7d++e008/Pfvuu2+zm/nn8yiVSrnllltyzDHH5KWXXip7r7q6OmPHjs33v//9gtI1DQpdn12pVMrBBx+c3/72twu9t8MOO+SXv/xlVl999QKSVY7//Oc/+dnPfpYLLrgg8+bNK3tv3XXXzV//+tcsu+yyBaUDAAAAAAAA4PNQ6IIFTJs2LWussUbeeuutsvEtttgit9xyi5luPmLOnDnZd999c91115WNd+jQIc8880xWWWWVgpJVvunTp9cvhffBBx/Ul7tY2JVXXpn999+/bKyqqiq/+c1vcuCBBxaUqjJNnDgx22233UKzde26664L3acAAAAAAAAAVCaFLljAoYcemosvvrhs7Bvf+EbGjRtnFqVFqKury7Bhw3LllVeWjX/zm9/MbbfdlqqqqoKSVY5SqZQpU6Zk4sSJee655zJz5sxMnTo1v/71r5P87zu39NJLp2vXrll77bUzYMCALLPMMgWnrgzvvfdeVltttbKlT1u3bp0xY8Zkr732KjBZ5Xr22Wez7bbb5u233y4b//Of/5wdd9yxoFQAAAAAAAAAfFYKXfARDz/8cDbbbLN89LbYeuut85e//CXt27cvMFllmz9/fvbff/+MGTOmbHzs2LHZY489CkpVnJdeeikPPfRQJk6cmIkTJ2bSpEn5z3/+87mO8dWvfjUDBgyof2255ZZZeumlGyZwBdtnn31yzTXXlI397ne/y+67715QoqahpqYmG220UVkRrkePHnnmmWcUUwEAAAAAAAAqnEIX/J/58+dnwIABefLJJ+vHLB342S1qqcpu3brlxRdfTJcuXQpM1jhmzZqVG264IZdeemnuv//+hd5v06ZN1lprrfTv3z9du3ZNq1atcv755ydJDj/88NTV1eWf//xnJk2alJqamoV+vl27dhk8eHCGDRuWr3/96y1i5rN77703W2+9ddmYpQM/u0UtVXncccfl5z//eUGJAAAAAAAAAPgsFLrg/zzwwAPZYostysbOPPPM/OQnPykoUdNz4403ZpdddikbGz16dPbdd9+CEjW8J598MpdeemmuvvrqTJs2Lcn/lgTcdNNNs95662XdddfNgAEDssYaa6Rt27b1Pzdjxox07tw5STJ9+vSyWZOmTZuWJ554on52r0ceeSTPPvts/ft9+vTJAQcckH333Tfdu3dvpE/a+Hbbbbdcf/319dtdu3bNc889l+WXX77AVE1HqVTKNttsk3vvvbd+bOmll87bb79d9l0EAAAAAAAAoLIodMH/OeSQQ/KrX/2qfrtPnz555pln0qZNmwJTNS2lUinf/OY389e//rV+bLvttssdd9xRYKqG8eCDD+aYY47Jww8/XD/Ws2fPHHDAARk6dGhWXHHFT/z5Typ0Lcrjjz+eSy+9NGPHjs0HH3yQJKmurs5uu+2Ws88+OyussMKX/ESV5YMPPki3bt0ye/bs+rFzzjknRx11VIGpmp5nn302a6yxRtnYrbfemm9961sFJQIAAAAAAADg07QqOgBUgnnz5uWGG24oGxsyZIgy1+dUVVW10BJvd999d959992CEi1+06ZNyyGHHJItttgiDz/8cNq0aZPvf//7ufPOO1NTU5Phw4d/apnri1h//fXzm9/8Jm+99VYuv/zybLzxxpk3b16uvfbarL766rnkkksyf/78xX7eotx8881lZa7q6uoMGTKkwERN0+qrr55NN920bOx3v/tdQWkAAAAAAAAA+CwUuiD/Kx299957ZWO77757QWmatp122ikdO3as366rq1uoLNdU3XTTTVljjTXyq1/9KqVSKUOHDs3rr7+e66+/Pt/4xjfSqlXD/0rt3Llz9t9//zz88MN57LHHsuGGG2batGn54Q9/mK9//et57rnnGjxDY1iwdLTddttlmWWWKShN07bHHnuUbd90002ZOXNmQWkAAAAAAAAA+DQKXZDk9ttvL9vecMMN07t374LSNG2dOnXKd77znbKx2267raA0i8dbb72VXXbZJYMGDcpbb72VXr165e67784VV1yR7t27F5Zrgw02yEMPPZRzzz03nTp1yvjx47POOuvk1FNPzdy5cwvL9WXNmzevbNnOZOFSEp/drrvuWlY2nDFjRu6///4CEwEAAAAAAADwSRS6IMnzzz9ftr399tsXlKR52GGHHcq2X3jhhYKSfHkTJkzIuuuumxtvvDHV1dU5/vjj89RTT2WbbbYpOlqSpHXr1jnyyCPzzDPPZIcddsjcuXNz8sknZ+DAgXn//feLjveFTJkyJbW1tWVj7skvrnv37llvvfXKxpryPQkAAAAAAADQ3Cl0QRYudK222moFJWke+vXrV7b98ssvN8kZo26//fZ8/etfz3vvvZe11147EyZMyOmnn54OHToUHW0hPXr0yJ///OeMHTs2Xbp0yfjx47PFFlvk9ddfLzra57bg/bjMMstk2WWXLShN87DgPbngNQYAAAAAAACgcih00eLNmTMnU6ZMKRvr27dvMWGaiQWvX11dXV555ZWC0nwxN9xwQ3baaafMmDEjAwcOrF/OsJJVVVVljz32yP33358VV1wxkydPzmabbZaXXnqp6Gify4KzR7kfv7wFr6EZugAAAAAAAAAql0IXLV5NTU3mz59fNqZA8uUsueSS6datW9lYU5oR6MYbb8wee+yRefPmZc8998yf//zndOnSpehYn1n//v3z0EMPZfXVV88bb7yRbbbZpkkV6hb8riw4uxSfnxm6AAAAAAAAAJoOhS5avNdee61su1u3bk2qvFOpevfuXba94HWuVH/+85+z2267pa6uLvvss0+uuuqqtG3btuhYn9vKK6+ce+65J6uttlpef/31bLPNNnnjjTeKjvWZLPhdWfC7xOe3qPuxVCoVlAYAAAAAAACAT6LQRYs3a9assu2uXbsWlKR5WfA6LnidK9Hrr7+evfbaK/Pmzcsee+yRK6+8Mq1bty461hfWvXv3/O1vf0ufPn0yZcqU7L333gvNRleJ3JOL34LXsFQqZe7cuQWlAQAAAAAAAOCTKHTR4i1YHunQoUNBSZqX9u3bl21XeqFr/vz52XfffTNt2rRstNFGGTNmTJMuc31ohRVWyG233ZZOnTrlvvvuyznnnFN0pE/lnlz8FnUNK/2eBAAAAAAAAGipFLpo8ebNm1e2XV1dXVCS5qVNmzZl27W1tQUl+WzOO++83HPPPenYsWOuueaahfI3Zb169cp5552XJBk+fHiefPLJYgN9Cvfk4reo73Ol35MAAAAAAAAALZVCFyygqqqq6AjNQlO6jk8//XSOP/74JMk555yTPn36FJxo8fvBD36QnXfeOXPnzs1ee+2V2bNnFx3pM2tK36VK5RoCAAAAAAAANB0KXUCLNmfOnOy1116ZO3duvv3tb+fAAw8sOlKDqKqqyqWXXppu3brl6aefzvDhw4uOBAAAAAAAAAAsgkIX0KKdf/75efLJJ7Psssvmsssua9YzGXXr1i2XX355kv/NRFbpSy8CAAAAAAAAQEuk0AW0WLW1tbnwwguTJGeeeWa6d+9ecKKG9+1vfzvf+973kvyvzAYAAAAAAAAAVBaFLqDFGjduXN54441069Yte+21V9FxGs1RRx2VJLn22mvz3nvvFZwGAAAAAAAAAPio6qIDABTlvPPOS5IcdNBBadeuXbFhGtGmm26aDTbYIBMmTMhvf/vbjBgxouhI0Ojq6ury97//PQ8//HAmTpyYV199NXPnzk379u3Tu3fvDBgwIFtssUU23HDDZr0UKwAAAAAAAFB5FLqAFumxxx7LQw89lDZt2uTggw8uOk6jqqqqyhFHHJF99tknv/rVr/KTn/wkbdu2LToWNIpp06blwgsvzGWXXZZXX311kfs8/PDDueaaa5Ika621Vn74wx9m2LBhLar4CQAAAAAAABTHkotAi3T++ecnSXbbbbcsv/zyBadpfLvuumuWX375vP322/nDH/5QdBxoFOPGjcsaa6yRE0888WPLXAt6+umnc9hhh2XAgAF54IEHGjghAAAAAAAAgEIX0AJNnz49119/fZLkiCOOKDhNMdq2bVs/M9kVV1xRcBpoWHV1dTn88MMzePDgvPXWW1/oGM8++2y23HLLnHPOOYs5HQAAAAAAAEA5hS6gxXn88cdTW1ubr3zlK9lggw2KjlOYQYMGJUkeffTR1NXVFZwGGsb8+fNzwAEH5MILL/zSxyqVSjnmmGNy2mmnLYZkAAAAAAAAAIvWogtd11xzTX74wx9mgw02SLt27VJVVZXRo0cXHYsWbMqUKamqqip7tWnTJiuttFJ23XXXTJgwIUly3nnnpaqqKkOHDv3YY917771p1apVNtxww8ybN6+xPkKT8NhjjyVJNtpoo4KTFGuNNdZIp06d8sEHH+T5558vOk7F+az344c++OCD9OzZM+3bt8/kyZMXecwzzzwzVVVVOeCAAxrjI5D/La+6uJ/tI0aMyC233LJYjwkAAAAAAADwoeqiAxRpxIgRefXVV7PssstmhRVWyKuvvlp0JEiS9OrVK3vvvXeSZMaMGXn88cdzww035Kabbspdd92VI444IjfffHNGjx6dwYMHZ6eddir7+enTp2fo0KFp165drrrqqlRXt+hbfSGPPvpokmTDDTcsOEmxWrdunfXWWy/jx4/PY489ljXWWKPoSBXp0+7HrbbaKkmyxBJL5IorrsjAgQOz77775qGHHiq795566qmcdNJJ6dGjR84999xCPktL8/TTT+f4449vkGMfcMABeeqpp9KtW7cGOT4AAAAAAADQcrXoGbouu+yyTJkyJe+9914OOuigouNAvd69e2fkyJEZOXJkzj777Pztb3/LGWeckdra2px44on1s8l16dIlw4YNy7///e+ynz/mmGMyZcqUnHHGGVl99dUL+hSV68NCV0ufoSv5/9fgw2vCwj7tfvyobbbZJoccckgmTJiQ008/vX68trY2Q4YMSW1tba688sosscQSjf0xWqSf/OQnmTNnToMc+91337X0IgAAAAAAANAgWnSha+DAgenRo0fRMeAz+cEPfpAkefzxx5MkPXr0yHnnnZd33nknBx98cP1+d9xxRy655JJsvfXWOeKIIwrJWsnefffdvPrqq6mqqsr6669fdJzCKXR9MQvejx915plnpnfv3hk1alQmTZqUJDn11FMzadKkHHbYYdl6660bM2qL9fzzz+e2225r0HNceeWV+e9//9ug5wAAAAAAAABanhZd6IKm6KNLuA0dOjQ777xzbrjhhvzud7/Lf/7znxxwwAHp0qVLrrzyylRVVRWYtDJNmDAhSdKvX7907dq14DTF+3DZySeeeCJz584tOE3Ts6jlTDt27JjRo0enrq4uQ4YMyf33358zzjgj/fr1y89//vMCUrZMV1xxRYOf44MPPsgNN9zQ4OcBAAAAAAAAWhaFLmgiLrvssiTJFltsUTZ+ySWXZNlll80hhxyS/fbbL2+88UbOO+88s899jH/+859JklVXXbXgJJWhZ8+eqaqqSm1tbd5///2i4zQZH3c/fmjzzTfP0UcfnaeeeioDBw5MkowZMyYdOnRotIwt3UMPPdSszgMAAAAAAAC0HAtPLUKzVCqVMnPmzKJjVKQ5c+YUHWEhL730UkaOHJkkmTFjRh5//PHcc8896d69e84+++yyfbt3757f/va32WWXXXLzzTdn5513ztChQwtI/cnmzp2bGTNmFB2jvrTUpk2bQvN89NxFX5d27dpl9uzZ+de//pXOnTsXmiVJ5s+fX3SEMp/nfvyok046KRdffHFmzZqVQw89NBtvvHEjJf5sZsyYkY4dOxYdo0HU1dUtcjnMhvDwww8Xfg8DAAAAAADQMnTs2NFKXS2EQlcLMXPmzIooavDZ1NTU5JRTTikbW3755TN+/Pj07t17of0HDx6cjTbaKI8++mjFLul21lln5ayzzio6Rr2bb765Yu6J7t27Fx0hSbLWWmsVHaEifd778UO/+MUvMmvWrCTJ7bffnpkzZ1ZUgWqVVVYpOkKz8Mwzz1TM7xIAAAAAAACat+nTp6dTp05Fx6ARWHIRKtA3v/nNlEqllEqlvPvuuzn77LPz7rvvZuedd8706dMX+TMfLuVmSTdYvL7I/fj444/n9NNPT79+/XLsscfmpZdeyvHHH9/IyQEAAAAAAABoiszQ1UJ07NjxY4sHLd3YsWNz4IEHFh3jYy233HI59thjM23atIwaNSojRozIeeedV3Ssz+0nP/lJTjrppKJj5OKLL85xxx2XwYMH56qrriosx4wZM+pn5nrnnXcKbVF37949M2bMyBNPPJFevXoVluNDW265ZSZOnFh0jEX6LPfjnDlzMmTIkJRKpYwZMybrrbde7rzzzlx44YXZZZddstVWWxUTfgGvvPJKlltuuaJjNIjZs2dnueWWS6lUavBzrbzyypk8eXKDnwcAAAAAAAAqaUUgGpZCVwtRVVVl2r2P0a5du6IjfCYnnHBCrrjiivzqV7/KkUcemZ49exYd6XNp27ZtRXwHl1pqqSRJbW1tReRJkk6dOhWaZfbs2UmSZZddtiKuSatWlT955CfdjyNGjMjkyZNz/PHHZ+ONN06SjBkzJhtttFH233//PPnkkxXxD62iv3cNqVOnTllttdXy7LPPNvi5BgwY0GyvIwAAAAAAAFCMyv+rOZDkf0spHnfccamtrc3PfvazouM0WV26dEmS/Otf/yo4SWWYNm1a6urqkiSdO3cuOE3T8XH34wMPPJBzzjkn/fv3z8iRI+vH11133QwfPjw1NTU57rjjCkjc8my00UaNcp4NN9ywUc4DAAAAAAAAtBwtutB12WWXZb/99st+++2XG264YaGxyy67rOCEUO7AAw/MiiuumKuuuio1NTVFx2mS1l577STJpEmTMm/evILTFG/ChAlJklVWWaW+7MZns+D9OGPGjOy3335p3bp1xowZk7Zt25btP3z48AwYMCAXX3xx7rvvvoJStxyDBw9uVucBAAAAAAAAWo4WXei6//77M2bMmIwZMyb/+Mc/kvxvdpUPx+6///6CE0K59u3b5/jjj8+8efNyyimnFB2nSerXr1+WWGKJzJo1K88880zRcQr36KOPJmm82YyakwXvx5/85Cd56aWXMmLEiAwYMGCh/aurqzNmzJi0adMmQ4cOzYwZMwpI3XJ861vfSq9evRr0HNttt11WX331Bj0HAAAAAAAA0PJUFx2gSKNHj87o0aOLjgH1evbsmVKp9In7HHrooTn00EMXGr/33nsbKFXz0qpVq2y44Yb529/+lsceeyzrrLNO0ZEK9dhjjyWxbNyifJH78eKLL/7E/fv37585c+Yslnx8statW2fEiBEZOnRog51j+PDhDXZsAAAAAAAAoOVq0TN0AS3Th+WlD2enasnM0EVztu+++2bnnXdukGMfffTR2WqrrRrk2AAAAAAAAEDLptAFtDgflpdaeqHrrbfeyptvvplWrVplvfXWKzoOLHZVVVW59NJLs8oqqyzW42688cY57bTTFusxAQAAAAAAAD6k0AW0OB8Wup5++un861//KjhNce67774kyZprrplOnToVnAYaRrdu3XLPPfekd+/ei+V4m222WW6//fa0b99+sRwPAAAAAAAAYEEKXUCLs9JKK2X99ddPXV1dLrnkkqLjFObiiy9Oknz3u98tNgg0sB49euTBBx/M4MGDv/Axqqqq8qMf/Sh33XVXllxyycUXDgAAAAAAAGABCl1Ai1NVVZUjjjgiyf9KTbW1tQUnanwTJkzIAw88kDZt2uTggw8uOg40uOWWWy5//OMfM27cuPTt2/dz/exGG22U+++/PxdffHE6dOjQQAkBAAAAAAAA/kehC2iRdt1113Tv3j1vvfVW/vCHPxQdp9Gdf/75Sf53HVZYYYWC00Dj+e53v5vnnnsu9913X/bff/+sscYaadWq/J9Dbdq0yYABA3LYYYdl4sSJeeSRR7LZZpsVlBgAAAAAAABoaaqLDgBQhHbt2uXggw/OyJEjc/7552ePPfYoOlKjefvtt3PdddclSf1MZdCSVFVVZauttspWW22VJHnvvffSrVu3JMkTTzyR1VZbLW3bti0yIgAAAAAAANCCmaELaLEOOuigtG3bNo888kgeeeSRouM0mt/85jepra3Npptumg033LDoOFC4jh071v/vXr16KXMBAAAAAAAAhVLoAlqs7t2718/M9dOf/jTz588vOFHDe+ONN3LBBRckSY488shiwwAAAAAAAAAAC1HoAlq0E088MZ06dcq9996bc889t+g4DWr+/PnZb7/98p///CcbbrhhBg8eXHQkAAAAAAAAAGABCl1Ai9arV6/6ItcJJ5yQJ598suBEDeeCCy7I3XffnY4dO+aaa65JdXV10ZEAAAAAAAAAgAUodAEt3gEHHJCddtopc+fOzd57753Zs2cXHWmxe/rpp/PTn/40SfLLX/4yffv2LTgRAAAAAAAAALAoCl20eFVVVWXbdXV1BSVpXha8jq1aVe6vm6qqqlx66aVZbrnl8tRTT2XEiBFFR1qs5syZk7333jtz5szJt771rfzwhz8sOtInck8ufou6hpV8TwIAAAAAAAC0ZP6aS4vXvn37su3mODtTERa8jgte50rTvXv3XH755UmSc845J3/84x8LTrR4lEqlHHbYYXniiSey7LLL5rLLLluoMFVp3JOL36xZsxYaq/R7EgAAAAAAAKClUuiixevQoUPZ9syZMwtK0rwseB0XvM6VaKeddsqPfvSjlEql7L777vnTn/5UdKQvpVQq5Ygjjsill16aqqqqXH755Vl++eWLjvWp3JOL36KuYVO4JwEAAAAAAABaIoUuWrzllluubPutt95KbW1tQWmaj9dee61se9llly0oyedzwQUXZM8998y8efPyve99r8mWuubPn5+jjz46F154YaqqqnLFFVdk5513LjrWZ7LgPbngd4nPb8FruNRSS1lyEQAAAAAAAKBC+WsuLV6fPn3KtufNm5dXXnmloDTNw9y5cxe6hv369SsozefTunXrjBkzJrvuumtqa2szaNCgXHbZZUXH+lzmzp2bIUOG5LzzzkuSXHLJJdlvv/0KzfR59O3bt2z7+eefLyhJ87HgNWwq9yMAAAAAAABAS6TQRYu39NJLLzR71AsvvFBQmubh5ZdfTl1dXdnYgsW5SlZdXZ1rrrkmQ4cOzfz58zNs2LCcdNJJC32mSvTvf/873/rWt3Lttdemuro6Y8aMyQEHHFB0rM9lwUKX+/HLW/AaLniNAQAAAAAAAKgcCl0QBZLFbcHr161btyy55JLFhPmC2rRpk8svvzzDhw9PkvzsZz/LJptskieeeKLgZItWKpUyduzYrL766rnrrrvSqVOn3HrrrRkyZEjR0T63Be/HKVOmZM6cOQWlaR4UugAAAAAAAACaDoUuyMLLjz388MMFJWkeFrx+TXV5t6qqqowaNSqjR49O165dM2HChKy//vr56U9/mlmzZhUdr96UKVOy4447Zq+99sp7772XNddcM3//+9/zzW9+s+hoX8iCZaNSqZTHHnusoDRN39y5c/OPf/yjbKyp3pMAAAAAAAAALYFCFyTZeOONy7ZvvfXWfPDBBwWladpKpVJ+//vfl41ttNFGBaVZPPbdd988++yz2WWXXVJXV5czzzwz/fv3z913311orrq6upx77rlZc801c/vtt6dt27Y59dRT849//CPrrbdeodm+jCWWWCJrrLFG2diC3yk+uzvvvDPvv/9+2diGG25YUBoAAAAAAAAAPo1CFyTZZZddUl1dXb89a9as3HzzzQUmaroeeeSRvPLKK2Vje+yxR0FpFp8VVlghf/jDH3LTTTdlpZVWSk1NTQYOHJhvfetb+dOf/pR58+Y1Wpb//Oc/ueiii7LOOuvk6KOPzsyZM7PlllvmiSeeyIknnpi2bds2WpaGsvvuu5dtX3/99Y16jZuTsWPHlm1vttlm6dGjR0FpAAAAAAAAAPg0Cl2QZNlll812221XNrZgCYLP5ne/+13Zdt++fZv0bFEL+s53vpPJkyfnkEMOSVVVVf7yl7/kO9/5Tnr06JERI0YsVGZbXEqlUu6///7su+++WXHFFXPYYYflmWeeSdeuXXPJJZfk3nvvzWqrrdYg5y7CgiXA9957L3fddVdBaZquGTNmLFRO3XPPPQtKAwAAAAAAAMBnUVUqlUpFh4BKcM0112SfffYpG/v73/+eLbfcsqBETc/LL7+ctdZaK7NmzaofO/nkkzNy5MjiQjWgF154IZdddllGjx6d9957L0lSVVWVgQMHZpdddsmAAQPSv3//dOjQYaGfnTFjRjp37pwkmT59ejp16rTQPv/+978zadKkPProo7n66qvz7LPP1r+31lpr5cADD8zee++dpZZaqoE+YbE22mijPPbYY/XbG2ywQR5++OG0bt26wFRNy/Dhw3P66afXb7du3TpvvfVWunXrVmCqyvNZ7kcAAAAAAACAxqLQBf/ngw8+yIorrpjp06fXj62++uqZOHFi2rVrV2CypqFUKmX77bfPnXfeWT9WVVWV5557Ln379i0wWcObO3dubr755lx66aX561//WvZe69ats9pqq2XAgAH1Ba+uXbtm/vz52XTTTZMkDz74YKqqqvLOO+9k4sSJ9a/XX3+97FgdO3bM7rvvnmHDhmXjjTdOVVVVo33GIlx44YU5/PDDy8bOP//8hcZYtKeffjoDBgwoW6pyxx13zJ///OcCU1UmhS4AAAAAAACgkih0wUecf/75OfLII8vGTjnllJx00knFBGpCrr322uy9995lY4ceemguvPDCghIV45VXXsmYMWPy0EMPZeLEifUzd31RvXr1yoABAzJw4MDsscce6dKly2JKWvnmzJmTddddN88991z9WOfOnfPMM89k5ZVXLjBZ5aurq8tWW22VBx98sH6sTZs2mThxYtZcc80Ck1UmhS4AAAAAAACgkih0wUfU1dVlk002yYQJE+rHqqqq8tvf/jbDhg0rMFllu+222zJ48ODMnj27fmyllVbK5MmTW1QBaUGlUilvvfVW2axbzz33XGbOnJlZs2bl3XffTZJ07949HTt2zJJLLpm11167fjavddZZJ127di34UxRr/Pjx2WqrrcrG+vbtm7vvvjtf+cpXCkpV2Wpra7PPPvvkuuuuKxsfPnx4Ro0aVVCqyqbQBQAAAAAAAFQShS5YwMSJE7Phhhumrq6ubPzcc89daPYukhtvvDG77757amtrFxofNGhQQakqX6lUysyZM5P8bynF5r584pcxbNiwXHbZZWVjPXv2zF133ZVevXoVlKoyzZ49O7vuumtuueWWsvHevXvnySefTIcOHQpKVtkUugAAAAAAAIBK0qroAFBpBgwYkBEjRiw0ftRRR2XYsGH1syq1dNOnT8+IESOy6667LlTm2muvvZS5PkVVVVU6deqUTp06KXN9irPOOiurrrpq2diUKVOy+eabZ+zYsdFL/p/HH388X//61xcqc7Vr1y6XX365MhcAAAAAAABAE6HQBYtw8skn58QTT1xo/LLLLkufPn3yi1/8InPnzi0gWfHmz5+fMWPGpG/fvjnttNMWmsls7733zujRo4sJR7O01FJLZfz48Vl99dXLxt95553stdde2WyzzfLoo48WlK54b7/9dvbff/9suOGGeeSRR8re69ixY2699daFlq0EAAAAAAAAoHJZchE+wZlnnpmf/vSni3yve/fu+c53vpPBgwdn6623Ttu2bRs5XeOpq6vLQw89lHHjxuXGG2/MlClTFrnfD3/4w/zqV79Kq1a6oix+7733XrbbbrtMmjRpke9vvPHGGTx4cAYNGpQ+ffo0brhGNnXq1Nxyyy0ZN25c7rjjjsyePXuhfbp06ZI///nP2WKLLQpI2LRYchEAAAAAAACoJApd8Cl++9vf5uijj87MmTM/dp+uXbvma1/7Wnr37p1evXrVv5Zbbrm0b98+bdu2rehl9UqlUmprazN79uxMnTo1L7/8cmpqaupf48ePzzvvvPOxP9+6dev89Kc/zc9+9rOK/pw0fe+//35233333HnnnZ+435prrpn111+/7H7s2bNnOnfunPbt26e6urqREn8x8+fPz+zZszNr1qy8+eabZffj5MmT88ADDyw0O95H9ezZMzfccEM22GCDRkzddCl0AQAAAAAAAJVEoQs+gzfeeCMnnHBCrr766i98jEouOn2ZXwPbb799zjnnnIWWw4OGUiqV8qc//SnHHHNMampqvvBxmuM92blz5wwfPjxHHnlk2rdvv5hTNV8KXQAAAAAAAEAlUeiCz+HRRx/N0UcfnQceeKDoKIVbY4018otf/CI77LBD0VFooebMmZOLLroop512Wt5///2i4xSqdevW2XfffXPaaadl+eWXLzpOk6PQBQAAAAAAAFQShS74Al566aWMGzcuN954Yx5++OGi4zSa/v37Z9CgQRk8eHDWXnvtip7hiJZj7ty5ueeeezJu3LjcdNNNn7g8aHPSvn37bL/99hk0aFC+/e1vZ+mlly46UpOl0AUAAAAAAABUEoUu+JLefPPN/PWvf82LL76Ympqa+ldTnjGoc+fO6dWrV9lr2223Te/evYuOBp+orq4uDz/8cB555JGy+3HKlCmZN29e0fG+sJVWWqnsflxrrbUycOBAxaPFRKELAAAAAAAAqCQKXdBA/vOf/2T69OmZPXt2Zs+enUq/1dq3b5927dqlU6dOWXrppc2+RbMyb968/Otf/6q/H2tra4uO9IlatWqVDh06pH379llqqaXSoUOHoiM1awpdAAAAAAAAQCVR6AIAWjSFLgAAAAAAAKCStCo6AAAAAAAAAAAAAP+j0AUAAAAAAAAAAFAhFLoAAAAAAAAAAAAqhEIXAAAAAAAAAABAhVDoAgAAAAAAAAAAqBAKXQAAAAAAAAAAABVCoQsAAAAAAAAAAKBCKHQBAAAAAAAAAABUCIUuAAAAAAAAAACACqHQBQAAAAAAAAAAUCEUugAAAAAAAAAAACqEQhcAAAAAAAAAAECFUOgCAAAAAAAAAACoEApdAAAAAAAAAAAAFUKhCwAAAAAAAAAAoEIodAEAAAAAAAAAAFQIhS4AAAAAAAAAAIAKodAFAAAAAAAAAABQIRS6AAAAAAAAAAAAKoRCFwAAAAAAAAAAQIVQ6AIAAAAAAAAAAKgQ1UUHgOZi6tSpqampqX9NmTIlH3zwQWbPnp05c+akVCoVHfETtWvXLu3atUunTp3So0eP9OrVq/7VrVu3VFVVFR0RgCbqgw8+KHtGvvzyy5k2bVpmz56d2bNnV/wzsk2bNmnfvn06dOiQr371q2XPyBVXXDGtWvlvJAAAAAAAAFh8FLrgC5oxY0Zuv/323Hjjjbnjjjvy73//u+hIDaZz587ZZpttMnjw4Oy0005Zeumli44EQAWbO3du/va3v2XcuHG59dZb89ZbbxUdqcG0b98+m2++eQYPHpzvfve7WXHFFYuOBAAAAAAAQBNXVar0KRGggpRKpdx8880ZPXp07rjjjsyePbvoSI2udevW+frXv5699tor++yzT6qr9UKBpm3GjBnp3LlzkmT69Onp1KlTwYmarr///e+55JJLcuutt2batGlFxynEJptskl133TUHHXRQOnToUHQcAAAAAAAAmiCFLviMJk6cmKOOOir33Xdf0VEqRv/+/XPuuedm2223LToKwBem0PXlvfLKK/nxj3+cP/7xj0VHqRgrr7xyzjrrrOy6666WLQYAAAAAAOBzUeiCT/Hee+/lhBNOyOWXX55Pu11at26dlVdeOb169UqvXr3SrVu3tG/fPm3btk2rVq0aKfHnVyqVMnfu3MyePTtTp05NTU1Nampq8sorr6S2tvZTf/473/lOfvnLX6ZXr16NkBZg8VLo+uJmzJiRUaNG5ZxzzsncuXM/cd+qqqqstNJK9c/IFVZYIR06dEi7du0q/hlZW1ub2bNnZ9q0aXn55ZdTU1OTl19+ObNmzfrUn998881zwQUXZL311muEtAAAAAAAADQHCl3wCaZMmZJtt902L7/88iLfb926dbbeeusMGjQoAwcOzCqrrJI2bdo0csqGU1dXlzfeeCP33Xdfbrzxxk9cZnLppZfOHXfckQ022KCRUwJ8OQpdX8z777+fHXfcMQ8//PDH7rPJJptk0KBB2WGHHdKnT5+0b9++ERM2rFKplLfffjsPPfRQxo0bl1tuuSX//e9/F7lvu3btcsMNN2SnnXZq5JQAAAAAAAA0RQpd8DFeeOGFbLvttnnjjTcWeq9Hjx458cQTM2jQoCy99NIFpCvGjBkz8pe//CWjRo3Kk08+udD7SyyxRP7yl79kiy22KCAdwBej0PX5vffee9luu+0yadKkhd5bZpllcvzxx2f33XfPSiut1PjhCjJ37tz87W9/y1lnnZV77rlnoferq6tzzTXXZLfddisgHQAAAAAAAE2JQhcswtNPP52BAwfmnXfeKRvv1KlTTjjhhBx11FHp0KFDQemKV1dXl8svvzwjRozIe++9V/Zex44dc/PNN2fgwIEFpQP4fBS6Pp+33nor2267bZ577rmy8erq6hx66KE56aSTstRSSxWUrnilUik33XRTjj322IVm+GzVqlUuu+yyDB06tKB0AAAAAAAANAUKXbCAWbNmpX///qmpqSkbX2uttXLbbbflK1/5SkHJKs+0adPyve99L3fddVfZeNeuXfPss89mhRVWKCgZwGen0PXZlUqlbL311rnvvvvKxldcccXcfvvt6d+/f0HJKs+cOXNy8MEH58orrywbb9WqVSZMmJABAwYUlAwAAAAAAIBKV110AKg0o0aNWqjMtcEGG+T222/PMsssU1CqytS1a9fccsst2XXXXXPLLbfUj0+bNi1HHnlkrrvuugLTASxaqVTKa6+9lkmTJuXtt9/OtGnT6t/75S9/ma5du6Z9+/ZZeeWVM2DAgCy//PIFpq0so0ePXqjM1bNnz9x9991ZddVVC0pVmdq1a5fLLrssnTp1ykUXXVQ/Pn/+/Bx44IF5+OGH07p16wITAgAAAAAAUKnM0AUf8fTTT2fAgAGZN29e/dgGG2yQu+++O126dCkwWWWrra3N9773vfzpT38qG//zn/+cHXfcsaBUAP8rbz333HP5xz/+kYkTJ2bixImZNGlSpk6d+pmPsfzyy2fAgAH1r/XXXz+rrLJKA6auTO+9915WW221smv31a9+NQ888EC++tWvFpisspVKpRx11FE5//zzy8bPO++8HHHEEQWlAgAAAAAAoJIpdMH/KZVK2WKLLfLggw/Wj7Vp0yYTJ07MmmuuWWCypmFRf+jv0aNHJk+enI4dOxaYDGiJ/vWvf+Wqq67KpZdemueee26h96urq7PmmmtmlVVWSdu2bXP99dcnSfbee+/MmzcvM2fOzAsvvJDnn38+i/qn0sYbb5xhw4Zlt912q1+usbnbd999c9VVV5WNKe5+NnPmzMm6665b9l3s3Llznnvuuay00koFJgMAAAAAAKASKXTB/3n88cezwQYblI0NHz48o0aNKihR03PllVdm//33Lxv7/e9/n912262gREBLMn/+/Nxzzz259NJLM27cuMydOzdJ0qFDh6y33npZd91162fZWnPNNdOuXbskyYwZM+pLWdOnT0+nTp3qjzljxow8+eSTZbN7TZo0qX4mx86dO2fPPffMsGHDsv7666eqqqqRP3XjeO+997LCCiukrq6ufmzXXXe1tO7n8Pe//z1f+9rXysZGjRqV4cOHF5QIAAAAAACASqXQBf/nmGOOyTnnnFO//dWvfjXPP/98OnToUGCqpmVRs5ztvPPOufnmmwtMBTR38+fPz+WXX54zzzwzNTU19eMbbLBBhg0blt133/0Tl839pELXorz77rsZM2ZMLr300rz44ov14+uuu25GjhyZ73znO1/yE1WeX//61/nRj35Uv92hQ4fU1NRkhRVWKDBV0zNkyJBcffXV9durr756nnnmmWZbBAQAAAAAAOCLaVV0AKgE8+fPX2iWkSFDhihzfU5VVVUZNmxY2dhtt92W999/v6BEQHP33HPP5etf/3oOPPDA1NTUpEuXLjn44IPzj3/8I4899lgOPPDATyxzfRHdunXLj3/84zz//PO55557sueee6Zdu3aZNGlSvvvd7+Z73/te3n777cV6zqL97ne/K9veeeedlbm+gAMPPLBs+9lnn82TTz5ZUBoAAAAAAAAqlUIXJBk/fnzefPPNsrE99tijoDRN26BBg+qXMUuS2tra3HjjjQUmApqjuXPn5tRTT80666yT8ePHp1OnTvnlL3+Zt956K7/61a8yYMCABs9QVVWVr3/967n22mvz5ptv5rjjjkvr1q3zxz/+MauvvnouueSSzJ8/v8FzNLTXX38948ePLxvzjPxiNttss6y88splYwuW5QAAAAAAAEChC5LceuutZdv9+/fPmmuuWVCapq1r167Zcccdy8ZuueWWgtIAzdGDDz6YAQMG5OSTT87cuXOz44475plnnsnRRx/9qcslNpRlllkmP//5z/P4449nww03zLRp0/LDH/4wX//61/Pcc88Vkmlx+ctf/lK2veSSS2b77bcvKE3T1qpVq+y+++5lY56RAAAAAAAALEihC5KF/tj+7W9/u6AkzcOC1+/5558vKAnQ3Jx77rnZYostMnny5HTr1i2/+93vcuutt6ZHjx5FR0uSrLPOOnnooYdy7rnnplOnThk/fnzWXXfdJj1T4YLPyG984xtlMzHy+Sz4jHzxxRdTV1dXUBoAAAAAAAAqkUIXJHnhhRfKtldfffWCkjQPC16/mpqazJs3r6A0QHMwf/78HHPMMTn66KNTKpUyZMiQPPvss9l9991TVVVVdLwyrVu3zpFHHplnnnkm3/jGNzJnzpx873vfy8UXX1x0tC/EM3LxWm211cq2a2tr8+qrrxaUBgAAAAAAgEqk0EWLV1tbm5dffrlsrG/fvgWlaR4WvH61tbWZMmVKMWGAJq+uri777rtvzjnnnCTJWWedldGjR2fppZcuONkn69GjR2677bYcdNBBKZVKOfTQQzNy5MiiY31uC86y6Bn55Sy77LJZcskly8YWLM0BAAAAAADQsil00eK98sorC80e1adPn4LSNA/LLLPMQkULf6wGvoi6uroMHTo011xzTaqrq3P11Vfnxz/+ccXNyvVxWrdunV/96lcZNWpUkuSUU07JqaeeWnCqz27u3Ll55ZVXysYUur6cqqqq9OvXr2zMMxIAAAAAAICPUuiixVtw5qhFlZH4/BYsxS1YCAD4NKVSKQceeGCuvvrqtG7dOr///e+z9957Fx3rc6uqqsrw4cPzi1/8Ikly8skn54wzzig41WfzxhtvZP78+WVjSs9fnmckAAAAAAAAn0ShixZvxowZZdtLLbVUQUmalwWv48yZMwtKAjRVv/nNb3LFFVekVatWufbaa7PLLrsUHelLOeaYY+qLXCeccELuvPPOghN9ugWfkUnStWvXApI0LwsuuegZCQAAAAAAwEcpdNHizZ49u2y7Q4cOBSVpXtq3b1+2veB1Bvgkzz//fI455pgkyS9+8YvstttuBSdaPH7605/m4IMPTpIMHTo0U6dOLTjRJ1vwd3f79u2bzHKXlWzBf2vMmjWroCQAAAAAAABUIoUuWrza2tqy7TZt2hSUpHlp27Zt2fbcuXMLSgI0NbW1tdl7770za9asbLvttjniiCOKjrRY/eIXv0i/fv3y1ltv5aCDDkqpVCo60sfyjGwYnpEAAAAAAAB8EoUuWICZRxYP1xH4on72s59lwoQJWXLJJTN69Oi0atW8/rnSsWPHXHPNNamurs4NN9yQa6+9tuhIn5nf7YuH6wgAAAAAAMAnaV5/IQUAmrSHHnoop512WpLkN7/5Tb7yla8UnKhhbLDBBjn55JOTJIccckheffXVghMBAAAAAAAAlUKhCwCoCPPnz8/++++f+fPnZ6+99spuu+1WdKQG9dOf/jSbbrpp/vvf/+bQQw8tOg4AAAAAAABQIRS6AICKcNttt+W5555L165dc9FFFxUdp8FVV1fnyiuvTFVVVW699dY8//zzRUcCAAAAAAAAKoBCFwBQEc4///wkyQEHHJAll1yy2DCNpF+/fvn2t7+dJLnwwgsLTgMAAAAAAABUguqiAwAATJ48OX/961/TqlWrFrf84BFHHJFbbrklo0ePzqhRo1pMmQ0+atasWRk/fnwmTpyYJ598Mv/5z3+SJEsuuWTWXnvtDBgwIFtuuWU6dOhQbFAAAAAAAIBGoNAFABTuggsuSJJ85zvfSc+ePYsN08i22WabrLXWWnn66adzxRVX5Oijjy46EjSaF198MRdddFGuvvrqvP/++4vcZ+zYsUmSpZZaKvvss08OPfTQ9OnTpzFjAgAAAAAANCpLLgIAhZo6dWquuuqqJP+braqlqaqqyuGHH57kf8su1tXVFZwIGt6cOXNyyimnZK211soFF1zwsWWuj3r//fdzwQUXZK211sopp5ySOXPmNEJSAAAAAACAxqfQBQAU6tprr82sWbOyzjrrZKuttio6TiH22muvLL300pkyZUr++te/Fh0HGtTbb7+dTTfdNCNHjszcuXM/98/PnTs3I0eOzKabbpq33367ARICAAAAAAAUS6ELACjUgw8+mCT5/ve/n6qqqoLTFKNjx47Zaaedkvz/6wHN0Ztvvpktt9wyEydO/NLHmjhxYrbccsu8+eabiyEZAAAAAABA5Wixha4333wz5513XrbbbrusvPLKadu2bZZffvnssssueeSRR4qORws1ZcqUVFVVlb3atGmTlVZaKbvuumsmTJiQJDnvvPNSVVWVoUOHfuyx7r333rRq1Sobbrhh5s2b11gfAeBze/TRR5MkG2+8ccFJirXRRhslSR577LGCk1Sez/p8/NAHH3yQnj17pn379pk8efIij3nmmWemqqoqBxxwQGN8BJLU1tZm0KBBqampWWzHrKmpyaBBg1JbW7vYjgkAAAAAAFC06qIDFOXCCy/MmWeemV69emW77bbLcsstlxdffDE33XRTbrrppowdOza77bZb0TFpoXr16pW99947STJjxow8/vjjueGGG3LTTTflrrvuyhFHHJGbb745o0ePzuDBg+tndfnQ9OnTM3To0LRr1y5XXXVVqqtb7K0OVLh//etfefnll5MkG2ywQcFpirXhhhsm+V/BrVQqtdjZyj7Jpz0fP1yyc4kllsgVV1yRgQMHZt99981DDz1U9ix86qmnctJJJ6VHjx4599xzC/ksLdHPfvazBiksPvbYYxk1alROOeWUxX5sAAAAAACAIrTYlsdGG22Ue++9N1/72tfKxsePH59tt902Bx98cL773e+mXbt2BSWkJevdu3dGjhxZNvbzn/88xx9/fE488cTcd999GT16dNZee+0MGzYszzzzTJZZZpn6fY855phMmTIl5557blZfffVGTg/w2X04s1Lfvn2z5JJLFhumYGuvvXbatm2bqVOn5uWXX06vXr2KjlRxPsvz8UPbbLNNDjnkkFx00UU5/fTTc9JJJyX53yxRQ4YMSW1tba688sosscQSjfkRWqzXXnstp59+eoMd/7TTTssPfvCDrLzyyg12DgAAAAAAgMbSYpdcHDx48EJlriTZcssts/XWW+f999/PU089VUAyWLQf/OAHSZLHH388SdKjR4+cd955eeedd3LwwQfX73fHHXfkkksuydZbb50jjjiikKwAn9WHyy1+uNxgS9auXbusu+66SSy7+Hks+Hz8qDPPPDO9e/fOqFGjMmnSpCTJqaeemkmTJuWwww7L1ltv3ZhRW7SLL744dXV1DXb8urq6/OpXv2qw4wMAAAAAADSmFlvo+iRt2rRJEsvUUZE++r0cOnRodt5559xwww353e9+l//85z854IAD0qVLl1x55ZWW6wIq3ofFpQ+XG2zpPrrsIp/Pov7d1rFjx4wePTp1dXUZMmRI7r///pxxxhnp169ffv7znxeQsmWqq6vLZZdd1uDnufTSSxu0NAYAAAAAANBYFLoW8Nprr+Wuu+7KCiuskP79+xcdB+p9+IfQLbbYomz8kksuybLLLptDDjkk++23X954442cd9556dGjRxExAT6XN998M0nSp0+fgpNUhr59+yb5/9eFT/dxz8cPbb755jn66KPz1FNPZeDAgUmSMWPGpEOHDo2WsaV77rnnMnXq1AY/z9SpU/P88883+HkAAAAAAAAamimoPqK2tjb77LNP5syZkzPPPDOtW7cuOtJiUyqVMnPmzKJjVKQ5c+YUHWEhL730UkaOHJkkmTFjRh5//PHcc8896d69e84+++yyfbt3757f/va32WWXXXLzzTdn5513ztChQwtI/cnmzp2bGTNmFB0DqCClUikffPBBkqSqqqqw3xEfPW/Rv6datfpf1/4///lPpk+fXvhMi7NmzSr0/Av6PM/HjzrppJNy8cUXZ9asWTn00EOz8cYbN1Liz2bevHmFf/ca0v3339+o51JqBwAAAACguerYsWPhfz+icVSVSqVS0SEqwfz587PPPvtk7NixGTZsWC655JKiIy1WM2bMSOfOnYuO0SSsv/76mTBhQiHnnjJlSlZZZZVFvrf88stn/Pjx6d279yLf33jjjfPoo49m8uTJWX311Rsy5mey++6757rrris6BgCLUZcuXTJt2rRGP++XeT4mycknn5xTTz01SdK7d+888cQT6dixY4Nk/SxOPPHEjBo1qrDzAwAAAAAATdP06dPTqVOnomPQCCy5mP+Vufbff/+MHTs2e++9d37zm98UHYkW7pvf/GZKpVJKpVLefffdnH322Xn33Xez8847Z/r06Yv8mQ+XjrKEFADN1Rd5Pj7++OM5/fTT069fvxx77LF56aWXcvzxxzdycgAAAAAAAPjsWvySi/Pnz8/QoUNz1VVXZY899sjo0aPrlztqTjp27Pixf+hs6caOHZsDDzyw6Bgfa7nllsuxxx6badOmZdSoURkxYkTOO++8omN9bj/5yU9y0kknFR0DqCClUin9+/fPlClTctddd2WTTTYpJMeMGTPSvXv3JMk777xT6H/VcM011+Sggw7KNttsk5tvvrnwKXMffvjhDBw4sNAMH+ezPB/nzJmTIUOGpFQqZcyYMVlvvfVy55135sILL8wuu+ySrbbaqpjwC9hll10yZsyYomM0mPPOOy8jRoxolHONGjUqRx55ZKOcCwAAAAAAGluRK5DQuFp0oeujZa7ddtstV199dVq3bl10rAZRVVVl2r2P0a5du6IjfCYnnHBCrrjiivzqV7/KkUcemZ49exYd6XNp27at7yCwkI8uB1wJvyM6depUaI758+cnSbp27VoRSyU3hVkfP+n5OGLEiEyePDnHH398Nt544yTJmDFjstFGG2X//ffPk08+WRH/x6e6uroivv8NZf3112+0c22wwQbN+loCAAAAAAAtQ/Obiuoz+nCZxauuuirf//73c8011zTbMhfNQ4cOHXLccceltrY2P/vZz4qOA7BYfFhaev/99wtOUhk+vA4KKZ/dxz0fH3jggZxzzjnp379/Ro4cWT++7rrrZvjw4ampqclxxx1XQOKWZ4MNNmiW5wIAAAAAAGgoLbbQdeqpp2bMmDHp3Llz+vbtm1GjRmXkyJFlr0mTJhUdE8oceOCBWXHFFXPVVVelpqam6DgAX9paa62VJPnHP/5RcJLK8OF16N+/f8FJmpYFn48zZszIfvvtl9atW2fMmDFp27Zt2f7Dhw/PgAEDcvHFF+e+++4rKHXLseyyy2bTTTdt8PNsttlmWWaZZRr8PAAAAAAAAA2txS65OGXKlCTJ9OnTc9pppy1yn549e2bddddtvFDwKdq3b5/jjz8+hx12WE455ZRcddVVRUcC+FI22mijXHbZZXn00UeLjlIRPrwOG220UcFJmpYFn49LLLFEXnrppZxyyikZMGDAQvtXV1dnzJgx2WCDDTJ06NA89dRTZkVrYEceeWQeeuihBj8HAAAAAABAc9BiC12jR4/O6NGji44BZXr27JlSqfSJ+xx66KE59NBDFxq/9957GygVQMPZcMMNkyQTJkzI/Pnz06pVi508NP/85z/z+uuvp6qqKuuvv37RcSrKF3k+XnzxxZ+4f//+/TNnzpzFko9PN3jw4PTr1y/PP/98gxy/X79+GTRoUIMcGwAAAAAAoLG13L+aAgCFW3PNNdOhQ4dMmzYtL774YtFxCvXYY48lSVZfffUsscQSBaeBxau6ujpXX311qqsX/39PUl1dnWuuuaZBjg0AAAAAAFAEhS4AoDBt2rSpXxKvpS+7aLlFmrsNN9wwp59++mI/7umnn54NNthgsR8XAAAAAACgKApdAEChPiwwjR8/vuAkxfrw8yt00Zwde+yxOfnkkxfb8U4++eQce+yxi+14AAAAAAAAlUChCwAo1Le//e0kye9+97tMmzat4DTFePbZZ3PfffelVatW2X777YuOAw2mqqoqI0eOzJVXXpkuXbp84eN06dIlV155ZUaOHJmqqqrFmBAAAAAAAKB4Cl0AQKG22WabrLnmmpk+fXquuOKKouMU4oILLkiS7LzzzllllVUKTgMNb7/99suzzz6b73//+5+rkFVVVZXvf//7efbZZ7Pffvs1XEAAAAAAAIACKXQBAIWqqqrK4YcfnuR/xaa6urqCEzWuqVOnZsyYMUmSI444ouA00HhWXHHFXH/99XnllVdy0kknZZ111kl1dfVC+1VXV2edddbJSSedlFdeeSXXX399VlxxxQISAwAAAAAANA6FLgCgcHvvvXeWXnrpTJkyJbfcckvRcRrVZZddllmzZmXttdfO1772taLjQKPr0aNHTjnllEyaNCnTp0/Pgw8+WP/egw8+mOnTp2fSpEk55ZRT0qNHjwKTAgAAAAAANA6FLgCgcB07dsywYcOSJOeff37BaRrPvHnzctFFFyX53+xcn2fpOWiO2rVrl7XXXrt+e+211067du0KTAQAAAAAAND4FLoAgIpwyCGHpHXr1rn33ntz1113FR2nUVx66aV5/fXXs+yyy2bPPfcsOg4AAAAAAABQARS6AICK8NWvfjU//OEPkyT77bdfpk6dWnCihvXCCy/k2GOPTZKMGDEi7du3LzgRAAAAAAAAUAkUugCAinHWWWelT58+efPNN/OjH/0opVKp6EgNora2NnvvvXdmzpyZbbfdNocddljRkQAAAAAAAIAKodAFAFSMTp065Zprrknr1q1z3XXXZezYsUVHahCnnXZaHnvssSy55JIZPXp0WrXyTzIAAAAAAADgf/z1kBavqqqqbHv+/PkFJWle6urqyrYXvM4AH2ejjTbKSSedlCQ55JBD8tprrxWcaPF65JFHMmrUqCTJr3/963zlK18pONHH84xsGJ6RAAAAAAAAfBKFLlq89u3bl23Pnj27oCTNy4LXsUOHDgUlAZqiE044IZtsskmmTZuWPfbYIzNmzCg60mLxz3/+M3vuuWfq6uqy5557Zvfddy860ifyjGwYnpEAAAAAAAB8EoUuWrwF/1g9c+bMgpI0L7NmzSrbXvA6A3yS6urqXH311enSpUsefPDB7Lzzzgv9Xmlq3n333Wy77bZ5+eWX06NHj1x00UVFR/pUC/7unjdvXubNm1dQmuZjwe+yQhcAAAAAAAAfpdBFi7f00kuXbb/11lsLLYXE5/fGG2+UbS94nQE+Te/evXP77benc+fO+dvf/pbvfve7TbZ0++6772bgwIGZPHlyVlpppdx9991Zaqmlio71qRb1u3vB3+98fq+//nrZtmckAAAAAAAAH6XQRYvXt2/fsu3a2tq8+uqrBaVpHubNm5eampqysQWvM8Bnsemmm+Yvf/lLOnbsmDvvvDMDBw7Mv//976JjfS41NTXZfPPN89RTT2WFFVbI3/72t/Tq1avoWJ9Jt27d0qVLl7KxF154oaA0zceC19AzEgAAAAAAgI9S6KLFW3bZZReaJeX5558vKE3z8Morryy0JFe/fv0KSgM0dVtuuWXuuOOOLLnkknnooYey+eab5+WXXy461mfy6KOPZtNNN81LL72Unj175t57721S5Z2qqqqFfn97Rn45tbW1C31/m9J3AgAAAAAAgIan0EWLV1VVtdAfUs0+8uUseP2WWWYZy0kBX8oWW2yRBx54IF/96lfz/PPPZ+211855551XsUvkzpw5M8cdd1w222yzvPfeexkwYEAeeuihJlnc8YxcvF555ZWFvrdN8XsBAAAAAABAw1Hogiz8h9QJEyYUlKR5WPD6+UM1sDisscYaefDBB7PllltmxowZOeqoo7LJJpvkiSeeKDpambvuuitrr712zjrrrNTV1eX73/9+7r333iy//PJFR/tCPCMXrwWv33LLLbfQTKEAAAAAAAC0bApdkGSDDTYo27755psza9asgtI0baVSKdddd13Z2Prrr19QGqC5+cpXvpJ77703l1xySbp27ZoJEyZk/fXXz09/+tPCf2//+9//zn777ZdvfOMbqampyUorrZSbb745119/fbp06VJoti9jwWfkww8/nFdffbWgNE3fgs/I9dZbr6AkAAAAAAAAVCqFLkjyve99L1VVVfXbH3zwQf7yl78UmKjpevLJJ/Pss8+Wje2+++4FpQGao1atWmXYsGF59tln873vfS91dXU588wzs+aaa+bcc8/Nv//970bN89prr2XkyJFZbbXVMmbMmFRVVeWQQw7J5MmTs/POOzdqloYwcODAhWaQ+v3vf19QmqZt6tSpue2228rG9thjj4LSAAAAAAAAUKkUuiDJiiuumK233rpsbOzYsQWladoWvG49evTIpptuWlAaoDlbYYUVcsMNN+Tmm2/OSiutlFdeeSVHH310Vlxxxeyxxx655557UiqVGuTctbW1uemmm7LjjjumZ8+eOeWUU/Kvf/0ra665Zh544IFcdNFFTXpWro9q27Ztvv/975eNeUZ+MTfeeGNqa2vrt9u1a5dBgwYVmAgAAAAAAIBKpNAF/2fBGTJuvvnmTJw4saA0TdPbb7+d3/72t2Vju+++e1q18qsGaDg777xznnvuufzmN7/Jeuutl7lz5+b3v/99ttlmm/Tt2zdnnHFGHnzwwUyfPv1Lnef999/PPffckxNOOCErr7xyBg0alNtuuy2lUilbb711xo4dm3/84x/NssS64DPyySefzLhx4wpK0zTNmjUrP//5z8vGvv3tbzeb4h8AAAAAAACLT1WpoaaugCbm/fffzworrJA5c+bUj22wwQZ5+OGH07p16wKTNR277rprbrjhhrKxJ554ImuvvXZBiYCW6PHHH8+ll16asWPH5oMPPqgfr6qqSt++fTNgwID61yqrrJJSqZS+ffsmSaZMmZLWrVtn5syZef755zNx4sT616uvvlp2nm7dumW//fbLAQcckD59+jTqZ2xsdXV16dmzZ9544436sZVWWimTJ09WSPqMTjjhhJxxxhllYzfeeKMZuhZhxowZ6dy5c5Jk+vTp6dSpU8GJAAAAAAAAGpdCF3zEqaeempNPPrls7LzzzssRRxxRUKKm49Zbb81OO+1UNrbPPvvkqquuKigR0NJNnz49119/ff74xz9m4sSJefvtt7/0MXv27Jn1118/e+yxR3baaae0bdt2MSRtGsaOHZu99tqrbOyQQw7JRRddVFCipuPpp5/OgAEDMm/evPqxzTffPH//+9/NYrkICl0AAAAAAEBLp9AFHzFnzpysu+66ee655+rH2rRpk+uuu84MGp/goYceyg477JBp06bVjy2zzDJ59tlns9xyyxWYDOD/e+eddzJp0qSyWbf++c9/ZubMmamrq6vfr02bNmnfvn169OhRNpvXOuusk6WWWqrAT1CsUqmU7bffPnfeeWfZ+DnnnJOjjjqqoFSVr6amJttuu23ZDG9t2rTJxIkTs+aaaxaYrHIpdAEAAAAAAC2dQhcsYPz48dlqq63Kxlq3bp3Ro0dn7733LihV5br33nvz7W9/OzNmzCgbv/LKK7PffvsVEwrgcyiVSvnvf/+b2traLLnkkqmuri46UsV6+eWXs9Zaa2XWrFll4z/72c8yfPjwVFVVFZSsMk2ePDkDBw5caHa44cOHZ9SoUQWlqnwKXQAAAAAAQEtnjRdYwJZbbpnDDjusbKyuri5DhgzJiBEjFioutVS1tbW58MILs8MOOyx0TXbYYYfsu+++BSUD+HyqqqrStWvXLLvssspcn2LVVVfNz3/+84XGTzzxxAwbNizvvfdeAakqT6lUyu9///t87WtfW6jMteaaa2b48OEFJQMAAAAAAKApUOiCRTjvvPPywx/+sGysVCrltNNOS79+/XLNNddk/vz5BaUr3u2335511lknhx9+eGbPnl323o477pg//vGPZmkBaKYOP/zwnHnmmQuNX3755enTp0/OOeeczJ07t4BkleGxxx7LFltskT322CP/+te/yt4bMGBA7rnnnnTo0KGgdAAAAAAAADQFllyEj1EqlXLMMcfk3HPPXeT7q6++er73ve9l8ODBWWeddZp9genFF1/MuHHj8sc//jGPPvroIvfZZZddMnbs2LRt27aR0wHQ2C6++OIceuihi3zvq1/9av0zctNNN03r1q0bOV3jevPNN3PTTTdl3Lhxufvuuxe5z6abbpq//OUvWXLJJRs3XBNkyUUAAAAAAKClU+iCT1AqlTJq1Kiccsopqaur+9j9evbsmW984xvp3bt3evXqVf9aYoklGjHt4jFr1qy8/PLLqampqX/dd999efrppz/x5w444ID8+te/tlwZQAsyZsyYHHzwwZk1a9bH7tOtW7dsv/326du3b9kzcumll27EpIvH3LlzM2XKlLJn5EMPPZRHHnnkE39uhx12yPXXX19fUuKTKXQBAAAAAAAtnUIX/D/27jzOpvrx4/j7znpnxpZtRMwwlhBGWcsXY6lkHUQiTFkSURQpIYpIaFFCtm8hYkiikJG0yDLIPmPfs01mzD7390df8+vOoJGZ+7kz9/V8PO4f53PvPed9D+Wcc9/3c7Jgz549evHFF7V27drbep+3t7esVqu8vb3l5ua8dzi12WxKTExUQkJCplso/pMHHnhAU6dOVYMGDXIoHQDAmZ04cULDhw/X559/flvv8/LySv830pln8LLZbEpKSkr/N/J2Dp2DgoI0adIktW3bNs/P5JmdKHQBAAAAAAAAAABXR6ELyCKbzaZVq1ZpyJAhOnjwoOk4xpUoUULjxo1Tjx49nLqsBgBwjF9++UWDBg266W15XUn+/Pn1+uuva+DAgfL29jYdJ9eh0AUAAAAAAAAAAFwdhS7gNqWmpuqXX35ReHi4li1bpiNHjpiO5DD+/v5q166d2rdvr8aNG8vLy8t0JACAE7HZbNq1a5eWLVum8PBw7d6923QkhylYsKBat26t0NBQPfLII5SQ7gCFLgAAAAAAAAAA4OoodAF34PoX12vWrNGhQ4cUFRWl6OhonTp16rZuyeSMSpQooaCgoPRH06ZNVa9ePae+LRYAwLlERUVp1apV2r9/v6KjoxUdHa1jx44pNTXVdLQ7UqRIEbt/I//zn/9QdM5GFLoAAAAAAAAAAICro9AF5ICEhAQdO3ZMsbGxSkhIUEJCgtMXvKxWq7y9veXn56eAgAC+PAUA5Ijk5GQdP35cMTEx6f9GpqWlmY51S15eXrJarfLx8VHp0qVVqFAh05HyNApdAAAAAAAAAADA1VHoAgAAAOA0KHQBAAAAAAAAAABX52Y6AAAAAAAAAAAAAAAAAADgLxS6AAAAAAAAAAAAAAAAAMBJUOgCAAAAAAAAAAAAAAAAACdBoQsAAAAAAAAAAAAAAAAAnASFLgAAAAAAAAAAAAAAAABwEhS6AAAAAAAAAAAAAAAAAMBJUOgCAAAAAAAAAAAAAAAAACdBoQsAAAAAAAAAAAAAAAAAnASFLgAAAAAAAAAAAAAAAABwEhS6AAAAAAAAAAAAAAAAAMBJUOgCAAAAAAAAAAAAAAAAACdBoQsAAAAAAAAAAAAAAAAAnASFLgAAAAAAAAAAAAAAAABwEhS6AAAAAAAAAAAAAAAAAMBJUOgCAAAAAAAAAAAAAAAAACdBoQsAAAAAAAAAAAAAAAAAnASFLgAAAAAAAAAAAAAAAABwEhS6AAAAAAAAAAAAAAAAAMBJUOgCAAAAAAAAAAAAAAAAACdBoQsAAAAAAAAAAAAAAAAAnASFLgAAAAAAAAAAAAAAAABwEh6mAwB5RVpamk6ePKno6GhFR0fr6NGjunr1qhISEpSYmCibzWY64i15e3vL29tbfn5+CgwMVFBQkIKCglSmTBl5ePC/CgAAgLwiMTFRR44c0eHDhxUdHa0TJ07o2rVrSkhIUHJysul4t2SxWGS1WmW1WlWoUCGVK1cu/bjV399fFovFdEQAAAAAAAAAAO4YLQ3gX0pNTdXPP/+s8PBwrVmzRlFRUUpKSjIdK9u5u7srMDBQTZs2Vfv27RUSEiIvLy/TsQAAAJBFcXFxWrNmjcLDw7Vp0yadOHHC6X9s8G/4+fmpUqVKatWqlUJDQ1WjRg0KXgAAAAAAAACAXMliy4tX8oEc9PPPP2vu3LlasWKFzp07ZzqOwxUsWFAtW7ZU165d1aJFC74kAwAA2SouLk758uWTJMXGxsrPz89wotwpNTVVX3zxhRYvXqxvv/1WCQkJpiM5XNmyZRUaGqpnnnlGVapUMR0HAAAAAAAAAIAso9AFZNHRo0c1dOhQLVmyxHQUpxESEqIpU6aoRo0apqMAAIA8gkLXnduwYYNeeOEF7dq1y3QUp+Du7q5nn31Wb7zxhooUKWI6DgAAAAAAAAAA/4hCF/APYmNj9fbbb2vSpElKTEz8x9f7+voqKChIQUFBKlasmKxWq7y8vOTm5uaAtP+OzWZTUlKSEhISdPnyZUVHRys6OloxMTH/+F43Nzf16tVLY8eOVfHixR2QFgAA5GUUuv696OhovfzyywoPD8/S64sWLaqgoCCVK1dOBQoUkNVqlaenp1PPwJqWlqbExETFx8fr7Nmzio6O1pEjR7J0nF6oUCGNHj1azz33nDw9PR2QFgAAAAAAAACAf4dCF3ALf/zxhx5++GFFRkbe9DXVqlVTaGiomjVrpgoVKsjf39+pvwTLKpvNpkuXLik6OlobN27UsmXL9Msvv9z09aVLl9a6detUsWJFB6YEAAB5DYWuf+fHH3/UY489pqtXr97weXd3d4WEhCg0NFT169dXUFCQChQo4OCUOSMtLU2nTp3SgQMHtHr1aoWHh+vIkSM3ff1jjz2mL7/8Uj4+Pg5MCQAAAAAAAABA1lHoAm7i9OnTatasmfbt25fpucKFC2vIkCHq1KmTypcvbyCdGadOnVJ4eLgmTpyoEydOZHre399f69at03333WcgHQAAyAsodN2+devWqW3btrp27Vqm56pVq6YhQ4aodevWKly4sIF0jmez2bRz504tWLBAH3zwgRISEjK9JiQkRCtWrFD+/PkNJAQAAAAAAAAA4NYodAE3cPToUTVt2lSHDx+2G3d3d1f//v01atQol/lC7EauXbumd999V2+//XamLw4LFy6s7777Tg888IChdAAAIDej0HV7Vq5cqY4dOyopKcluvGjRonrzzTf1zDPPyMPDw1A6844fP65hw4Zp0aJFmZ6rV6+eVq9erUKFCjk+GAAAAAAAAAAAt0ChC8ggOTlZtWrV0q5du+zGAwICtGrVKlWtWtVQMudz6tQptWvXTlu3brUbL168uPbv36+77rrLUDIAAJBbUejKugMHDqh69eqZylxt2rTRvHnzKCr9TUREhEJDQ3XlyhW78bZt22r58uVGMgEAAAAAAAAAcDMUuoAMJk6cqGHDhtmNVaxYUevWrVPp0qUNpXJeMTExatmypTZv3mw33rt3b82YMcNQKgAAkFvYbDadOnVKe/bs0dWrV3XlyhX17t1bkjRz5kwVKlRI+fPnV9WqVVWqVClZLBbDiZ2DzWZTkyZNFBERYTf+xBNPaP78+fL09DQTzIlFRkaqefPmunDhgt34smXLFBoaaigVAAAAAAAAAACZUegC/ubIkSOqWrWq4uPj08cqVaqkjRs3yt/f32Ay5xYXF6eWLVtq48aNduM//PCD/vOf/xhKBQAAnE1qaqoOHTqkHTt2KDIyUjt27NCOHTsyFWxupmjRoqpZs6Zq1qyp4OBg1axZUxUqVJC7u3sOJ3c+c+fOVVhYmN1Yt27dNHfuXJfcH1m1d+9eNWrUyO7vXKlSpbR3714VKFDAYDIAAAAAAAAAAP4fhS7gb1q0aKE1a9akL1ssFv3yyy+qU6eOwVS5w/Hjx1WlShXFxcWlj1WuXFmRkZHy8vIymAwAAJgWHR2tWbNmae7cuTp79mym593d3XXvvfeqSJEi8vDw0Pfffy9JatKkiVJSUnThwgUdOHBAqampmd5bokQJhYWF6ZlnnlFQUFCOfxZncOHCBVWqVEmXLl1KHwsICNCePXu4RWUWLFiwQF27drUbGzBggD744ANDiQAAAAAAAAAAsEehC/ifPXv26L777rMb44ud2zN16lS9+OKLdmPLly9X27ZtDSUCAACmJCYmavny5Zo5c6bWr1+fPu7j46MaNWqkz7RVs2ZN3XfffbJarZL+mvkzX758kqTY2Nj0glJ8fLx+//339Fm9duzYoV27dtnNrNq0aVP17t1b7dq1k7e3twM/rWNNmjRJL7/8st3YqlWr9NhjjxlKlLvYbDY9+uij+u6779LHvL29de7cORUsWNBgMgAAAAAAAAAA/kKhC/ifESNG6K233kpfLl68uA4dOsStV25DamqqatWqpcjIyPSxzp07a9GiReZCAQAAh4qJidG4ceM0e/bs9NvaWSwWPfzww+rdu7dat259y9k7b1boupGkpCStXLlSM2bM0Nq1a3X91KZo0aJ65pln9Oqrr+bJY7n7779fO3bsSF9u3769li5dajBR7nP48GHde++9Sk5OTh+bO3euevToYTAVAAAAAAAAAAB/cTMdAHAGNptNCxcutBt76qmn8uQXgDnJ3d1dffv2tRv76quvFBsbaygRAABwpOXLl6tKlSqaOHGiLly4oJIlS2rEiBE6fPiw1qxZow4dOmTrrZi9vLzUoUMHffvttzp8+LBGjBihkiVL6sKFC5owYYKqVKmiFStWZNv2nMH+/fvtylyS9NxzzxlKk3uVK1dOLVq0sBtbsGCBoTQAAAAAAAAAANij0AVI2rJliw4fPmw31qVLF0NpcreOHTvKw8MjfTk+Pj7PfZEKAADsnT59Wh06dFBoaKhOnz6toKAghYeH69ixYxo7dqwCAwNzPENgYKDGjh2rY8eOKTw8XEFBQTp16pTatWunjh076syZMzmewREy/gihRIkSaty4sZkwuVzG4/3169fr3LlzhtIAAAAAAAAAAPD/KHQBUqbCUYUKFXT//fcbSpO7FS1aVM2bN7cbW758uZkwAAAgR6WlpWnGjBmqUqWKli1bJg8PDw0fPly7d+9Wu3bt7ErejuLh4aF27dpp9+7deuWVV+Tu7q6lS5eqcuXKmjFjhtLS0hyeKTtlPG7t3Lmz3N3dDaXJ3Vq3bi1fX9/05dTUVK1atcpgIgAAAAAAAAAA/kKhC5C0d+9eu+W2bdvKYrEYSpP7tW3b1m553759hpIAAICcEhsbq1atWqlv376KiYlR7dq1tW3bNo0bN04+Pj6m48nHx0fjx4/Xtm3bVLt2bcXExKhv375q3bp1rr0ddFpamvbv3283lvG4C1nn5+eX6YcIHLcCAAAAAAAAAJwBhS5A0sGDB+2Wq1SpYihJ3pBx/0VFRSk1NdVQGgAAkN3OnTunxo0ba/Xq1fLx8dHUqVP1888/q3r16qajZVKjRg39/PPPmjJlinx8fPTNN98oJCRE58+fNx3ttp04cUKJiYl2Yxy33pmM+y/jeQEAAAAAAAAAACZQ6ILLS01NVVRUlN1YxYoVDaXJGzLuv8TERJ04ccJQGgAAkJ2OHj2qBx98UNu2bVPRokUVERGhQYMGOfVt/9zd3fXCCy9ow4YNKlq0qLZu3aoHH3xQx44dMx3tthw4cMBuuUCBAipevLihNHlDxuNWCl0AAAAAAAAAAGdAoQsu7+jRo0pOTrYbq1SpkqE0eUPx4sVVsGBBu7GMX0ACAIDc58SJE2rSpIkOHz6ssmXL6qefflKdOnVMx8qyunXravPmzSpbtqyio6MVEhKikydPmo6VZRnLRhUrVuQ24Xco43F/dHS0UlJSDKUBAAAAAAAAAOAvFLrg8o4cOWK3XKhQIRUpUsRQmrzBYrGoQoUKdmOHDx82lAYAAGSH06dPq0mTJjpy5IiCgoK0adOmTP/e5wYVK1bUpk2bFBQUpCNHjigkJESnT582HStLMh635sb972wy7sPk5ORcVfIDAAAAAAAAAORNFLrg8mJjY+2WixQpwkwH2SBjKS4uLs5QEgAAcKdSU1PVqVMnRUVFqWzZstqwYYNKlSplOta/VqpUKX3//fcKDAxUVFSUOnXqpNTUVNOx/tGNjltxZwoXLpxpjONWAAAAAAAAAIBpFLrg8hISEuyWfXx8DCXJW6xWq91yxv0MAAByjwkTJmjz5s3Knz+/1q5dq9KlS5uOdMfKlCmjdevWKX/+/Nq8ebMmTpxoOtI/io+Pt1vmuPXOubm5ycvLy26M41YAAAAAAAAAgGkUuuDykpKS7JYzfqGDf8fb29tuOTEx0VASAABwJ7Zt26ZRo0ZJkj744AMFBQUZTpR9goKC9P7770uSRo4cqe3btxtOdGsct+YMjlsBAAAAAAAAAM6GQheQAbdbzB7sRwAAcr9r166pW7duSklJUYcOHdS9e3fTkbJdjx491L59e6WkpKhbt26ZZsFyZhxvZQ/2IwAAAAAAAADA2VDoAgAAAHBDw4YN0/79+3X33Xfrk08+yZPFF4vFok8++UQlSpTQvn37NGzYMNORAAAAAAAAAACAi6PQBQAAACCTzZs368MPP5QkzZkzR0WKFDGcKOcULVpUc+bMkfTXbSU3b95sOBEAAAAAAAAAAHBlFLoAAAAAZDJp0iRJUlhYmB555BHDaXLeo48+qp49e0qS3n33XbNhAAAAAAAAAACAS6PQBQAAAMDOkSNHtGLFCknSyy+/bDiN41z/rCtWrNDRo0fNhgEAAAAAAAAAAC7Lw3QAAAAAAM7lww8/lM1m08MPP6zKlSubjuMwVapUUfPmzbV27Vp9+OGH6bOUAa7mypUr2rp1qyIjIxUVFaWEhAR5eXkpICBAwcHBql27tooXL246JgAAAAAAAADkWRS6AAAAAKSLjY3Vp59+KkkaNGiQ4TSON2jQIK1du1azZs3S6NGjlS9fPtORAIf54Ycf9Mknn2jp0qVKTEy86evc3NzUokUL9enTR61atZKbG5N/AwAAAAAAAEB24qorAAAAgHTz5s1TTEyMKlasqEcffdR0HIdr0aKFKlSooJiYGM2fP990HMAhTp06pfbt26tRo0ZasGDBLctckpSWlqZVq1apbdu2atSokfbt2+egpAAAAAAAAADgGih0AQAAAEg3ffp0SdLzzz/vkrPuuLm56fnnn5f0//sCyMtWr16tKlWqKDw8/F+9/8cff1RwcLBmzZqVzckAAAAAAAAAwHW53jc0AAAAAG7o8uXL+v333yVJXbp0MZzGnCeffFKStHv3bl25csVsGCAHLV26VK1bt9aff/55R+tJSkpS7969NXny5GxKBgAAAAAAAACuzWULXQkJCRo8eLAaNmyokiVLymq1qkSJEnrooYc0Z84cJScnm44IF3T06FFZLBa7h6enp0qVKqVOnTpp69atkqSpU6fKYrEoLCzspuuKiIiQm5ubateurZSUFEd9BAAAkItdP9YoX768ihQpYjiNOUWKFFFQUJCk/98n+H9ZPWa97urVqwoMDJTVatXevXtvuM4JEybIYrGoV69ejvgIkLR9+3Z16dJFqamp2bbOIUOGaPny5dm2PgAAAAAAAABwVS5b6IqNjdXHH38si8Wili1bavDgwQoNDdWpU6f09NNPq1WrVkpLSzMdEy4qKChIo0aN0qhRo/TCCy+oUqVKWrJkiR588EH98MMPGjRokBo3bqy5c+dq5cqVmd4fGxursLAweXt7a/78+fLw8DDwKQAAQG6zZcsWSVLt2rUNJzHv+j64vk+Q2T8ds16XP39+zZ49W0lJSerRo0emHxvs3r1bI0eOVEBAgKZMmeLoj+GS4uPj1a1btxz5IVPv3r119uzZbF8vAAAAAAAAALgSl215FC5cWDExMfLy8rIbT0lJUfPmzfXdd99p9erVatmypaGEcGXly5fX6NGj7cbefvttDR8+XK+//ro2btyouXPnqnr16urdu7f27NljN4vGkCFDdPToUU2ZMkWVK1d2cHoAAJBbXS8v1alTx3AS8+rUqaNFixZR6LqFrByzXtekSRP1799fH374ocaNG6eRI0dKkpKTk9W9e3clJydrzpw5yp8/vyM/gst69913tW/fvhxZ94ULF/TKK69o7ty5ObJ+AAAAAAAAAHAFLjtDl5ubW6YylyR5eHgoNDRUkhQVFeXoWMBNPfPMM5Kkbdu2SZICAgI0depUnTt3Tv369Ut/3bfffqsZM2YoJCREgwYNMpIVAADkPjabjULX31zfB7/99pvhJLlLxmPWv5swYYLKly+vN998U5GRkZKkMWPGKDIyUs8//7xCQkIcGdVlJSUladq0aTm6jYULF+rcuXM5ug0AAAAAAAAAyMtcttB1M2lpaVqzZo0k6b777jOcBsjs77dPDAsLU5s2bbRkyRItXLhQV65cUa9evVSgQAHNmTNHFovFYFIAAJCbnDp1SmfPnpW7u7uCg4NNxzGuZs2acnd31+nTp3Xy5EnTcXKdG93y29fXV3PnzlVqaqq6d++uH3/8UePHj1elSpX09ttvG0jpmlasWJHjt0RMSkrSp59+mqPbAAAAAAAAAIC8zOULXUlJSRo9erRGjRqlAQMGqGrVqlq9erXCwsLUtGlT0/GAdLNmzZIkNWjQwG58xowZKlq0qPr376+ePXvq5MmTmjp1qgICAkzEBAAAudSxY8ckSYGBgfL19TWcxjxfX9/046njx48bTpN73OyY9bqHHnpIgwcP1u7du9WsWTNJ0rx58+Tj4+OwjK7u77fCzEk//PCDQ7YDAAAAAAAAAHlR5p9Nu5ikpCS98cYb6csWi0UvvfSSxo8fbzBV9rPZbLp27ZrpGE4pMTHRdIRMoqKiNHr0aElSXFyctm3bpg0bNsjf31/vvPOO3Wv9/f31ySefqEOHDlqxYoXatGmjsLAwA6lvLSkpSXFxcaZjAACAm7h06ZIkyWq1Gv03++/bNn3sYLVaJUkXL140nkWSUlJSTEewczvHrH83cuRITZs2TfHx8RowYIDq1q3roMRZEx8f7xR/3jnl119/dch2fvvtN8XGxjJrMAAAAAAAAJCNfH19uebmIiw2m81mOoQzSEtL0+nTp7Vy5Uq9+uqrqlq1qr755hsVKFDAdLRsERcXp3z58pmOkSs88MAD2rp1q5FtHz16VGXLlr3hcyVKlNCmTZtUvnz5Gz5ft25dbdmyRXv37lXlypVzMmaWPPHEE/riiy9MxwAAAMizRowYobFjxzp8u3dyzCpJo0aN0pgxYyRJ5cuX186dO43OClewYEH9+eefxrYPAAAAAAAAAFkVGxsrPz8/0zHgAC5/y8Xr3NzcdM8996hfv36aMWOGNm/erLfeest0LLioRx55RDabTTabTefPn9c777yj8+fPq02bNoqNjb3he67fpobb1QAAAMAR/s0x67Zt2zRu3DhVqlRJL730kqKiojR8+HAHJwcAAAAAAAAAwLm5/C0Xb+Thhx+WJEVERJgNko18fX1v+qWKq1uwYIH69OljOsZNFStWTC+99JJiYmL05ptvasSIEZo6darpWLdt6NChGjlypOkYAADgJlavXq3HH39cwcHB+vHHH43liIuLk7+/vyTp3LlzRn9p9NBDD2nnzp368ssv9eijjxrLcV2PHj20dOlS0zFuKCvHrImJierevbtsNpvmzZun+++/X999950++OADdejQQQ0bNjQTPoN169apXr16pmPkmAoVKujMmTMO2db58+eNzr4GAAAAAAAA5DVcb3MdFLpu4PTp05IkT09Pw0myj8ViYdq9m/D29jYdIUteffVVzZ49Wx999JFeeOEFBQYGmo50W7y8vPg7CACAEytcuLAkKTk52Wn+zfbz8zOaJTk5WdJf+8YZ9omHh/Ofvt3qmHXEiBHau3evhg8frrp160qS5s2bpzp16ujpp5/Wrl27nOJihI+Pj1P8eeeUqlWrOqTQFRgYqGLFiuX4dgAAAAAAAAAgL3LZWy7u3btX165dyzR+7do1DR48WJL02GOPOToWcFM+Pj4aNmyYkpOTNXbsWNNxAABAHnO9wBITE2M4ifO4vi+coWSUW9zsmHXz5s2aPHmyqlWrptGjR6ePBwcH67XXXlN0dLSGDRtmILHrqVOnTp7aDgAAAAAAAADkRS5b6Fq8eLFKlCihxx57TM8995xeeeUVPfXUUypTpozWrFmj//znP3rxxRdNxwTs9OnTRyVLltT8+fMVHR1tOg4AAMhDKlWqJEk6efKkLly4YDiNeX/88YdOnTolSbr33nsNp8ldMh6zxsXFqWfPnnJ3d9e8efPk5eVl9/rXXntNNWvW1LRp07Rx40ZDqV1HixYt8tR2AAAAAAAAACAvctlCV6tWrfTEE0/o+PHjWrhwod59912tXr1a1atX1yeffKLvv/9ePj4+pmMCdqxWq4YPH66UlBS98cYbpuMAAIA8pFChQumlrt9++81wGvOu74N7771XBQsWNJwmd8l4zDp06FBFRUVpxIgRqlmzZqbXe3h4aN68efL09FRYWJji4uIMpHYdDz300A3/HLJTsWLF9MQTT+ToNgAAAAAAAAAgL/MwHcCUWrVqqVatWqZjAHYCAwNls9lu+ZoBAwZowIABmcYjIiJyKBUAAHAVderU0YEDB7RlyxaXn11ny5Ytkrht3I38m2PWadOm3fL11apVU2JiYrbkw61ZLBYNHTpUXbp0ybFtDBo0SFarNcfWDwAAAAAAAAB5ncvO0AUAAADA3vXyEjN0/f8+oNCFvKhz585q165djqz7/vvv18svv5wj6wYAAAAAAAAAV0GhCwAAAIAkqXbt2pL+mp3qn2ZgystsNlv6DF3X9wmQl1gsFs2cOVOlS5fO1vXmz59fn332mby8vLJ1vQAAAAAAAADgaih0AQAAAJAk1ahRQ56envrjjz8UFRVlOo4xUVFRunDhgjw9PVWjRg3TcYAcUbRoUX3//ffZVuoqUKCA1qxZo8qVK2fL+gAAAAAAAADAlVHoAgAAACBJslqtaty4sSRp5syZZsMYNGPGDElSSEiIvL29DacBck758uX1008/6aGHHrqj9VSpUkU//vijHnzwwWxKBgAAAAAAAACujUIXAAAAgHQDBw6U9FehKy4uznAax4uLi9OsWbMk/f++APKye+65Rz/88IOmT5+uQoUK3dZ7rVar3njjDW3fvl3VqlXLmYAAAAAAAAAA4IIodAEAAABI99hjjykoKEhXrlzRf//7X9NxHG7+/Pm6cuWKypcvrxYtWpiOAziEm5ub+vbtq1OnTmnu3Llq2LChvLy8bvhad3d3PfDAA3r//fd1+vRpjRw5kpnsAAAAAAAAACCbUegCAAAAkM7NzU3PP/+8JOn999+XzWYznMhx0tLS9P7770uSnn/+ebm5cboE1+Lr66sePXpo48aNio2N1a5du/T555+nP//DDz/o6tWr2rp1q55//nndddddBtMCAAAAAAAAQN7FNxQAAAAA7ISFhSl//vzat2+f1q5dazqOw6xdu1b79+9X/vz51bNnT9NxAKM8PT1VrVo1tW3bNn3s/vvvl4+Pj8FUAAAAAAAAAOAaKHQBAAAAsFOgQAGFhYVJkt544w2lpqYaTpTzUlNTNWbMGEnS008/rQIFChhOBAAAAAAAAAAAXBWFLgAAAACZDB48WPny5dNPP/2kSZMmmY6T49555x399NNPypcvn1588UXTcQAAAAAAAAAAgAuj0AUAAAAgk4CAAL333nuSpNdff107duwwnCjn7NixQyNHjpQkvf/++woICDCcCAAAAAAAAAAAuDIKXQAAAABuKCwsTO3atVNycrK6deum+Ph405GyXXx8vLp27ark5GSFhoaqZ8+epiMBAAAAAAAAAAAXR6ELLs9isdgtp6WlGUqSt2Tcjxn3MwAAcH4Wi0UzZsyQv7+/9u7dq+HDh5uOlO1eeeUV7du3TyVKlNCMGTOc+piF49acwXErAAAAAAAAAMDZUOiCy/P29rZbTkxMNJQkb0lISLBbtlqthpIAAIA7UaxYMc2ePVuS9N5772nFihWGE2WfFStW6P3335ckzZ49W0WLFjWc6NY4bs0ZHLcCAAAAAAAAAJwNhS64vIxf2Fy7ds1Qkrwl4y2Z+GIMAIDc67HHHtNzzz0nSerUqZPWrFljONGdW7NmjTp16iRJ6t+/v1q0aGE40T/z8fGxW+a49c6lpKQoJSXFbozjVgAAAAAAAACAaRS64PLuuusuu+WzZ89y+5pscObMGbvlQoUKmQkCAACyxdSpU9WhQwclJSWpXbt2Wrt2relI/9p3332ndu3aKSkpSR06dNDUqVNNR8qSjMetGY+3cPtutA85bgUAAAAAAAAAmEahCy6vQoUKdssJCQk6ceKEoTR5Q2pqqqKiouzGKlasaCgNAADIDp6enlqwYIHatGmjxMREtWzZUosWLTId67YtWrRIrVq1UmJiotq2bauFCxfKw8PDdKwsyXjcevDgQUNJ8o4DBw7YLefLl08lSpQwlAYAAAAAAAAAgL9Q6ILL8/f3V/78+e3G+HLszhw/flyJiYl2YxS6AADI/by8vLR48WJ17NhRycnJ6tKliyZPniybzWY62j+y2WyaPHmyunTpouTkZHXs2FFffPGFPD09TUfLsozHU1FRUUpNTTWUJm/IeNxfsWJFWSwWQ2kAAAAAAAAAAPgLhS64PIvFokqVKtmNUei6Mxn3X6FChVSsWDFDaQAAQHby9vbWokWL9Pzzz0uShgwZopYtW+rYsWOGk93c0aNH9dhjj2nIkCGSpIEDB+qLL76Qt7e34WS3J2OhKykpyan3e26Q8bg143kBAAAAAAAAAAAmUOgClPnLsR07dhhKkjdk3H/MdAAAQN7i7u6u9957T5MnT5aXl5dWr16tqlWraurUqU41Y1RqaqqmTJmiqlWras2aNfLy8tKUKVM0depUubnlvlOhokWLqlChQnZjHLfemRsdtwIAAAAAAAAAYFru+xYDyAHBwcF2y+Hh4UpKSjITJg9YvHix3XLG/QsAAHI/i8WiF198UTt37tR//vMfxcXF6cUXX1S9evW0c+dO0/EUGRmpevXqafDgwbp27ZoaNmyoXbt26YUXXsi1RXOLxZLpuGrJkiVmwuQBp0+f1qZNm+zGOG4FAAAAAAAAADgDCl2ApMcff9xu+dKlS1q7dq2hNLnb/v37M8100KlTJ0NpAABATrv33nsVERGhTz75RAULFtTWrVv1wAMPqF+/fkaKXTt37lS/fv1Uq1Ytbd26VQULFtSMGTO0YcOGPHE7vYzHVV999ZViY2MNpcndFi9eLJvNlr6cP39+PfLIIwYTAQAAAAAAAADwFwpdgKTAwEDVr1/fbmzBggWG0uRuCxcutFsuUaKEGjdubCYMAABwCDc3N/Xp00f79u1Thw4dlJqaqunTpys4OFh169bVrFmzcrR0FBsbq1mzZqlu3boKDg7W9OnTlZqaqo4dO2rfvn3q3bt3rrzF4o08/vjj8vDwSF+Oj4/XihUrDCbKvTIe74eGhsrHx8dQGgAAAAAAAAAA/l/e+FYDyAZPPvmk3fKXX36pgwcPGkqTO126dEnTp0+3G+vcubPc3d0NJQIAAI50991368svv9T69evVsWNHeXh4aMuWLerdu7fuvvtu9e3bVxs2bFBMTMwdbysmJkYbNmxQ3759dffdd6t3797asmWLPD091bFjR61fv15LlizR3XffnQ2fzHkULVpUzZs3txubOHGikpOTDSXKndatW6fffvvNbizj+QAAAAAAAAAAAKZYbH+/xwTgws6dO6dSpUopNTU1fSwkJETr16+XxWIxmCz36N27t2bNmmU39ssvv6hu3bqGEgEAAJPOnz+vefPmaebMmTp06JDdc+XKlVPNmjXTHzVq1FCRIkWUkpKi/PnzS5KuXr0qDw8PXbx4UTt37tSOHTvSH4cPH7ZbX4UKFdS7d2/16NFDxYsXd9hnNOGzzz7TU089ZTc2YcIEDR061FCi3CU+Pl7VqlVTdHR0+lixYsV0+vRpu9nP8Je4uDjly5dP0l+z4fn5+RlOBAAAAAAAAAB5H4Uu4G+GDBmiyZMn243NmTNHPXv2NBMoF/nhhx/UqFEju7E2bdpo+fLlFOIAAHBxNptNGzdu1KeffqoffvhBx48fz5b1lilTRg0bNtQzzzyjRo0aucwxR3JysmrVqqVdu3alj/n4+GjPnj0qW7aswWS5w2uvvaZx48bZjX388cd69tlnDSVybhS6AAAAAAAAAMDxKHQBfxMbG6uqVavafcmYL18+rVy5Uo0bNzYXzMnt3btXzZo105kzZ9LH8uXLp71796p06dIGkwEAAGd08eJFRUZG2s24deDAAaWlpd3w9W5ubqpUqZLdjF7BwcEqUqSIg5M7j19//VX169fX30/nqlWrprVr18rf399gMuf22WefqWfPnnaz8j744IPatGmT3NzcDCZzXhS6AAAAAAAAAMDxKHQBGaxatUqtWrWyG7NarQoPD9ejjz5qKJXzioyMVPPmzXXhwgW78alTp2rQoEGGUgEAgNwmOTlZ8fHxio+P1+XLlyVJd911l3x8fOTj4yNPT0/DCZ3PgAEDNG3aNLuxihUrav369brnnnsMpXJeM2bM0LPPPmtXgvPw8NCOHTt03333GUzm3Ch0AQAAAAAAAIDjUegCbqBr165asGCB3Zinp6feffdd9evXTx4eHoaSOQ+bzaYlS5aob9++unLlit1z9erV048//ih3d3cz4QAAAFxATEyMqlevnukWlgEBAZozZ45CQkIMJXMucXFxeuuttzR+/PhMz40aNUqjR492fKhchEIXAAAAAAAAADge95QAbmD27Nlq37693VhycrIGDhyoGjVq6LvvvjOUzDls27ZNDRs2VOfOnW9Y5lq9ejVlLgAAgBxWsGBBbdy4UeXKlbMbP3bsmJo0aaL27dsrOjraUDrz0tLS9Pnnn6tSpUo3LHMNHjxYo0aNMpAMAAAAAAAAAIBbY4Yu4CZSUlIUFhamzz777IbPN2rUSI8//rjatWunUqVKOTid4128eFErV67UsmXL9PXXX+tG/+sICQnRV199lf4LfgAAAOS806dPq1mzZtq3b1+m57y8vNSxY0eFhobq0UcfdYnjtIMHDyo8PFyLFi1SZGTkDV8zatQojRo1ShaLxbHhciFm6AIAAAAAAAAAx6PQBdxCWlqaBg4cqGnTpt3ydXXr1lXz5s1Vvnx5BQUFKSgoSCVKlMiVXxDZbDZdvHhR0dHR6Y+NGzcqIiJCqampN31f69at9cUXX8jHx8eBaQEAACBJf/zxh1q2bKnffvvtpq+xWq16+OGHVb9+/fRj1qCgIBUsWNCBSbNPWlqaTp48mX7MevDgQX3zzTfas2fPTd/j5uamCRMm6KWXXnJg0tyNQhcAAAAAAAAAOB6FLiALNm7cqBdeeOGmv/C/EV9fXxUtWlRWq1Xe3t5yc3PeO5zabDYlJiYqISFBly9f1p9//pnl95YtW1aTJk1SaGhoriywAQAA5BUpKSn69NNPNWLECF24cCHL7ytcuLAKFCggq9UqLy8vpz6mS01NTT9uPXfunJKSkrL83mbNmmnKlCm67777cjBh3kOhCwAAAAAAAAAcj0IXkEWpqamaO3euXn31VZ0/f950HOPy5cun1157TS+88IKsVqvpOAAAAPifK1euaOzYsXr//feVkpJiOo5x5cuX1+TJk9WqVSunLqs5KwpdAAAAAAAAAOB4FLqA23Tt2jWtWbNGy5Yt09dff62YmBjTkRzGarXq0UcfVWhoqFq3bq277rrLdCQAAADcxJkzZ7R8+XItW7ZMGzZsuOXts/Maf39/tWvXTu3bt1dISIg8PT1NR8q1KHQBAAAAAAAAgONR6ALuQFJSkjZs2KA1a9bo0KFDio6O1pEjR5SYmGg62h3z8PBQQECAgoKCFBQUpKZNm+rRRx/lCxwAAIBc6NKlS/r666+1adMmRUdHKzo6WidOnFBeOB309fVNP2a999571apVK9WrV0/u7u6mo+UJFLoAAAAAAAAAwPEodAHZLC0tTadOndKRI0cUGxurhIQEJSQkOP2XZVarVd7e3vLz81NAQIDKlCkjDw8P07EAAACQQxITE3X06FGdOHFC8fHxSkhIUFJSkulYt+Tm5iar1Sqr1aqCBQuqXLly8vf351aKOYhCFwAAAAAAAAA4HoUuAAAAAABwQxS6AAAAAAAAAMDx3EwHAAAAAAAAAAAAAAAAAAD8hUIXAAAAAAAAAAAAAAAAADgJCl0AAAAAAAAAAAAAAAAA4CQodAEAAAAAAAAAAAAAAACAk6DQBQAAAAAAAAAAAAAAAABOgkIXAAAAAAAAAAAAAAAAADgJCl0AAAAAAAAAAAAAAAAA4CQodAEAAAAAAAAAAAAAAACAk6DQBQAAAAAAAAAAAAAAAABOgkIXAAAAAAAAAAAAAAAAADgJCl0AAAAAAAAAAAAAAAAA4CQodAEAAAAAAAAAAAAAAACAk6DQBQAAAAAAAAAAAAAAAABOgkIXAAAAAAAAAAAAAAAAADgJCl0AAAAAAAAAAAAAAAAA4CQodAEAAAAAAAAAAAAAAACAk6DQBQAAAAAAAAAAAAAAAABOgkIXAAAAAAAAAAAAAAAAADgJCl0AAAAAAAAAAAAAAAAA4CQodAEAAAAAAAAAAAAAAACAk6DQBQAAAAAAAAAAAAAAAABOwsN0ACAvSUhI0OHDhxUdHa2jR4/q6tWrSkhIUGJiomw2m+l4t+Tt7S1vb2/5+fkpMDBQQUFBKleunPLly2c6GgAAAADkWampqTpx4oSio6N1+PBhXbx4UQkJCUpISFBaWprpeLfk4eEhq9Uqq9WqUqVKKSgoSEFBQSpatKgsFovpeAAAAAAAAECuRaELuAOHDh1SeHi41qxZo4MHD+rUqVOmI2U7f39/lS9fXk2aNFH79u1Vo0YNLswDAAAAwL906dIlrVy5Ul999ZV2796to0ePKjk52XSsbJU/f34FBQWpTp06at++vUJCQuTl5WU6FgAAAAAAAJBrWGzOPm0Q4GQOHjyozz77TOHh4fr9999Nx3G4wMBAhYaG6sknn1StWrVMxwEAAACQg+Li4tJn7Y2NjZWfn5/hRLnTlStX9Pnnnys8PFwRERFKTU01HcmhChYsqJYtW6pjx45q06aN3N3dTUcCAAAAAAAAnBqFLiCLLl68qNGjR+vjjz92uYvvN/PEE09owoQJKlOmjOkoAAAAAHIAha47k5KSopkzZ+r111/XxYsXTcdxCsHBwZo6daoaNWpkOgoAAAAAAADgtCh0Af8gOTlZH3/8sUaPHq3Lly9n6T3FixdXuXLlVLx4cVmtVnl5ecnNzS2Hk/57NptNSUlJSkhI0KVLl3T48OEs3z7SarXq5Zdf1rBhw/hyBwAAAMhjKHT9e+vWrdOLL76Y5Zmd8+XLp6CgIJUqVUo+Pj7y9vaWh4dHDqf892w2m1JSUpSQkKCrV6/q2LFjt3X7yA4dOuidd95R2bJlczgpAAAAAAAAkPtQ6AJu4erVq2rTpo0iIiJu+hp/f3+1a9dOzZo1U4UKFVSuXDnlz5/fcSFzSHx8vI4cOaLo6Ght3LhRy5Yt05EjR276+sqVK2vdunUqWbKkA1MCAAAAyEkUum6fzWbTqFGjNHbs2Ju+xmq16tFHH1WrVq1UpUoVBQUFqVixYrJYLA5Mmv1SU1N14sQJRUdHa9u2bQoPD9cvv/xy09f7+vpqxYoVatasmQNTAgAAAAAAAM6PQhdwE5cvX9Zjjz12w4vPVqtVffr0UadOnVSvXj25u7sbSOhYNptNu3bt0pdffqkPP/xQV65cyfSacuXKaf369QoMDHR4PgAAAADZj0LX7bHZbBoyZIimTJlyw+dbt26tnj176pFHHnGZfXnq1CmtWLFC06ZN0969ezM97+3trSVLlqh169YG0gEAAAAAAADOiUIXcAN//PGHHn74YUVGRmZ6rnPnzpowYYICAgIcH8xJXLx4UaNGjdL06dOVmppq91zp0qW1bt06VaxY0VA6AAAAANmFQlfWpaWlqV+/fpoxY0am52rUqKEpU6YoJCTEQDLnkJKSohkzZmjkyJG6ePGi3XMeHh76/PPP1alTJ0PpAAAAAAAAAOdCoQvIIC0tTQ0bNtTmzZvtxosVK6Yvv/xSDRs2NJTM+ezZs0ft27fXwYMH7cYDAgK0Z88evuwBAAAAcjkKXVk3duxYjRw50m7MYrHo3Xff1cCBA11iZuesuHz5svr27aslS5bYjbu5uemnn35S3bp1DSUDAAAAAAAAnAeFLiCD6dOnq1+/fnZjJUuW1Lp161S5cmVDqZzXuXPn1KxZM/3+++9240OGDNGkSZMMpQIAAADwb9hsNp05c0bHjx9XfHy8Ll++rA4dOkiSVq5cqSJFiujuu+9WQECALBaL4bTO48CBA6pevbqSkpLSx9zd3TVv3jx17drVYDLnlJqaqt69e2vOnDl249WrV9fWrVvl6elpKBkAAAAAAADgHCh0AX9z5swZVa5cWTExMeljpUuX1oYNGxQUFGQwmXO7ePGimjdvrh07dqSPubu767ffflPNmjUNJgMAAABwM2lpaYqKitKOHTsUGRmpHTt2aMeOHTp//vw/vrdQoUIKDg5WzZo1VbNmTQUHB6ty5cry8PBwQHLnYrPZ1KRJE0VERKSPubu7a8mSJQoNDTUXzMmlpaXp+eef10cffWQ3PmHCBA0dOtRQKgAAAAAAAMA5UOgC/qZz585avHix3di6devUtGlTQ4lyjxv9Ir1WrVr65ZdfuLUIAAAA4CRsNpu2bt2qGTNmaPHixfrzzz8zvcbNzU2lS5eWr6+vvLy8tHPnTklS5cqVlZCQoJMnTyo5OTnT+6xWq9q0aaM+ffooJCREbm5uOf55nMHcuXMVFhZmN8aMxVmTnJysWrVqadeuXeljPj4+2rNnj8qWLWswGQAAAAAAAGAWhS7gf6KiolShQgW7saeeekrz5883lCj3GTNmjEaNGmU3tmbNGj3yyCOGEgEAAACQpCtXrujzzz/XzJkz0wta0l8lrGrVqqXPtFWzZk1Vq1ZNvr6+kqS4uDjly5dPkhQbGys/Pz8lJSVp79696TN6XZ/hKzY2Nn295cqVU69evRQWFqYSJUo49sM6kM1mU6VKlXTo0KH0sYCAAO3Zs0d+fn4Gk+Uev/76q+rXr6+/X54aNGiQpk6dai4UAAAAAAAAYBiFLuB/3nzzTb3++uvpy4UKFdLBgwdVrFgxg6lyl8TERNWoUUMHDhxIH+vRo4fmzp1rLhQAAADgwvbv36+3335bixcvVnx8vCTJ29tbHTt2VK9evdSgQYNb3ibxRoWuG0lLS1NkZKQ+/fRTffbZZ+kzf3l4eKh169YaOnSo6tWrl82fzrxt27apVq1admMrV65Uq1atDCXKnZ577jl9/PHH6cslSpTQyZMnme0ZAAAAAAAALss17n8A/AObzaYFCxbYjXXt2pUy123y9vbWs88+aze2bNmy9C+OAAAAADhGUlKSxowZoxo1amjevHmKj49X1apV9d577+n06dP67LPP1Lhx41uWuW6Hm5ub7r//fk2bNk2nT5/WnDlz9OCDDyolJUXh4eF68MEHNWDAgBve4jE3y3geWa5cObVs2dJQmtxr4MCBdstnz55VRESEmTAAAAAAAACAE6DQBUjatWuX9u3bZzfWpUsXQ2lyt06dOslisaQvX716Vd98843BRAAAAIBr+emnn1SzZk2NGjVKSUlJatGihX766Sft3r1bAwcOVOHChXN0+35+furZs6c2b96s33//Xd27d5fNZtO0adNUpUoVrVixIke37yipqalatGiR3ViXLl3szoeQNffee69q1qxpN7Zw4UJDaQAAAAAAAADzKHQB+msWqb8rU6aM6tevbyhN7layZEk1btzYbizj/gUAAACQ/f7880/1799fDRo00N69e1WsWDEtWLBAq1atUv369Y0UjapWrap58+Zp3bp1CgoK0qlTp9SuXTt17NhRZ86ccXie7PTbb7/p9OnTdmP8MOjfy7jvli1bJpvNZigNAAAAAAAAYBaFLkDSnj177JZDQ0Pl5sZ/Hv9W+/bt7ZYz7l8AAAAA2SsyMlJVq1bVRx99JJvNprCwMO3fv99pZoxq2rSpdu/erVdeeUXu7u5aunSpKleurDVr1piO9q9lPM+pWLGiqlataihN7pfxPPLy5cs6e/asoTQAAAAAAACAWTRWAEkHDx60W77vvvsMJckbMu6/Q4cOKS0tzVAaAAAAIG9bt26dGjZsqJMnTyooKEjr16/X7Nmzc/zWirfLx8dH48eP17Zt21SrVi3FxMSodevWmjdvnulo/wrnkdmrbNmy8vHxsRvLuI8BAAAAAAAAV0GhCy4vLS1Nhw4dshurWLGioTR5Q8b9d+3aNZ06dcpQGgAAACDv+uKLL/TYY4/p6tWrCgkJ0bZt29SkSRPTsW6pRo0a2rx5s7p27aqUlBT17NlTEydONB3rth04cMBumfPIO+Pm5qYKFSrYjWXcxwAAAAAAAICroNAFl3fixAklJCTYjXEh/s7cfffdypcvn90Yv6wGAAAAsteSJUv05JNPKjk5WZ07d9bq1atVsGBB07GyxMvLS/Pnz9fLL78sSRo2bJjeeecdw6luT8ZzHM4j71zGfch5JAAAAAAAAFwVhS64vOjoaLvl/Pnzy9/f31CavMFisWS6EB8VFWUoDQAAAJD3LFu2TF26dFFaWprCwsK0YMECeXt7m451W9zc3DRx4kSNHTtWkjR06FBNmTLFcKqssdlsmc4lKXTduUqVKtktcx4JAAAAAAAAV0WhCy7v6tWrdsvFihWTxWIxlCbvKFq0qN1ybGysoSQAAABA3rJ792516dJFqampeuqppzRz5ky5ueXe0/sRI0Zo5MiRkqTBgwdr9erVhhP9s+TkZCUlJdmNFStWzFCavIPzSAAAAAAAAOAvufeKL5BN4uPj7ZZ9fHwMJclbMu7HjPsZAAAAwO1LTExUt27dlJSUpBYtWmjOnDlyd3c3HeuOjR49Ws8995wk6emnn9aFCxcMJ7q1G53fcC555ziPBAAAAAAAAP5CoQsuL+OvqnPbbUqcVcb9mJiYaCgJAAAAkHe8/vrr2rVrl4oWLarZs2fniTKX9Ndt2ydNmqQqVaro7Nmz6tOnj2w2m+lYN5XxPFLiXDI7WK1Wu2XOIwEAAAAAAOCqKHQBGXC7xezBfgQAAACy18aNGzVp0iRJ0qxZs1SiRAnDibKXj4+PPvvsM3l6eio8PFxz5841Hem2cA5059iHAAAAAAAAwF8odAEAAAAA4ORiYmLUvXt32Ww2PfPMM2rbtq3pSDmiZs2aeuONNyRJAwcO1OHDhw0nAgAAAAAAAADHo9AFAAAAAICTe/nll3X8+HGVK1dOU6ZMMR0nRw0dOlQNGjRQbGysnnnmGdNxAAAAAAAAAMDhKHQBAAAAAODEzpw5k377wTlz5ih//vxmA+Uwd3d3zZ8/X15eXoqIiNCWLVtMRwIAAAAAAAAAh6LQBQAAAACAE5s+fbqSk5P14IMPqmHDhqbjOETZsmX1xBNPSJLee+89w2kAAAAAAAAAwLE8TAcAAAAAAAA3lpiYqOnTp0uSBg0aZDiNYw0aNEjz58/X4sWL9c4776hkyZKmIwFGXL58WZGRkYqMjNSFCxeUmpqq/Pnz67777lPNmjVVunRpWSwW0zEBAAAAAACQjSh0AQAAAADgpBYtWqTz58/rnnvuUWhoqOk4DnX//ferQYMG+vHHH/Xxxx9r7NixpiMBDpOUlKQVK1Zo5syZWrdunWw2201fW6VKFfXq1Uvdu3dXkSJFHJgSAAAAAAAAOYVbLgIAAAAA4IRsNpumTp0qSerfv788PT3NBjLg+qxk06dPV0JCguE0gGNs3rxZwcHB6tSpk9auXXvLMpck7d27V4MHD1a5cuU0ffp0paWlOSgpAAAAAAAAcgqFLgAAAAAAnNAvv/yiyMhI+fj4qHfv3qbjGNGuXTuVKVNGFy5c0OLFi03HAXJUWlqahg0bpgYNGmjfvn23/f4///xT/fr1U9OmTXXx4sUcSAgAAAAAAABHodAFAAAAAIATioiIkCS1bNnSZW+j5uHhoa5du0qSNm7caDgNkHNSU1MVFhamiRMn3vG6IiIi9J///Efnzp3LhmQAAAAAAAAwgUJXBhMmTJDFYpHFYtEvv/xiOg5czNGjR9P//l1/eHp6qlSpUurUqZO2bt0qSZo6daosFovCwsJuuq6IiAi5ubmpdu3aSklJcdRHAAAAAJBNtmzZIkmqV6+e4SRm1a1bV5L022+/GU7ifLJ6Dnnd1atXFRgYKKvVqr17995wndevi/Tq1csRHwH/89prr2n+/PnZtr59+/apZcuWSkpKyrZ1AgAAAAAAwHE8TAdwJr///rtGjRolPz8/xcXFmY4DFxYUFKRu3bpJkuLi4rRt2zYtWbJEy5cv17p16zRo0CCtWLFCc+fOVfv27dW6dWu798fGxiosLEze3t6aP3++PDz4Tx0AAADIba4XmOrUqWM4iVnXP/+ePXsUFxcnPz8/w4mczz+dQzZs2FCSlD9/fs2ePVvNmjVTjx499PPPP9udL+7evVsjR45UQECApkyZYuSzuKKNGzdmy8xcGW3btk1vvPGG3nrrrWxfNwAAAAAAAHIWM3T9T3Jysnr06KHg4GCFhoaajgMXV758eY0ePVqjR4/WO++8o++//17jx49XcnKyXn/9dVksFs2dO1cFChRQ7969dfHiRbv3DxkyREePHtX48eNVuXJlQ58CAAAAwL916tQpnTp1Sm5ubrr//vtNxzHq7rvvVqlSpZSWlqbt27ebjuOU/ukc8u+aNGmi/v37a+vWrRo3blz6eHJysrp3767k5GTNmTNH+fPnd/THcEmpqal65plnZLPZcmT9b7/99k1nYwMAAAAAAIDzotD1P2+99Zb27Nmj2bNny93d3XQcIJNnnnlG0l+/sJWkgIAATZ06VefOnVO/fv3SX/ftt99qxowZCgkJ0aBBg4xkBQAAAHBnrs/OVbVqVWak0v/P0nX9NpT4ZxnPIf9uwoQJKl++vN58801FRkZKksaMGaPIyEg9//zzCgkJcWRUl7Zy5UpFR0fn2PrT0tL0/vvv59j6AQAAAAAAkDModEnavn273nrrLY0aNUpVqlQxHQe4pb/fDiMsLExt2rTRkiVLtHDhQl25ckW9evVSgQIFNGfOHFksFoNJAQAAAPxb1wtdtWvXNpzEOVzfD9f3C7Lu7+eQ1/n6+mru3LlKTU1V9+7d9eOPP2r8+PGqVKmS3n77bQMpXde0adNyfBvz589XTExMjm8HAAAAAAAA2cflC12JiYnq3r27goODNXToUNNxgJuaNWuWJKlBgwZ24zNmzFDRokXVv39/9ezZUydPntTUqVMVEBBgIiYAAACAbHB9xp6qVasaTuIc7rvvPklSVFSU4SS5x83OIa976KGHNHjwYO3evVvNmjWTJM2bN08+Pj4Oy+jqkpKStGnTphzfTnx8PLPbAQAAAAAA5DKZf6bpYkaOHKlDhw5p27ZtefpWizabTdeuXTMdwyklJiaajpBJVFSURo8eLUmKi4vTtm3btGHDBvn7++udd96xe62/v78++eQTdejQQStWrFCbNm0UFhZmIPWtJSUlKS4uznQMAAAAwOnZbDZdvnxZkuTp6Wn0OPrv2zaZw83tr9+jXb16VbGxscZnI3a2c5vbOYf8u5EjR2ratGmKj4/XgAEDVLduXQclzpq0tDSn29fZKTIy0mHXJDZv3qwHH3zQIdsCAAAAAAA5x9fX1/i1MTiGxWaz2UyHMOXnn39WgwYNNHr0aL3++uvp4z179tS8efP0888/q169egYTZp+4uDjly5fPdIxc4YEHHtDWrVuNbPvo0aMqW7bsDZ8rUaKENm3apPLly9/w+bp162rLli3au3evKleunJMxs+SJJ57QF198YToGAAAAADjE+fPnVaxYMYdu807OISVp1KhRGjNmjCSpfPny2rlzp3x9fXMka1bMnz9fPXr0MLZ9AAAAAAAAZxcbGys/Pz/TMeAALnvLxZSUFPXo0UPVq1fXK6+8YjoOYOeRRx6RzWaTzWbT+fPn9c477+j8+fNq06aNYmNjb/ie67fF4PYYAAAAAOBa/s055LZt2zRu3DhVqlRJL730kqKiojR8+HAHJwcAAAAAAABwIy57y8XY2FgdOnRIkuTl5XXD19SvX1+SFB4ernbt2jkqWo7w9fW96UVcV7dgwQL16dPHdIybKlasmF566SXFxMTozTff1IgRIzR16lTTsW7b0KFDNXLkSNMxAAAAAKdns9nUqlUrbdy4UTNnzlSXLl2MZYmLi5O/v78k6dy5c8Z+/ffrr7+qadOmCggI0O+//258Wvk//vjjpjNjmZaVc8jExER1795dNptN8+bN0/3336/vvvtOH3zwgTp06KCGDRuaCZ9BzZo1tWnTJtMxcsyyZcvUvXt3h2zrqaee0scff+yQbQEAAAAAgJxjcnZ1OJbLFrq8vb31zDPP3PC5H374QYcOHVKbNm1UrFgxBQYGOjZcDrBYLEy7dxPe3t6mI2TJq6++qtmzZ+ujjz7SCy+8kOv+Xnp5efF3EAAAAMiiggULSpLS0tKc5jjaz8/PeJZ8+fIpX758RjNI0rVr10xH+Ee3OoccMWKE9u7dq+HDh6tu3bqSpHnz5qlOnTp6+umntWvXLqe4OOjm5mb871xOCg4Odti2qlWrlqf3JQAAAAAAQF7jsrdc9PHx0axZs274ePDBByVJw4cP16xZsxx6gQ24GR8fHw0bNkzJyckaO3as6TgAAAAActD1Ms3Vq1cNJ3EO1/cDt5jPupudQ27evFmTJ09WtWrVNHr06PTx4OBgvfbaa4qOjtawYcMMJHY9lStXdlhxrnbt2g7ZDgAAAAAAALKHyxa6gNyoT58+KlmypObPn6/o6GjTcQAAAADkkEqVKkmSdu3aZTiJc7i+H67vF2RNxnPIuLg49ezZU+7u7po3b568vLzsXv/aa6+pZs2amjZtmjZu3Ggotevw8PBQkyZNcnw7BQoUoNAFAAAAAACQy1DoAnIRq9Wq4cOHKyUlRW+88YbpOAAAAAByyPXyxZYtWwwncQ7X90OdOnUMJ8ldMp5DDh06VFFRURoxYoRq1qyZ6fUeHh6aN2+ePD09FRYWpri4OAOpXcvzzz+f49t45plnuN0iAAAAAABALuNhOoAzmjt3rubOnWs6BlxQYGCgbDbbLV8zYMAADRgwINN4REREDqUCAAAA4GjXC1379+9XTEyMChYsaDiROTabjULXTfybc8hp06bd8vXVqlVTYmJituTDP2vevLmqV6+eY7PxeXl53fAaAgAAAAAAAJwbM3QBAAAAAOBkihcvrsDAQEnStm3bzIYx7MSJEzp//rw8PDwUHBxsOg6QrSwWi+bMmSMPj5z5zeWbb76pcuXK5ci6AQAAAAAAkHModAEAAAAA4IS47eJfrn/+6tWry2q1Gk4DZL/7779fb731Vravt0mTJho8eHC2rxcAAAAAAAA5j0IXAAAAAABO6PrtBX/++WfDScz65ZdfJP1/wQ3Ii15++WUNGTIk29ZXv359hYeHy93dPdvWCQAAAAAAAMeh0AUAAAAAgBNq1qyZJGn16tU6c+aM4TRmJCYm6r///a8kqWnTpobTADnHYrHonXfe0eTJk+Xl5XVH6+rUqZPWrl2rAgUKZFM6AAAAAAAAOBqFLgAAAAAAnFBwcLAeeughJScn6+OPPzYdx4gvvvhC58+fV6lSpdSuXTvTcYAcZbFY9OKLLyoyMlINGjS47feXKlVKy5cv1xdffCE/P78cSAgAAAAAAABHodAFAAAAAICTGjRokCRp+vTpSkhIMJzGsWw2m9577z1JUv/+/eXp6Wk4EeAYlStX1g8//KBNmzape/futyxnubm5KSQkRAsXLlR0dLTatm3rwKQAAAAAAADIKRS6AAAAAABwUqGhoSpdurT++OMPLVq0yHQch9q8ebO2b98uq9WqPn36mI4DOJTFYlGDBg00b948xcTEaO/evZo9e3b689OmTdMvv/yiq1ev6vvvv9cTTzwhb29vg4kBAAAAAACQnSh0AQAAAADgpDw8PNS/f39J0nvvvSebzWY4keNcn52rW7duKlKkiOE0gDnu7u6qXLmyOnXqlD7Wo0cP1a1bV76+vgaTAQAAAAAAIKdQ6AIAAAAAwIn17t1bPj4+ioyM1KpVq0zHcYg9e/YoPDxckjRw4EDDaQAAAAAAAADAsSh0AQAAAADgxAoXLqznnntO0l/lrosXLxpOlLMSExPVtWtXpaamqk2bNqpWrZrpSAAAAAAAAADgUBS6AAAAAABwcmPHjlXlypV19uxZ9e3bN0/fenHkyJHauXOnihYtqk8++cR0HAAAAAAAAABwOApdAAAAAAA4OR8fH3322Wfy8PDQ0qVLNX/+fNORcsTGjRv1zjvvSJJmzpypEiVKGE4EAAAAAAAAAI5HoQvIIC//0t2R0tLSTEcAAAAA8pT7779fb7zxhiTp+eef15EjRwwnyl4xMTHq3r27bDabnn76abVr1850pNvCueSd4zwSAAAAAAAA+AuFLrg8b29vu+WEhARDSfKWxMREu2Wr1WooCQAAAJB3DBs2TA899JCuXr2qp556Ks+cv6SlpenZZ5/V8ePHVa5cOU2dOtV0pFvKeB4pcS6ZHTLuQ84jAQAAAAAA4KoodMHl+fj42C3Hx8cbSpK3ZNyPGfczAAAAgNvn7u6u+fPnK3/+/Nq8ebM6dOiQ6ccUuY3NZlP//v21aNEiubm5pX8+Z3aj8xvOJe8c55EAAAAAAADAXyh0weUVKFDAbvncuXPcKiMbnDt3zm7Z2b+QAQAAAHKLcuXK6auvvpKPj4+++eYbderUSUlJSaZj/Ss2m02DBg3S9OnTZbFYNG/ePD300EOmY/0jDw+PTLNHZTwHwu3jPBIAAAAAAAD4C4UuuLzy5cvbLV+7dk2nT582lCZvSEtL06FDh+zGKlSoYCgNAAAAkPc0btxYX331laxWq7766iu1bNlSf/75p+lYtyU5OVk9e/bUBx98IEmaPXu2unXrZjhV1lgslkznkgcPHjSUJu/IuA85jwQAAAAAAICrotAFl1eqVCn5+vrajR04cMBQmrzh5MmTmW6VUalSJUNpAAAAgLypWbNm+uqrr+Tn56d169apUaNGOnPmjOlYWRIbG6vWrVtr/vz5cnd31+zZs9WzZ0/TsW5LxnMcziPvXMZ9yHkkAAAAAAAAXBWFLrg8i8WiihUr2o3xy+o7k3H/5cuXTyVKlDCUBgAAAMi7mjdvro0bN6p48eKKjIxUjRo1tHDhQqe+jfz69esVHBysb7/9Vr6+vlqxYoXCwsJMx7ptnEdmr9TUVEVFRdmNZdzHAAAAAAAAgKug0AUo80XiXbt2GUqSN2TcfxUrVpTFYjGUBgAAAMjbHnjgAf3888+qWrWq/vjjDz355JNq2bKljh07ZjqanYsXL6pnz55q1qyZoqOjVapUKW3YsEEtW7Y0He1fudF5pDMX6ZzdwYMHlZSUZDdGoQsAAAAAAACuikIXIKl69ep2y+Hh4UpNTTWUJvf78ssv7ZYz7l8AAAAA2atcuXLavn27xowZIy8vL61evVpVq1bV1KlTjZ/b2Gw2LViwQJUrV9a8efNksVjUv39/7d27V3Xq1DGa7U5kPM85evSotm/fbihN7pfxPNLf31/FihUzlAYAAAAAAAAwi0IXIKljx452y2fPnlVERISZMLnckSNH9PPPP9uNZdy/AAAAALKfl5eXXn/9de3cuVP/+c9/FBcXpxdffFH16tVTeHi4kpOTHZonLS1N69evV4sWLdS1a1f98ccfqlq1qjZv3qwPP/xQBQoUcGie7FazZk2VK1fObmzhwoWG0uRu10t/f9exY0dmegYAAAAAAIDLotAFSKpUqZJq1qxpN5bxYjKyZtGiRXbLhQsXVvPmzQ2lAQAAAFzPvffeq4iICH3yyScqWLCgtm7dqvbt26tMmTJ69dVXFR0dnaPbP3v2rN5++21VrFhRzZo107fffisvLy+NHTtW27dvV/369XN0+45isVj0xBNP2I0tWrRIaWlphhLlXjt37tT+/fvtxrp06WIoDQAAAAAAAGAehS7gf5588km75S+++EInTpwwlCZ3io2N1fTp0+3GHn/8cXl5eRlKBAAAALgmNzc39enTR/v27dOwYcNUvHhxnT17VuPHj1f58uXVrFkzffHFF7p06VK2bO/q1av65ptv1L59e5UuXVrDhw9XdHS0ChQooH79+mn37t0aMWJEnjs3yHgeeerUqUw/csE/e/fdd+2WAwIC8kzxDwAAAAAAAPg3LDabzWY6BOAMTpw4oTJlytiNtW3bVsuXLzcTKBcaMmSIJk+ebDcWERGhRo0aGUoEAAAAQJKSkpK0cuVKzZw5U999953+fimgTJkyCg4OVs2aNdMfpUuXlsViUVxcnPLlyyfprx9w+Pn56dy5c9qxY4fdIyoqym579evXV58+ffT444/Lz8/PoZ/V0apXr67du3enLxcvXlz79+/XXXfdZTBV7rFu3bpMszoPGzZMb7/9tqFEzutG/z0CAAAAAAAgb6LQBfxN7969NWvWLLuxZcuWKTQ01FCi3GP79u2qXbu23e1FQkJCtH79elksFoPJAAAAAPzd0aNHNXv2bC1atEiHDh264WusVqt8fHzk7e2ts2fPSvrrduoJCQm6du3aDd9zzz33qEOHDurVq5fuu+++HMvvbJYtW6YOHTrYjfXu3VszZswwlCj3iI+PV7Vq1exuA1qwYEHt379fJUqUMJjMOVHoAgAAAAAAcB0UuoC/uXz5su69916dP38+faxIkSJat26dgoODzQVzcidOnFCTJk3sfpXv7e2tXbt2qWLFigaTAQAAALiVmJgY7dy50262rb179yolJeWm77FYLKpYsaLdjF7BwcEqVqyYA5M7D5vNpnbt2umrr76yG58xY4Z69+5tKJXzS05OVrdu3bR48WK78enTp6tv376GUjk3Cl0AAAAAAACug0IXkMHChQv15JNP2o0VKlRIq1evVr169Qylcl7R0dFq2rSpjh07Zjc+ZswYvf7664ZSAQAAAPi3EhMTdfr0aSUmJio+Pl4xMTHy8vJSoUKF5OPjo2LFiqWXSvCXEydOqEqVKoqNjbUbnzJlil544QUzoZxYQkKCOnXqpJUrV9qNP/TQQ/rhhx/k5uZmKJlzo9AFAAAAAADgOih0ARnYbDa1atVK33zzjd24n5+fZs+erccff5xbCP7Pxo0b1aVLF505c8ZuvGrVqtq2bZu8vb0NJQMAAAAAx/rggw80cODATONDhw7VqFGj5OvrayCV8zl27JjCwsK0YcMGu3Fvb29t27ZNVatWNZTM+VHoAgAAAAAAcB385BHIwGKxaNGiRWrcuLHdeFxcnDp37qzGjRsrMjLSSDZncfjwYXXo0EGNGzfOVOaqXLmyvvvuO8pcAAAAAFzKgAEDbjhL8cSJE3Xvvfdq0aJFcuXf1MXFxen111/Xvffem6nM5evrq6+//poyFwAAAAAAAPA/zNAF3ER8fLw6dOig1atXZ3rOYrGoU6dOevzxx/Xoo4+6xK9ik5KStGHDBi1dulTz5s1TUlJSptcEBwfru+++U7FixQwkBAAAAADzJkyYoFdeeeWGz9WpU0c9evRQu3btVLJkSQcnczybzaadO3dq2bJl+vTTT3X69OlMrylQoIBWrVqlBg0aGEiYuzBDFwAAAAAAgOug0AXcQmJiorp27aqlS5fe9DVWq1WPPPKImjdvrvLlyysoKEgBAQHy9PR0YNLslZqaqpMnTyo6OlrR0dHauHGjvv76a8XExNz0PfXr19eqVat01113OTApAAAAADifDz/8UAMHDrzljFz16tVTq1atVKVKFQUFBalcuXLpZZ3cyGaz6cKFC+nnkdu2bVN4eLiOHj160/cUKVJEa9asUa1atRwXNBej0AUAAAAAAOA6KHQB/8Bms2nJkiUaOnSojh07lqX3uLu7q0yZMipWrJisVqu8vb3l5ua8dzi12WxKTExUQkKCLl26pKNHjyo5OTlL7y1SpIjGjBmjPn36yMPDI4eTAgAAAEDusHPnTr3wwguKiIjI8nv8/f1VqlQp+fj4yGq1OvU5ls1mU3JyshISEhQbG6ujR4/q6tWrWXqvu7u7nn32WY0ePVpFixbN4aR5B4UuAAAAAAAA10GhC8ii+Ph4TZ48WePHj1dcXJzpOMZ5eHiof//+GjVqFLNyAQAAAMAN2Gw2LV++XC+99JIOHz5sOo5TaN68uaZMmaKqVauajpLrUOgCAAAAAABwHRS6gNt07tw5LV26VOHh4dqwYYNSU1NNR3KoevXqKTQ0VI8//rjKli1rOg4AAAAAOL3ExER9/fXXCg8P18qVK/Xnn3+ajuRQZcuWVWhoqDp06KD69evLYrGYjpQrUegCAAAAAABwHRS6gDtw6dIlff3111qzZo0OHTqk6OhoXb582XSsbJMvXz4FBQUpKChITZs2Vdu2bVWqVCnTsQAAAAAg10pKStKGDRv01Vdf6ffff1d0dLROnTplOla28fT0VGBgoIKCglSnTh2FhoaqRo0alLiyAYUuAAAAAAAA10GhC8hmly9fVnR0tI4cOaLY2FglJCQoISFBzv6fmtVqlbe3t/z8/BQYGKhy5cqpWLFiXHQHAAAAgBwWHx+vI0eOKDo6WpcuXVJCQoLi4+OVlpZmOtoteXp6ymq1ymq1qlSpUipXrpxKly4td3d309HyJApdAAAAAAAAroNCFwAAAAAAAODkKHQBAAAAAAC4DjfTAQAAAAAAAAAAAAAAAAAAf6HQBQAAAAAAAAAAAAAAAABOgkIXAAAAAAAAAAAAAAAAADgJCl0AAAAAAAAAAAAAAAAA4CQodAEAAAAAAAAAAAAAAACAk6DQBQAAAAAAAAAAAAAAAABOgkIXAAAAAAAAAAAAAAAAADgJCl0AAAAAAAAAAAAAAAAA4CQodAEAAAAAAAAAAAAAAACAk6DQBQAAAAAAAAAAAAAAAABOgkIXAAAAAAAAAAAAAAAAADgJCl0AAAAAAAAAAAAAAAAA4CQodAEAAAAAAAAAAAAAAACAk6DQBQAAAAAAAAAAAAAAAABOgkIXAAAAAAAAAAAAAAAAADgJCl0AAAAAAAAAAAAAAAAA4CQodAEAAAAAAAAAAAAAAACAk6DQBQAAAAAAAAAAAAAAAABOgkIXAAAAAAAAAAAAAAAAADgJCl0AAAAAAAAAAAAAAAAA4CQodAEAAAAAAAAAAAAAAACAk/AwHQDIay5duqTo6GgdPXpUV69eVUJCghITE2Wz2UxHuyVvb295e3vLz89PgYGBKleunIoXLy6LxWI6GgAAAAAAgEPYbDadP39e0dHROnbsmOLi4pSYmKjExETT0W7JYrHI29tbVqtV+fPnV2BgoIKCglS4cGHT0QAAAAAAwL9AoQu4A5cuXdLKlSv17bff6uDBg4qOjtaVK1dMx8o2+fLlU7ly5VS+fHk1adJE7dq1U6lSpUzHAgAAAAAAyBanTp3S8uXL9f333ysqKkqHDx9WbGys6VjZplChQgoKClLFihX1yCOPqHXr1pS8AAAAAADIBSw2Z582CHAy586d05dffqnw8HBFREQoNTXVdCSHqlu3rkJDQ9WpUyeVLVvWdBwAAAAAAFxCXFyc8uXLJ0mKjY2Vn5+f4US515EjR7R48WKFh4fr119/NR3Hodzd3dW4cWOFhoaqY8eO8vf3Nx0JAAAAAADcAIUuIIvi4+P17rvvavz48bp27ZrpOMZ5eHjoueee06hRo/hlJwAAAAAAOYxC1527dOmS3njjDU2bNs3lfqB3I35+fho+fLgGDx4sHx8f03EAAAAAAMDfUOgC/oHNZtPixYs1dOhQHT9+PEvvcXd3V5kyZVS8eHFZrVZ5eXnJzc0th5P+ezabTUlJSUpISNClS5d05MgRJScnZ+m9hQsX1pgxY9S3b195eHAXVwAAAAAAcgKFrn8vJSVF06dP16hRo3Tp0qUsvcfT01Nly5ZV4cKF06/tWCyWHE7676WlpaVf2zl//ryOHz+e5dJaQECAJk6cqMcff9ypPyMAAAAAAK6EQhdwC4mJieratauWLl1609f4+PjokUceUbNmzVShQgUFBQWpTJky8vT0dGDS7JWamqpTp04pOjpa0dHR2rhxo1auXKmYmJibvqd+/fpatWqV7rrrLgcmBQAAAADANVDo+ncuX76sli1b6ueff77pawoWLKjWrVurUaNGCgoKUlBQkEqVKiV3d3cHJs1eycnJOn78uKKjo3Xo0CGtW7dO3377reLj42/6ng4dOmjBggXy8vJyYFIAAAAAAHAjFLqAm4iPj1f79u21Zs2aTM9ZLBZ16tRJnTp10iOPPOISF1GTkpIUERGhL7/8UvPnz1diYmKm1wQHB+u7775TsWLFDCQEAAAAACDvotB1+86fP6+HH35YO3fuzPSct7e3unfvro4dO6px48YuUWKKi4vTt99+q8WLF2vx4sW60WXhFi1aaOnSpdyCEQAAAAAAwyh0ATdw9epVtWnTRhEREZmea9SokaZOnarg4GCH53IWR44c0csvv3zDmcsqV66sdevWqWTJkgaSAQAAAACQN1Houj2nTp1Ss2bNtH///kzPdezYURMnTlTZsmUNJHMOO3bs0AsvvKAffvgh03ONGzfWV199pfz58xtIBgAAAAAAJApdQCY2m00tW7bU6tWr7cbz5cun2bNnq2PHjrJYLIbSOZeNGzeqS5cuOnPmjN141apVtW3bNnl7extKBgAAAABA3kKhK+sSExP1wAMPaM+ePXbjJUuW1IIFC9SoUSNDyZyLzWbTkiVL9PTTTysuLs7uuccee0xff/0118AAAAAAADDEzXQAwNksWrQoU5mrUKFCWrdunR5//HEuZP1No0aNtGnTJgUEBNiN79mzRxMnTjSUCgAAAACAvOPChQuKiorS77//nj62a9cuHThwQCdOnFBaWprBdM5pwoQJmcpcgYGB2rRpE2Wuv7FYLOrUqZPWrVunQoUK2T33zTff6IsvvjATDAAAAAAAMEMX8HeXLl1S5cqVdf78+fSxokWLau3atS59i8V/cuLECTVt2lSHDh1KH/P29tauXbtUsWJFg8kAAAAAAMgdbDabDh8+rB07dtg9zp49e8v35cuXTzVq1FDNmjXTH1WrVpWXl5eDkjuXAwcOqHr16kpKSkofq1ChgtavX6/SpUsbTObcIiMj1bx5c124cCF9rHjx4tq/f7/uuusug8kAAAAAAHBNFLqAv+ndu7dmzZplN7Zs2TKFhoYaSpR7bN++XbVr17b7ZXBISIjWr1/PrGYAAAAAANxAamqqvvvuO82aNUvr1q3Tn3/+mek1FotF+fPnl7e3t/744w9JfxVtkpKSFBsbq5SUlEzv8fT0VK1atdSzZ0916dJF+fPnz/HP4gxsNpuaNGmiiIiI9DF3d3f99ttvqlmzprlgucSyZcvUoUMHu7HevXtrxowZhhIBAAAAAOC6KHQB/3PixAmVKVPGbqxt27Zavny5mUC50JAhQzR58mS7sYiICG5nAAAAAADA35w4cUKzZ8/W7Nmzdfz48fRxb29vVatWTcHBwemzbVWvXl1+fn6Ki4tTvnz5JEmxsbHy8/NTSkqKDhw4kGlWrytXrqSv08/PT126dFHv3r1Vu3btPP2jq4iICIWEhNiNDRkyRJMmTTKUKHex2Wxq166dvvrqK7vxEydO6J577jGUCgAAAAAA10ShC/ifSZMm6eWXX05f9vPz0759+5iO/zbExsaqatWqdhej+/btq+nTpxtMBQAAAACAc1izZo0++OADrVmzJn2G67vuukvdu3fXU089perVq8vT0/OG771RoetGbDabjh49qmXLlmnmzJk6cOBA+nPVq1dX37591atXrzx5S8a+ffvazSZVpkwZ7d2796b7CpmdOHFClStXVlxcXPrYpEmTNGTIEIOpAAAAAABwPW6mAwDOYsGCBXbLnTt3psx1m/Lly6dnn33WbmzJkiVKSkoylAgAAAAAAPNOnz6tDh06qEWLFvrmm2+Ulpamxo0b6/PPP9fp06c1depUPfDAAzctc90Oi8WismXLasiQIdq3b582btyobt26yWq1ateuXerfv79q1qypn376KRs+mfNISkrSkiVL7Mb69etHmes2lS5dWp06dbIby3jNDAAAAAAA5DwKXYCUfnuCv3vyyScNpcndnnjiCbvlS5cuae3atYbSAAAAAABgTlpamj755BNVqVJFy5Ytk7u7uwYNGqQDBw5ow4YNevLJJ2W1WnNs+xaLRQ0bNtR///tfnT59Wu+9956KFSumvXv3qkGDBurfv7/+/PPPHNu+I3333Xe6fPmy3VjGaxTImozXxLZv366DBw8aSgMAAAAAgGui0AVI+vLLL+2WS5QoocaNG5sJk8uVLVtW9evXtxvLuH8BAAAAAMjr9u/fr0aNGunZZ59VTEyMateure3bt2vq1KmqWLGiw/PcddddGjhwoPbt26eePXvKZrPpo48+UpUqVbRixQqH58luGa89PPjggwoMDDQTJpcLCQmRv7+/3RjXdgAAAAAAcCwKXYCkXbt22S2HhobK3d3dUJrcr2PHjnbLGfcvAAAAAAB52bRp01SjRg39+OOP8vPz09SpU/Xzzz+revXqpqOpSJEimjNnjtatW6egoCCdOnVK7dq1U9euXZWQkGA63r+W8dpDxmsTyDp3d3eFhobajXFtBwAAAAAAx6LQBUiZpo13hgusuVnG/Xfw4EHZbDZDaQAAAAAAcIy0tDQNGzZMAwYMUFJSkh577DHt2bNHgwYNcrofjjVt2lS7d+/WK6+8Ind3dy1YsEAPP/xwptsW5gY2m41rO9nsRtd2AAAAAACA41Dogsu70UU/E7c+yEsy7r/Y2FidPXvWUBoAAAAAAHJeSkqKevTooYkTJ0qSxo0bp6+//loBAQGGk92cj4+Pxo8fr7Vr16pAgQLatGmTGjRooFOnTpmOdlvOnDmjuLg4uzGu7dyZjPuPH+sBAAAAAOBYFLrg8k6dOqVr167ZjVWqVMlQmrzhnnvukY+Pj93YgQMHDKUBAAAAACBnpaamqnv37vrss8/k4eGhuXPnavjw4bJYLKajZUlISIh+/PFHlSxZUnv37lWTJk105swZ07GyLOM1B19fX5UqVcpQmrwh47WxuLg4nT592lAaAAAAAABcD4UuuLyoqCi7ZV9fX5UsWdJQmrzBzc1NFSpUsBs7dOiQoTQAAAAAAOSc1NRUPf3001q4cKE8PDy0dOlS9ejRw3Ss21atWjVt3rxZZcqU0cGDB9W0aVOdO3fOdKwsyXhtp0KFCnJz47LnnShZsqR8fX3txri2AwAAAACA43BlAy7vzz//tFv29/fPNb+gdWb+/v52y1evXjWUBAAAAACAnDNmzBjNnz9f7u7u+uKLL9SmTRvTkf61wMBAbdiwQffcc4/27dundu3aKSUlxXSsf3Sjazu4M25ubipevLjdGNd2AAAAAABwHApdcHnx8fF2yxlvFYh/J+N+zLifAQAAAADI7X755Re99dZbkqTZs2erffv2hhPduXLlyun7779XgQIF9Msvv2j8+PGmI/0jru3kDK7tAAAAAABgDoUuuLzExES7ZavVaihJ3uLt7W23nJCQYCgJAAAAAADZLzY2Vt26dVNqaqq6du2q7t27m46UbSpUqKBp06ZJkt544w399ttvhhPdWsZrOxmvSeDfyXiNjGs7AAAAAAA4DoUuIANut5g93Nz43wsAAAAAIO8aPHiwoqOjVbp0aX344Yem42S7rl27qlOnTkpNTVW3bt107do105GyjGs72YNrOwAAAAAAmMNZOQAAAAAAAHAbvvrqK82cOVMWi0Xz589XoUKFTEfKdhaLRR9//LFKlSqlgwcP6uWXXzYdCQAAAAAAwGVQ6AIAAAAAAACy6PLly+rVq5ckaciQIWrcuLHZQDmocOHCmjNnjiTpo48+0rp16wwnAgAAAAAAcA0UugAAAAAAAIAsmjlzpv744w/de++9evPNN03HyXHNmzfXc889J0kaN26c4TQAAAAAAACugUIXAAAAAAAAkAUpKSn68MMPJUlDhw6Vt7e34USO8corr8jd3V0bNmzQrl27TMcBAAAAAADI8zxMBwAAAAAAAAByg+XLl+vEiRMqVqyYunTpYjqOw5QuXVrt27fXkiVL9P7772vWrFmmIwHGxMTEKDIyUvv379e1a9fk4eGhu+++WzVr1lS5cuVksVhMRwQAAAAA5AEUugAAAAAAAIAseO+99yRJffv2ldVqNZzGsQYNGqQlS5bo888/19tvv62iRYuajgQ4zJ9//qkFCxZo1qxZ2rZt201fV7hwYT355JPq3bu3qlev7sCEAAAAAIC8hlsuAgAAAAAAAP9g+/bt+vHHH+Xh4aF+/fqZjuNwDz74oB544AElJCRoxowZpuMADpGWlqbp06erdOnS6tev3y3LXJJ06dIlffjhh6pRo4Y6dOig06dPOygpAAAAACCvodAFAAAAAAAA/IMPP/xQktSpUyeVLFnScBrHs1gsGjRokCRp2rRpSk1NNZwIyFnnzp1T48aN1a9fP/3555+3/f5ly5apcuXKWrx4cQ6kAwAAAADkdRS6AAAAAAAAgH+wbt06SdLTTz9tOIk5nTp1kp+fn06fPq0DBw6YjgPkmOPHj+uhhx7Spk2b7mg9f/75pzp37qyPP/44m5IBAAAAAFyFSxe6AgMDZbFYbvho3Lix6XhwQUePHs30d9HT01OlSpVSp06dtHXrVknS1KlTZbFYFBYWdtN1RUREyM3NTbVr11ZKSoqjPgIAAAAAAHnO2bNndeLECVksFtWpU8d0HGO8vb11//33S5K2bNliOI3zyep1neuuXr2qwMBAWa1W7d2794brnDBhgiwWi3r16uWIjwBJsbGxat68uaKjo7Ntnc8995yWLl2abesDAAAAAOR9HqYDmFawYEG98MILmcYDAwMdngW4LigoSN26dZMkxcXFadu2bVqyZImWL1+udevWadCgQVqxYoXmzp2r9u3bq3Xr1nbvj42NVVhYmLy9vTV//nx5eLj8f+oAAAAAAPxrv/32mySpSpUqyp8/v+E0ZtWpU0ebNm3Sb7/9pp49e5qO45T+6bpOw4YNJUn58+fX7Nmz1axZM/Xo0UM///yz3TWc3bt3a+TIkQoICNCUKVOMfBZXNHjwYB08eDDb19unTx/Vr1/fJW/ZCgAAAAC4fS7f8ihUqJBGjx5tOgZgp3z58pn+Xr799tsaPny4Xn/9dW3cuFFz585V9erV1bt3b+3Zs0dFihRJf+2QIUN09OhRTZkyRZUrV3ZwegAAAAAA8pbrha7atWsbTmLe9X3ADF03l5XrOtc1adJE/fv314cffqhx48Zp5MiRkqTk5GR1795dycnJmjNnjssXCR0lIiJCM2fOzJF1X7p0Sc8//zwzdQEAAAAAssSlb7kI5CbPPPOMJGnbtm2SpICAAE2dOlXnzp1Tv3790l/37bffasaMGQoJCdGgQYOMZAUAAAAAIC+5Xl5y5dstXnd9H+zcuVOJiYmG0+QeGa/r/N2ECRNUvnx5vfnmm4qMjJQkjRkzRpGRkXr++ecVEhLiyKgubdKkSTm6/vDw8Gy9lSMAAAAAIO9y+UJXYmKi5s6dq3HjxunDDz/Ur7/+ajoScEt/n3o/LCxMbdq00ZIlS7Rw4UJduXJFvXr1UoECBTRnzhxZLBaDSQEAAAAAyP1sNlv6DF0UuqTAwEAVLVpUycnJ2rlzp+k4uc7fr+tc5+vrq7lz5yo1NVXdu3fXjz/+qPHjx6tSpUp6++23DaR0TdHR0Vq1alWObsNms+mjjz7K0W0AAAAAAPIGl7/l4tmzZxUWFmY3Vrt2bS1cuFBBQUGGUgGZzZo1S5LUoEEDu/EZM2bop59+Uv/+/dWwYUOdPHlSs2fPVkBAgImYAAAAAADkKRcvXtSlS5ckSdWqVTOcxjyLxaLq1avr+++/1/79+ym5ZdHNrutc99BDD2nw4MGaNGmSmjVrJkmaN2+efHx8HJbR1a1fv94h21m7dq1DtgMAAAAAyN1cutAVFham//znP7rvvvuUL18+HTx4UJMnT9Z///tfNW3aVLt371b+/PlNx4QLioqK0ujRoyVJcXFx2rZtmzZs2CB/f3+98847dq/19/fXJ598og4dOmjFihVq06ZNppIiAAAAAAD4d65duyZJ8vb2lpeXl+E0zuH69bL4+HjDSZzT7VzX+buRI0dq2rRpio+P14ABA1S3bl0HJYak9Jn4ctqePXsUFxcnPz8/h2wPAAAAAJA7uXSha9SoUXbLwcHBmj9/viTpv//9r2bOnKnBgwebiJbtbDZb+gVI2EtMTDQdIZPo6Gi98cYbdmMlSpTQpk2bVL58+Uyvb9++verUqaMtW7Y47VT8SUlJiouLMx0DAAAAAIDbcuHCBUmS1Wo1el77922bPr/29PSUJF25csV4Fumvaw7O5Hav61w3adKk9JLcmjVrdO3aNfn6+uZo1tuRmJjoFH/eOWXPnj0O2U5aWpp27dql6tWrO2R7AAAAAPIWX19fWSwW0zHgCDZk8uOPP9ok2dq3b286SraJjY21SeKRhccDDzxg7M/pyJEjNkm2Rx55JH3s/Pnztnfeecfm5uZmq1y5su3q1as3fG+jRo1skmxHjhxxUNpb69y5s/E/Sx48ePDgwYMHDx48ePDgwYOH6z06d+5s5FrInVzX2bp1q83Dw8NWqVIl20svvWSTZBs4cKCjot/QAw88YPzPkgcPHjx48ODBgwcPHjx42D9iY2ONnivCcdyETIoWLSrJ/K8dAUkqVqyYXnrpJb366qvat2+fRowYYToSAAAAAAAAsiAr13USExPVvXt32Ww2zZs3T+PGjVP16tX1wQcf6IcffjCQGgAAAAAAmObSt1y8mV9//VWSFBgYaDZINvL19VVsbKzpGE5pwYIF6tOnj+kY/+jVV1/V7Nmz9dFHH+mFF17IdX8/hw4dqpEjR5qOAQAAAADAbTl27JiqVq0qLy8vXbp0yViOuLg4+fv7S5LOnTsnPz8/Y1k6d+6sVatWacqUKerdu7exHNeNGTNGEydONB3jlm51XWfEiBHau3evhg8frrp160qS5s2bpzp16ujpp5/Wrl27nOLWizNmzNCTTz5pOkaO6du3rz7//PMc347FYtHJkydVsGDBHN8WAAAAgLzHGc4P4RguW+jav3+/ypQpk+kv+/79+zVs2DBJylMXKCwWi9ELfc7M29vbdIQs8fHx0bBhwzRo0CCNHTtWn376qelIt8XLy4u/gwAAAACAXKdYsWKSpKSkJHl7e8vDw/zlND8/P6Pn2ImJiZKku+66yynO9b28vExH+Ec3u66zefNmTZ48WdWqVdPo0aPTXx8cHKzXXntNo0eP1rBhw/TBBx8YSv7/vL29neLPO6fUr1/fIYWuSpUqqWTJkjm+HQAAAABA7uayt1xctGiRSpQooVatWql///4aOnSo2rVrp+rVq+vs2bMaPny4GjZsaDomYKdPnz4qWbKk5s+fr+joaNNxAAAAAADI84oUKaICBQpIkvbs2WM4jXk2m02///67JKl8+fKG0+QuGa/rxMXFqWfPnnJ3d9e8efMyFdNee+011axZU9OmTdPGjRsNpXYdISEheWo7AAAAAIDczWULXSEhIWrRooUOHjyozz77TFOmTNGvv/6qxx57TN9++63GjRtnOiKQidVq1fDhw5WSkqI33njDdBwAAAAAAPI8Nzc31apVS5L022+/GU5j3qlTp3T27Fm5u7urZs2apuPkKhmv6wwdOlRRUVEaMWLEDfelh4eH5s2bJ09PT4WFhSkuLs5AatdRpUoVh5St+vfvn+PbAAAAAADkfubniDekUaNGatSokekYgJ3AwEDZbLZbvmbAgAEaMGBApvGIiIgcSgUAAAAAgGurU6eOvv/+e23ZskW9evUyHceoLVu2SJLuu+8++fr6Gk7jXP7NdZ1p06bd8vXVqlVLv8Ulct7gwYO1YcOGHFv/ww8/rKpVq+bY+gEAAAAAeYfLztAFAAAAAAAAZEXt2rUlMUOX9P/7oE6dOoaTANmvZcuWevzxx3Nk3X5+fvroo49yZN0AAAAAgLyHQhcAAAAAAABwC9fLS7t379a1a9cMpzHr+gxd10tuQF5isVg0ffp0lSpVKtvX/d577ykoKCjb1wsAAAAAyJsodAEAAAAAAAC3UKpUKZUoUUKpqan/x96dx9lYNn4c/57ZF0NIYx+MbexTtqKyjCIiKpIlaoYkEf2ilK3y0IKyJMoeFc0gFaFsIUsztqExwyhLjN2M2ef8/ugxT2fGbuZcZ2Y+79frfv1+93XOuc/33PGYua7vuW/t3LnTdBxj0tLStGPHDklcoQv5V7FixbR69Wr5+vrm2DFHjx6tF154IceOBwAAAADI/yh0AQAAAAAAANdhsVjUrFkzSdK8efPMhjFo2bJlunjxoooXL66aNWuajgPkmoCAAG3evPmO/5y7ublpypQpGjFiRA4lAwAAAAAUFBS6AAAAAAAAgBt46aWXJEkLFizQ6dOnDacx4+OPP5Yk9e3bVy4uLobTALmrUqVK2rlzp0aNGiU3N7dbfn3Tpk0VERGh/v3750I6AAAAAEB+R6ELAAAAAAAAuIGmTZvq3nvvVVJSkmbOnGk6jt2Fh4dr48aNcnFxySy3Afmdu7u7Ro4cqejoaI0aNUrlypW77vNdXV319NNP66efftL69esVEBBgp6QAAAAAgPyGQhcAAAAAAABwAxaLRQMHDpQkTZ06VampqYYT2deVq3M9/fTTKlOmjOE0gH2VK1dOI0eOVGxsrA4ePKhvvvlGw4cPz3x8woQJ2rx5s86dO6dvvvlGrVq1kpMTU+8AAAAAgNvHb5UAAAAAAADATejSpYt8fX117NgxhYaGmo5jNydPntSiRYskKbPUBhRETk5Oqly5sp5++mm98cYbmeN9+vTR/fffL29vb4PpAAAAAAD5CYUuAAAAAAAA4Ca4u7vrxRdflCS9//77SktLM5zIPiZOnKiUlBQ1atRIjRo1Mh0HAAAAAAAg36PQBQAAAAAAANykfv36qXDhwvr99981fvx403Fy3W+//aYPP/xQkjR06FDDaQAAAAAAAAoGCl0AAAAAAADATfL19dXkyZMlSaNGjdKOHTsMJ8o98fHx6t69u9LT09W1a1d17NjRdCQAAAAAAIACgUIXAAAAAAAAcAt69Oihp556SmlpaerevbsuX75sOlKuGDJkiKKjo1W2bFlNnTrVdBwAAAAAAIACg0IXkIXVajUdIV/gPAIAAAAA8iuLxaLp06erVKlS+uOPP/T666+bjpTjvvvuO82YMUOSNHfuXBUtWtRwopvHnETO4DwCAAAAAGAOhS4UeG5ubjb7ycnJhpLkL1nPo7u7u6EkAAAAAADkvOLFi2vOnDmSpKlTp2rFihVmA+Wg48ePKzg4WJI0ePBgtWjRwnCi68s6t5OSkmIoSf6SlJRks8/cDgAAAAAA9kOhCwWep6enzX5iYqKhJPlL1vOY9TwDAAAAAJDXPfLIIxowYIAk6emnn9Yvv/xiONGdO3nypFq0aKFTp06pVq1aeu+990xHuiHmdnIHczsAAAAAAJhDoQsFno+Pj81+XFwcl5TPAadPn7bZL1SokKEkAAAAAADkng8++EBt27ZVUlKS2rVrp40bN5qOdNvi4uLUsmVL/fHHHypXrpyWL18uDw8P07Fu6GpzO7gzVquVuR0AAAAAAAyi0IUCz9/f32b/0qVLOnnypKE0+YPValVUVJTNWOXKlQ2lAQAAAAAg97i7u2vJkiV69NFHdfnyZT366KN58vaLsbGxatq0qfbt26cyZcrol19+UcWKFU3HuilZ53aioqL4st4d+vvvv3Xp0iWbMeZ2AAAAAACwHwpdKPDKlSuX7dumWctIuDUnTpxQfHy8zVjVqlUNpQEAAAAAIHd5eHgoLCxMbdq0UWJiop544gl9/vnnpmPdtPDwcN1///2KiopS+fLl9fPPP2crSTmyrHMO8fHx+vvvvw2lyR+yzo15enqqbNmyhtIAAAAAAFDwUOhCgefk5KQqVarYjFHoujNZz5+Xl5fKlCljKA0AAAAAALnP09NTy5YtU69evZSenq6QkBD17t1bZ86cMR3tmtLT0zVx4kQ1bdpUf//9t+rUqaMtW7bkuS9llS1bVp6enjZjzO3cmaznr0qVKnJyYioZAAAAAAB74bdwQNm/ybl3715DSfKHrOePST8AAAAAQEHg6uqqWbNm6e2335bFYtGcOXMUEBCgRYsWOdwtACMiItS4cWMNHjxYly9fVlBQkDZs2KDSpUubjnbLrvZlPeZ27kzW85fXSn4AAAAAAOR1NCwASTVr1rTZDwsLU0ZGhqE0eV9oaKjNftbzCwAAAABAfmWxWDRmzBht2rRJNWrUUFxcnJ599lm1bdtWR44cMR1Ply9f1tChQ1W/fn3t2LFDRYoU0YwZM7Rq1SoVKVLEdLzblnXuIevcBG5eRkaGwsLCbMaY2wEAAAAAwL4odAGSOnXqZLP/559/asuWLYbS5G3Hjx/XunXrbMaynl8AAAAAAPK7Bx54QOHh4RozZozc3Nz0448/qkaNGho7dqzi4uLsnic5OVlfffWV6tSpo/fff1/p6el66qmntH//foWEhOT5K2tnnXv45ZdfdOLECUNp8rbNmzfrr7/+shljbgcAAAAAAPvK2zM1QA6pU6eOAgICbMYWLVpkKE3e9s0339jcRsLHx0ePPfaYwUQAAAAAAJjh5uamt99+W7t27dKDDz6oy5cva/jw4SpTpoy6dOmiNWvW5PoVwg8cOKAhQ4aobNmy6tq1q2JiYlSmTBktW7ZMixcvVqlSpXL1/e2lbdu28vHxydy3Wq365ptvDCbKu7LOidWoUUO1a9c2lAYAAAAAgIKJQhegf26H8Oyzz9qMffnll0a+MZuXJScn69NPP7UZ69Spkzw9PQ0lAgAAAADAvOrVq2vdunWaO3eu6tevr9TUVH3zzTdq1aqVqlSporFjx+ro0aM59n7x8fGaP3++HnroIQUEBGjChAk6ffq0ypQpoxEjRigyMlLt27fPsfdzBJ6enurYsaPN2Keffqrk5GRDifKmuLg4LVy40Gbs2WeflcViMZQIAAAAAICCyWL996V0gAIsOjpaVapUsRnr0aOH5s2bZyhR3jNmzBiNHDnSZmzlypV69NFHDSUCAAAAAMDxREREaObMmVqwYIEuXryYOV6qVCnVq1dPgYGBmVvFihXl5OSkhIQEFSpUSNI/hS1vb29J/xRwwsPDbbaDBw9mXj3byclJbdu2VUhIiNq0aSMXFxf7f2A7Wblypdq0aWMzNmbMGL399tuGEuU9PXr00IIFC2zGoqOj5e/vbyiR47rW30kAAAAAAHIChS7gX7p06ZLtcvyrV69WUFCQoUR5xx9//KE6deooJSUlc6x+/fraunWrnJ2dDSYDAAAAAMAxJSQkaPHixZo5c6a2bNmiq03TFS5cWPfcc4/c3NwUGRkpSapVq5ZSUlJ04cIFnTx58qrHrlixonr37q3evXurbNmyufo5HEV6eroaNWqknTt3Zo65ublp9+7dqlatmsFkecPq1av1yCOP2Ix17txZX3/9taFEjo1CFwAAAAAgN1HoAv7lxIkTCggI0IULFzLHypUrp19++YVvIl7HmTNn1KpVK4WHh2eOOTs7a/v27QoMDDSYDAAAAACAvCE+Pl67d+9WeHi4IiIiFB4erj179th8cepaqlSpknlFrytX+PL19bVDasfz+++/q0GDBsrIyMgcCwwM1OrVq1W8eHGDyRxbTEyMmjVrZnPrzyJFiujAgQMqWbKkwWSOi0IXAAAAACA3UegCspg+fbr69etnM1a6dGmtWbNGAQEBhlI5rr///lutWrXS3r17bcaHDBmiDz/80FAqAAAAAADyvtTUVEVFRen8+fNKTEzUhQsXlJ6errvuukuenp7y8vJS1apV5ePjYzqqQxkyZIgmTJhgM1arVi2tWbOmwBbdricyMlJBQUE6ceKEzfj06dPVt29fQ6kcH4UuAAAAAEBuotAFZJGRkaGHHnpIv/76q8343XffrSVLlujhhx82lMzx7Nu3T506dVJUVJTNuJ+fn/bt28dEFgAAAAAAsLv4+HjVqlVLR44csRmvWrWqQkNDVbNmTUPJHM/69ev11FNP6fTp0zbjTZo00YYNG+Tk5GQomeOj0AUAAAAAyE38Rg5k4eTkpLCwMNWrV89m/PTp02rWrJm6dOmi2NhYI9kcxenTp9W/f3/VrVs3W5mrXLlyWr16NZNYAAAAAADAiEKFCumnn35S2bJlbcajoqJUt25dvfzyy9kKTAVNbGysOnfurGbNmmU7F4GBgQoLC6PMBQAAAACAQVyhC7iG8+fPq02bNtq6dWu2x9zd3dW3b189/fTTuv/+++Xs7GwgoX1ZrVbt2rVL3377raZMmaLz589ne46/v7/Wrl0rPz8/+wcEAAAAAAD4l9jYWLVs2VKHDh3K9thdd92ll19+WU8++aTq1q0ri8ViIKF9paena8uWLVq8eLE+++wzJScnZ3vO/fffrx9++EF33XWX/QPmMVyhCwAAAACQmyh0Addx6dIltW/fXuvWrbvmc3x9fdWhQwe1atVKlStXlr+/v3x8fOwXMpckJibq0KFDiomJ0fr16xUaGnrdK5MFBARozZo1Kl26tP1CAgAAAAAAXMfx48cVFBSk/fv3X/M5FSpUUKdOnfTwww/L399flSpVkqenpx1T5o5Lly4pJiZG0dHRWr16tZYtW6aTJ09e8/nNmzfX8uXLM0tKuD4KXQAAAACA3EShC7iB1NRUTZ8+XSNHjtS5c+du6jUlSpSQv7+/SpQoIQ8PD7m7uzv0ZeqtVquSk5OVlJSks2fP6tChQzp+/PhNvdbDw0Ovv/66Xn/9dSauAAAAAACAw0lISND48eP1wQcfKCkp6aZeU7p0aVWqVEnFihXLnNtx5Kt4ZWRkZM7tnDp1SocOHVJcXNxNvbZYsWIaPXq0+vbtK1dX11xOmn9Q6AIAAAAA5CYKXcBNOnv2rEaNGqVp06YpPT3ddByH0LVrV40bN07ly5c3HQUAAAAAAOC6/vzzTw0dOlRfffWV6SgOwdnZWf3799fIkSNVrFgx03HyHApdAAAAAIDcRKELuEVRUVH68ssvFRYWpj179piOY3cVK1ZUx44d1bVrV9WvX990HAAAAAAAgFuyY8cOLVq0SGFhYTp8+LDpOHZXu3ZtdezYUd26dVPVqlVNx8mzKHQBAAAAAHIThS7gDkRHRyssLEwrV65UVFSUjh07pvz2V6pkyZLy9/dXy5Yt1alTJ9WpU8ehbzEAAAAAAABwM6xWq3bv3q3Q0FCtXbtW0dHROnnypOlYOcpisahs2bKqUqWKWrdurY4dO6py5cqmY+ULFLoAAAAAALmJQheQg5KSknT48GHFxMTo8OHDio+PV1JSkpKSkhy+6OXh4SF3d3d5e3urQoUK8vf3V6VKlZiMAgAAAAAABUZCQoIOHTqkmJgYxcbGKiEhQcnJyUpKSjId7bosFos8PDzk4eGhQoUKqVKlSvL391eFChXk4eFhOl6+RKELAAAAAJCbKHQBAAAAAAAAAHALKHQBAAAAAHKTk+kAAAAAAAAAAAAAAAAAAIB/UOgCAAAAAAAAAAAAAAAAAAdBoQsAAAAAAAAAAAAAAAAAHASFLgAAAAAAAAAAAAAAAABwEBS6AAAAAAAAAAAAAAAAAMBBUOgCAAAAAAAAAAAAAAAAAAdBoQsAAAAAAAAAAAAAAAAAHASFLgAAAAAAAAAAAAAAAABwEBS6AAAAAAAAAAAAAAAAAMBBUOgCAAAAAAAAAAAAAAAAAAdBoQsAAAAAAAAAAAAAAAAAHASFLgAAAAAAAAAAAAAAAABwEBS6AAAAAAAAAAAAAAAAAMBBUOgCAAAAAAAAAAAAAAAAAAdBoQsAAAAAAAAAAAAAAAAAHASFLgAAAAAAAAAAAAAAAABwEBS6AAAAAAAAAAAAAAAAAMBBUOgCAAAAAAAAAAAAAAAAAAdBoQsAAAAAAAAAAAAAAAAAHASFLgAAAAAAAAAAAAAAAABwEBS6AAAAAAAAAAAAAAAAAMBBuJgOAOQ3GRkZOnr0qGJjY3Xp0iUlJSUpOTlZVqvVdLTrcnd3l7u7u7y9vVWhQgWVL19eLi78TwQAAAAAAAAAcy5cuKBDhw7p5MmTSkpKUlJSktLT003Hui5nZ2d5eHjIw8NDvr6+qlSpkooUKWI6FgAAAIA8hLYGcAdSUlL0888/a9WqVYqKilJMTIwOHz6slJQU09HumLOzs/z8/OTv76/KlSurRYsWat26tQoVKmQ6GgAAAAAAAIB86ODBg1q6dKnCw8MVExOjmJgYnTlzxnSsHFG8eHH5+/vL399fgYGBeuKJJ1SlShXTsQAAAAA4KIvV0S8bBDiYhIQErVy5UqGhoVqxYoUuXrxoOpLdeHh46NFHH1XHjh3Vvn17FS1a1HQkAAAAAAAAwO4SEhIyv/gYHx8vb29vw4nyJqvVql27dik0NFRhYWHau3ev6Uh2VatWLXXs2FGdOnVSvXr1TMcBAAAA4EAodAE3KT09XbNnz9bw4cN16tQp03GMK1SokN588029+uqr8vDwMB0HAAAAAAAAsBsKXXcuMjJSgwcP1qpVq0xHcQitW7fWhAkTFBAQYDoKAAAAAAdAoQu4CevXr9egQYMUERFx06/x8vJSiRIl5OHhITc3Nzk5OeVewDtktVqVkpKipKQknT179pauOlaxYkV98MEH6tSpkywWSy6mBAAAAAAAABwDha7bd/bsWY0aNUrTpk1Tenr6Tb3GYrGoZMmS8vb2lru7u1xcXHI55Z1JS0tTcnKyEhIS9Pfff+tml2GcnZ310ksvadSoUSpWrFgupwQAAADgyCh0AdeRkZGhAQMGaNq0add9XuPGjRUUFKQqVarI399f/v7+8vX1zZMFJ6vVqrNnzyomJiZzW79+vX755ZfrTrA8/vjj+vrrr+Xp6WnHtAAAAAAAAID9Uei6PZs2bVKHDh109uzZaz7H19dXjz/+uOrUqZM511qhQgW5u7vbMWnOSU5OVmxsbOZc6+7du/Xdd9/p5MmT13xNsWLFtHz5cjVp0sSOSQEAAAA4EgpdwDWkpaWpd+/eWrBgwVUff/jhh9W5c2d16NBBZcqUsXM6+zt79qy+++47ffvtt1qxYsVVv1XWrFkzLV++XD4+PgYSAgAAAAAAAPZBoevWrVmzRh06dNDly5ezPVayZEk9++yz6tSpkxo3bixnZ2cDCe0nPT1dW7ZsUVhYmL788surlru8vLy0bNkyBQUFGUgIAAAAwDQKXcBVJCcn69lnn1VoaGi2x2rWrKmJEyeqVatWBpI5hp07d2rQoEHatGlTtscaN26sH374QUWLFjWQDAAAAAAAAMh9FLpuzfLly/X0008rJSXFZtzd3V2vvfaahg0blnk+C5r4+HiNGzdOH374oZKTk20ec3Nz05IlS/T4448bSgcAAADAFApdwFV069ZNCxcutBlzdXXVhAkT9OKLL8rFxcVQMsdhtVq1ePFi9e3bV+fPn7d5rHHjxtq0aVO+/yYdAAAAAAAACiYKXTdv48aNatGihdLS0mzGH330UX322Wfy8/MzlMyxxMbG6sUXX9SqVatsxl1cXPTzzz/rwQcfNJQMAAAAgAkUuoAsvv/+e7Vr185mzMPDQ2FhYWrdurWhVI4rIiJCrVq10unTp23GJ02apIEDBxpKBQAAAAAAAOS8pKQkJSYm6syZM6pSpYok6fDhw7r77rvl5eUlJycnwwkdS3JysurWras//vjDZvyZZ57RvHnz5OrqaiiZY0pNTVWPHj309ddf24xXr15dERERcnd3N5QMAAAAgL1R6AL+JT4+XjVr1tSff/6ZOVaoUCGtWLFCDz/8sMFkjm3//v1q2bKlTpw4kTlWqFAhRUZGqly5cgaTAQAAAAAAALfOarUqNjZW4eHhNtvx48ev+RpPT0/Vrl1bgYGBmVvt2rXl6elpx+SOZfTo0Ro1apTN2PPPP68ZM2Zwdf9rSE9PV0hIiGbPnm0zPnr0aI0YMcJQKgAAAAD2RqEL+JchQ4ZowoQJNmOzZ89Wr169zATKQzZs2JCt9Na+fXstXbpUFovFUCoAAAAAAADg5iQmJmrx4sVasGCBtm/frvPnz9/xMZ2dnVW9enW1bdtWwcHBmVf1KggOHDigunXrKiUlJXOsfv362rp1K2WuG0hPT1ejRo20c+fOzDE3Nzft3r1b1apVM5gMAAAAgL1Q6AL+6+TJkypTpozS09Mzx5o3b661a9dSSLpJISEh+vzzz23Gtm7dqkaNGhlKBAAAAAAAAFzf7t27NXPmTM2fP18XLlzIHHd1dVWtWrVsrrhVo0YNFSpUSMnJyfLx8ZEkXbhwQc7Ozjp69KgiIiJsrugVFxdn817NmzdXSEiIOnbsKA8PD7t+Tnvr1q2bFi5cmLnv7Oys7du3KzAw0GCqvOP3339XgwYNlJGRkTn27LPP6ssvvzSYCgAAAIC9UOgC/mvKlCkaMGBA5r6bm5v27NmjqlWrGkyVt5w7d07Vq1fXqVOnMscGDhyoSZMmmQsFAAAAAAAAZJGSkqL58+drxowZ2rZtW+Z4hQoVFBwcrHbt2ikgIEBubm5XfX1CQoIKFSokSYqPj5e3t3e251itVh0/flybN2/WnDlz9OOPP+rKdHyxYsXUs2dP9e/fX5UrV86FT2hWQkKC7rnnHl2+fDlzbPDgwfroo48Mpsp7st5RwtvbWydPnrzqnzcAAAAA+QuFLuC/HnjgAW3ZsiVzn2873Z6RI0dqzJgxmfslS5bU0aNHuYw6AAAAAAAAHMLmzZsVEhKiyMhISZKLi4ueeOIJhYSEKCgoSE5OTjc8xs0UurL6888/NWvWLH3xxRc6evSopH++VDp8+HANGzbsmuWxvGjRokV69tlnM/ednZ117Ngx+fr6GkyV95w8eVKlS5e2uUrXokWL9MwzzxhMBQAAAMAebvybKVAAxMbG2pS5JNlMOODmde3a1Wb/77//1rp168yEAQAAAAAAAP7r4sWL6t+/v5o2barIyEiVKFFC48aN09GjR7V48WI98sgjN1Xmul3ly5fXqFGjFBsbqxUrVigoKEgpKSkaOXKkAgMDtXnz5lx7b3tbtGiRzX7Lli0pc90GX19ftWzZ0mYs67kFAAAAkD9R6AIkLV682Ga/WLFiatWqlaE0eVv16tUVGBhoM/bNN98YSgMAAAAAAABIy5YtU40aNTRt2jRZrVb17t1bBw4c0NChQ+1eNHJ2dlbbtm31008/aeHChSpRooQiIyPVtGlT9e/fXxcvXrRrnpx28eJFrVy50maML8/evqzn7scff8zzf0YAAAAA3BiFLkBSRESEzX7Hjh3z1SXO7a1z5842+1nPLwAAAAAAAGAPCQkJeuaZZ/TEE0/o2LFj8vf319q1azVr1iwVK1bMaDaLxaKuXbtq//796tWrl6xWq6ZNm6YaNWpo06ZNRrPdicjISKWmpmbuX7mlJW5Px44d5ezsnLmfmpqq/fv3G0wEAAAAwB4odAGSoqKibPazXmEKtybr+YuKipLVajWUBgAAAAAAAAVRXFycWrRooa+//lrOzs4aNmyY9uzZoxYtWpiOZqN48eKaPXu21qxZI39/fx07dkxBQUEKDQ01He22ZJ1r9ff3V5EiRQylyfuKFCkif39/m7Gs5xgAAABA/kOhCwWe1WrVH3/8YTNWtWpVQ2nyh6zn7/z584qLizOUBgAAAAAAAAXN4cOH1aRJE23btk3FihXThg0b9J///Eeenp6mo11Ty5YttXv3bj3xxBNKTk7WU089pWnTppmOdcuYa815Wc9h1nMMAAAAIP+h0IUC7+TJk7p06ZLNGJMMd6Z8+fJyd3e3GeNbYwAAAAAAALCHI0eOqFmzZjp48KD8/Pz066+/6oEHHjAd66Z4eXlpyZIlevHFF2W1WtW/f39NmTLFdKxbknUekLnWO5f1HDLXCgAAAOR/FLpQ4B08eNBm38PDQ+XKlTOUJn9wdnZW5cqVbcaYZAAAAAAAAEBu++uvv9S8eXP9+eefqlq1qjZv3qzq1aubjnVLnJ2dNW3aNL3xxhuSpAEDBmj69OmGU928rPOt1apVM5Qk/8h6DplrBQAAAPI/Cl0o8M6dO2ezX7JkSTk58VfjTpUqVcpm//z582aCAAAAAAAAoEBITExU69atdfjwYfn7++vnn39W6dKlTce6LRaLRe+9957+7//+T5LUr18/fffdd4ZT3Zys861Z5wlx65hrBQAAAAoeWiso8JKSkmz2vby8DCXJXzw9PW32s55nAAAAAAAAICcNHTpUOKELwgAAolZJREFUkZGRKlmypH7++WeVKVPGdKQ7YrFYNH78ePXr10+SFBwcrFOnThlOdWNZ5wGzzhPi1jHXCgAAABQ8FLpQ4CUnJ9vsu7u7G0qSv3h4eNjsM8kAAAAAAACA3PLTTz9p8uTJkqTZs2erfPnyhhPlDIvFogkTJqh27do6deqUgoODZbVaTce6LuZbcx5zrQAAAEDBQ6ELBV7WCRBut5gzsp5HR59oAgAAAAAAQN505swZ9erVS5LUv39/tW7d2mygHObh4aEFCxbIzc1N3333nb744gvTka6L+dacx1wrAAAAUPDwmxQAAAAAAAAAIE+yWq168cUXdeLECVWvXl3vv/++6Ui5ok6dOnrvvfckSYMGDVJ0dLThRAAAAACA3EShCwAAAAAAAACQJy1atEhLliyRi4uLFixYIC8vL9ORcs3gwYPVrFkzJSQkqGfPnlylCQAAAADyMQpdAAAAAAAAAIA8JyMjQ6NHj5Ykvf3227rvvvsMJ8pdTk5Omjt3rgoVKqQtW7Zo9erVpiMBAAAAAHIJhS4AAAAAAAAAQJ6zatUqRUVFqXDhwnr11VdNx7GL8uXL6/nnn5ckffzxx4bTAAAAAAByi4vpAAAAAAAAAAAA3KorhaYXXnhBPj4+htPYz4ABAzR58mT98MMPioqKUtWqVU1HAoy5ePGidu/erRMnTigtLU1eXl6qXr26KleuLGdnZ9PxAAAAgNtGoQsAAAAAAAAAkKccOHBAq1atksVi0csvv2w6jl1VrlxZbdu21YoVKzR58mRNnjzZdCTAro4dO6ZZs2Zp4cKFOnDgwFWf4+3trYcffljBwcFq166dXF1d7ZwSAAAAuDPcchEAAAAAAAAAkKd88sknkqT27durUqVKhtPY38CBAyVJc+bM0YULFwynAezjwoULeumll1S+fHmNGDHimmUuSUpISNAPP/ygTp06qVKlSlq6dKn9ggIAAAA5gEIXAAAAAAAAACDPuHDhgubOnSvpf8WmgqZly5aqWbOm4uPjNXv2bNNxgFy3du1a1ahRQ59++qkyMjJu6bVHjx5Vx44d9dRTT+nixYu5lBAAAADIWRS6AAAAAAAAAAB5xqZNm3T58mVVrlxZzZo1Mx3HCIvFopCQEEnSqlWrDKcBctfixYvVunVrHT9+/I6O8+2336pZs2Y6c+ZMDiUDAAAAcg+FLklhYWFq1aqVihcvLg8PD1WsWFFdu3bVX3/9ZToaCpjY2FhZLBabzdXVVWXKlFHnzp21Y8cOSdKkSZNksVjUu3fvax5r3bp1cnJyUoMGDZSWlmavjwAAAAAAAADkqm3btkmSHnjgAVksFsNpzHnggQck/XM+rFar4TSO5WbnWa+4dOmSKlSoIA8PD0VGRl71mOPHj5fFYlFwcLA9PgL+a82aNeratWuOzXGHh4erdevWSk5OzpHjAQAAALnFxXQAk6xWq1588UXNmDFD/v7+euaZZ+Tj46Pjx49r/fr1OnLkiMqVK2c6Jgogf39/de/eXZKUkJCgnTt3avHixVq6dKnWrFmjgQMHatmyZZozZ446deqkxx9/3Ob18fHx6t27t9zd3TVv3jy5uBTov+oAAAAAAADIR7Zv3y5JatiwoeEkZtWpU0dubm46e/asDh8+rEqVKpmO5HBuNM/60EMPSZJ8fHw0a9YsBQUF6bnnntOWLVts5lT37NmjESNGyM/PTxMnTjTyWQqiM2fOqGfPnkpPT8/R4+7YsUMjRozQ+PHjc/S4AAAAQE4q0C2PTz75RDNmzNBLL72kTz75RM7OzjaPc1UjmFK5cmWNGjXKZmzcuHF644039Pbbb2v9+vWaM2eO6tSpo5CQEO3bt0/FixfPfO6QIUMUGxuriRMnKiAgwM7pAQAAAAAAgNxhtVozr9DVoEEDw2nMcnd3V926dbV9+3Zt27aNQtdV3Mw86xUtWrRQ//79NWXKFI0dO1YjRoyQJKWmpqpnz55KTU3V7Nmz5ePjY8+PUKANHjxYJ06cyJVjf/DBB3rqqacK/P+OAAAAwHEV2FsuJiYmavTo0apUqZI+/vjjbGUuSVzVCA7lhRdekCTt3LlTkuTn56dJkybp5MmT6tevX+bzVq1apRkzZqh58+YaOHCgkawAAAAAAABAboiNjdWZM2fk6uqqunXrmo5j3JWrlF0pueHGss6z/tv48eNVuXJlvfvuu4qIiJAkjRkzRhERERowYICaN29uz6gF2tGjR/Xll1/m2vGtVqs+/PDDXDs+AAAAcKcKbKHrp59+0rlz5/TEE08oPT1doaGhGjdunKZPn67o6GjT8YBr+nfRsHfv3mrfvr0WL16sRYsW6fz58woODlbhwoU1e/ZsWSwWg0kBAAAAAACAnHWluFSvXj25u7sbTmMeha7bd7UvdHt5eWnOnDlKT09Xz549tWnTJv3nP/9RtWrVNG7cOAMpC65PP/00x2+1mNW3336ro0eP5up7AAAAALerwF6C6sq3b5ydnVWnTh1FRUVlPubk5KRXX32Vb2fAoXz++eeSpKZNm9qMz5gxQ5s3b1b//v310EMP6ejRo5o1a5b8/PxMxAQAAAAAAAByzf79+yX9U+jC/85DZGSk2SB5yLXmWa9o0qSJBg8erA8//FBBQUGSpLlz58rT09NuGSH9+OOPuf4e6enpWrNmjXr16pXr7wUAAADcqgJb6Dp16pQkacKECbr33nu1bds2BQQEKDw8XH369NFHH30kf39/m1vZAfYSHR2tUaNGSZISEhK0c+dO/fLLL/L19dUHH3xg81xfX1999tlnevLJJ7Vs2TK1b99evXv3NpAaAAAAAAAAyF0JCQmSpCJFihhO4hiunIfLly8bTuKYbmWe9d9GjBihqVOnKjExUS+//LIaNWpkp8SQpMTERO3evdsu77Vt2zYKXQAAAHBIBbbQlZGRIUlyc3PT0qVLVbp0aUnSgw8+qMWLF6tu3br66KOP8k2hy2q18kv9NSQnJ5uOkE1MTIxGjx5tM1ayZElt3LhRlStXzvb8Tp06qWHDhtq2bZvDXvo7JSUlc8INAAAAAAAAuFVWq1VnzpyR9M9dFkzONf37vU3muDLPnZycrIsXL8rZ2dlYFkd0q/OsV3z44YdKTEyUJK1cuVKXL1+Wl5dXrma9Vfl5rnXv3r25frvFK3bv3p2vzyUAAMh/vLy8ZLFYTMeAHRTYQteVby7Vr18/s8x1Ra1atVSpUiVFR0fr/PnzuuuuuwwkzFmXL19WoUKFTMfATXr00Ue1cuVKSVJcXJzmzp2roUOHqn379tq2bdtV/1teueS3o176+/3339f7779vOgYAAAAAAADyAUeaa/L19TUdQRJXLbua25ln3blzp8aOHatq1arp8ccf14cffqg33nhDH3/8sb3jX9PFixeZ788hv/76K+cSAADkKfHx8fL29jYdA3bgZDqAKdWqVZOka5a1roxf+RYOYEqJEiX02muv6c0339T+/fv11ltvmY4EAAAAAAAAAHnKzcyzJicnq2fPnrJarZo7d67Gjh2rOnXqaPLkydqwYYOB1AAAAAAKqgJ7ha7mzZtLkvbv35/tsdTUVEVHR8vb21slSpSwd7Rc4eXlpfj4eNMxHNLChQvVp08f0zFu6M0339SsWbM0bdo0DRo0SBUqVDAd6Za8/vrrGjFihOkYAAAAAAAAyKOsVqv+7//+T9OnT9egQYP07rvvGsuSkJCQeWWukydPGvuG/NGjR1W9enW5uLjo3LlzDnHrldKlS+vixYumY1zT9eZZ33rrLUVGRuqNN95Qo0aNJElz585Vw4YN9fzzz2v37t0OcevFwoUL6/jx46Zj5JozZ87Iz8/PLu/VpUsXffHFF3Z5LwAAgJzgCD+Pwj4KbKHL399fjzzyiH766Sd9/vnnCg4Oznxs3LhxOn/+vLp37y4Xl/xxiiwWC5fduwZ3d3fTEW6Kp6enhg4dqoEDB+qdd97Jc79kurm58WcQAAAAAAAAd6R48eKSpLS0NIeZa/L29jaexcvLi9vG3aRrzbP++uuvmjBhgmrXrq1Ro0ZlPr9evXoaPny4Ro0apaFDh2ry5MmGktsy/WcuN3l7e6tSpUo6dOhQrr/X/fffn6/PJQAAAPKuAnvLRUmaNm2a7rnnHoWEhKhdu3Z67bXX1LJlS40YMUJ+fn764IMPTEcEbPTp00elS5fWvHnzFBMTYzoOAAAAAAAAYFdXrtpztTsvFERXzkP58uUNJ8lbss6zJiQkqFevXnJ2dtbcuXPl5uZm8/zhw4crMDBQU6dO1fr16w2lLlgefvhhu7zPQw89ZJf3AQAAAG5VgS50+fv7a8eOHerVq5d27typTz75RAcPHlT//v21bds2lSxZ0nREwIaHh4feeOMNpaWlafTo0abjAAAAAAAAAHbVoEEDSdKOHTuUkZFhOI1527dvl6TM2wPi5mSdZ3399dcVHR2tt956S4GBgdme7+Liorlz58rV1VW9e/dWQkKCgdQFS79+/XL9PRo3bnzV/94AAACAI8gf9xO8A+XKldPs2bNNxwAkSRUqVJDVar3uc15++WW9/PLL2cbXrVuXS6kAAAAAAAAAx1CzZk15enrqwoULOnjwoKpVq2Y6klHbtm2T9L+iG/5xO/OsU6dOve7za9eureTk5BzJhxtr0KCBHnjgAW3evDnX3mPQoEG5dmwAAADgThXoK3QBAAAAAAAAAPIOV1fXzCvqXCkzFVQZGRmZV+hq2LCh4TRAzps2bVq221/mlEcffVSdO3fOlWMDAAAAOYFCFwAAAAAAAAAgz7hSXrpSZiqooqOjdeHCBXl4eKhWrVqm4wA5rm7dunr33Xdz/LjFihXTrFmzZLFYcvzYAAAAQE6h0AUAAAAAAAAAyDOu3F7wt99+M5zErCufPzAwUK6urobTALnjtddeU79+/XLseD4+Pvrhhx9UunTpHDsmAAAAkBsodAEAAAAAAAAA8owmTZpI+ueWiwcPHjScxpyFCxdKkh588EHDSYDcY7FYNHXqVL311lt3fKwyZcpow4YNatSoUQ4kAwAAAHIXhS4AAAAAAAAAQJ7h5+enxx57TJI0efJkw2nMOHDggFauXCmLxaI+ffqYjgPkKovFonfeeUebNm1SQEDAbb3+pZde0r59+1SvXr2cDwgAAADkAgpdAAAAAAAAAIA8ZdCgQZKk2bNn68KFC2bDGHClyPb444/L39/fcBrAPpo0aaLw8HDNnz//pq5MV7hwYfXr10/h4eGaOnWqihQpYoeUAAAAQM6g0AUAAAAAAAAAyFOCgoJUo0YNxcfHa/bs2abj2NX58+c1d+5cSdLAgQMNpwHsy93dXd27d9eGDRt05MgRhYaGaujQoZmPh4SEaPLkydq4caNOnDihadOmqW7dugYTAwAAALeHQhcAAAAAAAAAIE+xWCx65ZVXJP1ztar09HTDiezniy++UEJCgmrVqqXmzZubjgMYU758eXXs2FFvv/125tjEiRP18ssvq2nTpvLy8jKYDgAAALgzFLoAAAAAAAAAAHlOjx49VLRoUR06dEihoaGm49hFYmJi5u0WBw4cKIvFYjgRAAAAACA3UOgCAAAAAAAAAOQ5Xl5e6t+/vyRpwIABiouLM5wo9w0bNkxHjhxRyZIl1a1bN9NxAAAAAAC5hEIXAAAAAAAAACBPGj58uGrWrKmTJ08qJCREVqvVdKRcs3r1an3yySeSpFmzZsnT09NwIgAAAABAbqHQBQAAAAAAAADIkzw8PPTll1/K1dVVy5Yt06xZs0xHyhVnz55Vr169JEkvvfSS2rRpYzYQAAAAACBXUegCssjP3+KzJ84jAAAAAAAA7KFu3bp69913JUkDBw5UTEyM4UQ5y2q1ql+/fjp+/LiqVaumDz74wHSkW8I84Z3jHAIAAAAFD4UuFHhubm42+ykpKYaS5C/Jyck2++7u7oaSAAAAAAAAIL8bMmSIHnroISUkJKhHjx75ao5v/vz5+uabb+Ti4qIFCxbIy8vLdKTrYr415zHXCgAAABQ8FLpQ4Hl4eNjsJyYmGkqSvyQlJdnsZz3PAAAAAAAAQE5xdnbWvHnzVLhwYW3ZskXPPPOMUlNTTce6YytWrFBwcLAkacSIEapfv77hRDeWdR4w6zwhbh1zrQAAAEDBQ6ELBV6hQoVs9s+cOcMlrHPAmTNnbPa9vb0NJQEAAAAAAEBB4Ofnp8WLF8vd3V1hYWHq1q2b0tLSTMe6bStXrtSTTz6p1NRUdenSRW+88YbpSDflavOtuDPMtQIAAAAFD4UuFHgVK1a02T9//jyTDHfIarXq4MGDNmOVKlUylAYAAAAAAAAFxSOPPKLQ0FC5urpq8eLFevLJJ3X58mXTsW7ZkiVL1KFDB6WkpOjJJ5/UggUL5OLiYjrWTck635p1nhC3jrlWAAAAoOCh0IUCr0KFCnJ1dbUZ++OPPwylyR9OnTqlCxcu2IxVq1bNUBoAAAAAAAAUJI899pi+/fZbubu7a/ny5QoKCspTX+CcPHmyOnfunFnmWrRoUZ4pc0nZ5wGZa71zWc8hc60AAABA/kehCwWes7OzKleubDMWFRVlKE3+kPX8ubu7q1y5cobSAAAAAAAAoKB5/PHHtWbNGt11113asmWLGjZsqLVr15qOdV1nzpxRr1699Morr8hqteqll17S119/ne3LqI6uatWqNvvMtd65rOcw6zkGAAAAkP9Q6AKU/RfgyMhIQ0nyh6znr3LlynJ2djaUBgAAAAAAAAVR06ZN9euvv8rPz0+HDh1SUFCQevfu7XBX67JarVq4cKECAgI0d+5cWSwWvffee5oyZUqenFO7WqErLS3NUJq8LzU1lUIXAAAAUABR6AIk1ahRw2Z/2bJlslqthtLkfcuWLbPZDwgIMJQEAAAAAAAABVmNGjW0e/du9e/fXxaLRXPmzFFAQIAWLVrkEPN/sbGxatu2rbp166a4uDjVrFlTv/76q958801ZLBbT8W5L1rnWhIQEh786miNbu3atLl++bDPGfCsAAACQ/1HoAiR16NDBZv/gwYP6/fffDaXJ206fPq3Vq1fbjD3xxBNmwgAAAAAAAKDAK1y4sKZMmaJNmzapRo0aiouL07PPPqu2bdsqPDzcSKbz58/r/fffV82aNfXjjz/Kzc1NY8aM0e+//67777/fSKacUqpUKTVo0MBmbNGiRYbS5H1Zz13Dhg1VqlQpQ2kAAAAA2AuFLkD//BJcqVIlmzEmGW7PkiVLbC6h7unpma0wBwAAAAAAANjbAw88oPDwcI0ZM0Zubm768ccfde+996p+/fr67LPPdPHixVx9f6vVqk2bNum5555T6dKlNXToUF2+fFkPPvigdu3apbfffltubm65msFeunbtarMfGhqqxMREQ2nyrsTERIWGhtqMZT23AAAAAPInCl2AJIvFku0X4fnz5+f6JE5+k56ers8++8xmrH379ipUqJChRAAAAAAAAMD/uLm56e2339auXbvUuXNnubq6aufOnXrxxRdVunRpBQcH67fffsvR2zGeOXNGEydOVM2aNfXggw9q3rx5SkxMVM2aNfXFF19o3bp1ql69eo69nyPo0qWLzS0jL126pC+//NJgorxpwYIFio+Pz9y3WCzq0qWLwUQAAAAA7MVizcnfTIE8bN++fapVq5bN2Msvv6zJkycbSpT3TJo0Sa+++qrN2NKlS7lCFwAAAAAAABxSXFyc5s2bp5kzZ+qPP/7IHL/77rsVGBhos1WpUkVOTv98RzohISHzS4zx8fHy9vaW9E95Kzw83GaLiopSRkaGJMnLy0tdunRRSEiIGjdubFN6ym9atGihX375JXO/WLFiOnDggEqUKGEwVd4RFxen6tWr6+zZs5ljLVq00Nq1aw2mckzX+vsIAAAA5GUUuoB/adOmjVauXJm5b7FYtGXLFjVq1Mhgqrzhzz//VI0aNZSQkJA5FhAQoIiIiHxzqXgAAAAAAADkT1arVRs3btTMmTO1ZMkSJSUlZXuOt7e3qlevrkKFCsnFxSWzWPPwww8rNTVVf/31l/7666+rHj8wMFAhISF69tlnVaRIkVz9LI7ihx9+UNu2bW3GevTooXnz5hlKlLf06NFDCxYssBn7/vvv9dhjjxlK5LgodAEAACA/otAF/Mvhw4dVs2ZNJSYmZo5Vq1ZN69atU8mSJQ0mc2wJCQl67LHHtGHDBpvxjRs3qmnTpoZSAQAAAAAAALcuMTFRe/fuVXh4uCIiIhQeHq5du3bZzBlej7+/f+ZVverVq6fAwECVKlUql1M7ps6dO2vx4sU2Y/PmzVOPHj0MJcob5s2bp+eee85mrHPnzvr6668NJXJsFLoAAACQH1HoArJ4//33NXToUJuxqlWras2aNSpXrpyhVI7rwoULatu2rX799Veb8ZCQEM2YMcNQKgAAAAAAACDnpKenKyoqStHR0UpKStLly5d18eJFubq6qnDhwvL09NTdd9+tOnXqFJgrcN2MEydOKCAgQBcuXMgcs1gsmj59uvr06WMwmeOaMWOGXnzxRf176aZIkSI6cOAAXzq+BgpdAAAAyI8odAFZpKamqkGDBtq1a5fNuJ+fn1asWKFatWoZSuZ4jh49qo4dO2rHjh024/fcc48OHDigokWLGkoGAAAAAAAAwBFMnz5d/fr1yzY+btw4vfbaa3J2djaQyvGkp6frww8/1LBhw7I9Nn36dPXt29dAqryBQhcAAADyIyfTAQBH4+rqqmXLlsnf399m/MiRI6pXr55eeeUVnT171lA6x3D58mWNGTNG1apVy1bmKlasmH744QfKXAAAAAAAAADUt29fvfrqq9nGhw0bpgYNGmj9+vUGUjmW9evXq379+lctcw0ePJirmQEAAAAFEFfoAq7h+PHjCgoK0v79+7M9VrRoUb322mt6+umnVaVKFQPpzDh27JjCwsL0/vvv66+//sr2uK+vr9asWcNVzAAAAAAAAABkslqtGjVqlMaMGXPVxzt16qSQkBC1aNFCbm5udk5nRkpKin7++WfNmDFDYWFhV33OyJEjNXLkSFksFjuny1u4QhcAAADyIwpdwHXExcXpkUceUURExDWfU6tWLXXs2FGtWrVS5cqVVbJkyXzxC7bVatWZM2cUExOj9evXKzQ0VL/99ts1n1+uXDmtXbu2QBXcAAAAAAAAANy8999/X0OHDr3m40WKFFHbtm3VoUMH1alTRxUrVpS7u7sdE+ae5ORkHT58WLt379ayZcu0YsUKXbx48ZrPf//99/V///d/dkyYd1HoAgAAQH5EoQu4gfj4eI0fP14ffvihkpKSbvh8Ly8vVapUSf7+/ipRooQ8PDzk7u4uJyfHvcOp1WpVcnKykpKSdO7cOcXExCgmJua6EwpXODk5KSQkRGPGjNE999xjh7QAAAAAAAAA8qrVq1fr1Vdf1b59+274XIvForJly8rf319+fn7y8vKSu7u7XFxcHPZLtVarVWlpaUpOTtbly5d15MgRxcTE6OjRo7qZ5ZiaNWtq4sSJatWqlR3S5g8UugAAAJAfUegCbtKRI0f0+uuv65tvvjEdxWE0b95ckyZNUp06dUxHAQAAAAAAAJBHpKWlacaMGRoxYoTOnDljOo5DKF68uMaMGaM+ffrIxcXFdJw8hUIXAAAA8iMKXcAt2rJli+bOnaulS5fq5MmTpuPYXZEiRdSuXTt169ZNrVu3dthvwgEAAAAAAABwbOfOndPMmTMVFhamrVu3mo5jxP3336+OHTsqODhYRYsWNR0nT6LQBQAAgPyIQhdwm9LT07V161aFhYVp5cqVio6OVnJysulYOc7FxUUVKlRQy5Yt1alTJzVr1kxubm6mYwEAAAAAAADIR44fP65ly5YpLCxMERERiouLMx0pV5QoUUL16tVTx44d1aFDB5UuXdp0pDyPQhcAAADyIwpdQA7JyMjQsWPHFBMTo5iYGB0+fFjx8fFKSkpSUlKSHP2vmoeHh9zd3eXt7a0KFSrI399f/v7+KleuHJf4BgAAAAAAAGBXFy9e1KFDhzLnW//++28lJycrMTFR6enppuNdl7Ozszw9PeXu7q6SJUtmzrVWqlRJhQsXNh0v36HQBQAAgPyIQhcAAAAAAAAAAADyJApdAAAAyI+cTAcAAAAAAAAAAAAAAAAAAPyDQhcAAAAAAAAAAAAAAAAAOAgKXQAAAAAAAAAAAAAAAADgICh0AQAAAAAAAAAAAAAAAICDoNAFAAAAAAAAAAAAAAAAAA6CQhcAAAAAAAAAAAAAAAAAOAgKXQAAAAAAAAAAAAAAAADgICh0AQAAAAAAAAAAAAAAAICDoNAFAAAAAAAAAAAAAAAAAA6CQhcAAAAAAAAAAAAAAAAAOAgKXQAAAAAAAAAAAAAAAADgICh0AQAAAAAAAAAAAAAAAICDoNAFAAAAAAAAAAAAAAAAAA6CQhcAAAAAAAAAAAAAAAAAOAgKXQAAAAAAAAAAAAAAAADgICh0AQAAAAAAAAAAAAAAAICDoNAFAAAAAAAAAAAAAAAAAA6CQhcAAAAAAAAAAAAAAAAAOAgKXQAAAAAAAAAAAAAAAADgICh0AQAAAAAAAAAAAAAAAICDoNAFAAAAAAAAAAAAAAAAAA7CxXQAID9KSkrSkSNHdOnSJSUlJSk5OVlWq9V0rOtyd3eXu7u7vL295efnp0KFCpmOBAAAAAAAAAAAHAjrHwAAAPZBoQu4A1arVbt27dKqVasUFRWl6OhoxcTE6NixY6aj3TFfX1/5+/vL399flStXVosWLXT//ffL2dnZdDQAAAAAAAAAAJCLWP8AAAAwy2J19No84GDS09O1ZcsWhYWFKTQ0VLGxsaYj2Y2vr686dOigTp06qXnz5nJzczMdCQAAAAAAAABQgCUkJGRecSk+Pl7e3t6GE+VdrH+w/gEAABwHhS7gJlmtVq1YsUJDhgzRwYMHTccxrmTJknrvvffUq1cvOTk5mY4DAAAAAAAAACiAKHTdOdY/bLH+AQAAHAGFLuAm7N27V4MHD9bq1atv6XUeHh7y8PCQm5ubQ//Qb7ValZKSoqSkJCUmJt7Sa++9915NmjRJDz74YC6lAwAAAAAAAADg6ih03RnWP66N9Q8AAGAShS7gOqxWq9555x2NHj1aGRkZ13xexYoVFRQUpCpVqmTed71SpUry8fGxY9qckZiYqMOHDysmJiZzW79+vfbs2XPd1wUHB+vTTz+Vi4uLnZICAAAAAAAAAAo6Cl23h/UP1j8AAIBjo9AFXIPVatWQIUM0ceLEqz4eEBCgp59+Wp06dVKdOnVksVjsnNC+oqOjFRYWpiVLlmjbtm1XfU6nTp20aNEi7i0PAAAAAAAAALALCl23jvUPW6x/AAAAR0ShC7iKjIwM9evXTzNmzMj2WJkyZTR+/Hh17drVoS8jnJtWrlypwYMHa//+/dkea9Omjb799lt5enoaSAYAAAAAAAAAKEgodN0a1j+uj/UPAADgKArmT2PADQwaNCjbLzMWi0VvvfWW/vjjD3Xr1q3A/jIjSa1bt9auXbv0ySefyMPDw+axH3/8UU8++aToigIAAAAAAAAA4FhY/7g+1j8AAICj4ApdQBYbN27UQw89ZDPm7OysuXPnqlu3boZSOa5169apXbt2SkhIsBmfPXu2evXqZSYUAAAAAAAAAKBAuHTpkgoXLixJunDhQub/j+xY/7g1rH8AAACTKHQB/5KcnKx69erpwIEDmWOurq76+uuv1bFjR4PJHNvWrVvVunVrXbhwIXOsWLFiOnDggEqUKGEwGQAAAAAAAAAgr7Narfrzzz8VERGh8PBwhYeHa9euXYqLi1NiYqLNFZPc3Nzk6ekpf39/BQYGZm516tTJvDVjQcT6x+1h/QMAAJhCoQv4lzFjxmjkyJE2Y5MmTdLAgQMNJco7vv/+e7Vr185mrEePHpo3b56hRAAAAAAAAACAvOr06dOaN2+evv/+e0VEROjs2bN3dDyLxaIqVaqoYcOG6tGjh4KCggrUrQVZ/7h9rH8AAAATKHQB/3Xu3DmVKlVKycnJmWP169fX1q1b5ezsbDBZ3tG5c2ctXrzYZmzXrl2qU6eOoUQAAAAAAAAAgLwiIyND69at08yZMxUaGqqUlJTMx1xcXFSzZk0FBgaqXr16CgwMVNmyZWW1WlW5cmVJUmxsrJydnXXp0iVFRkbaXNHr+PHjNu9VoUIFBQcHq3fv3ipdurRdP6e9sf5x51j/AAAA9kahC/ivzz//XCEhIZn7zs7O2r59uwIDAw2myltOnDihgIAAm0sPDx06VOPGjTOYCgAAAAAAAADgyOLi4jRr1ix9/vnnio6Ozhy/99571atXLzVp0kQ1a9aUu7t7ttcmJCRk3koxPj5e3t7eV32PkydPKiIiQitWrND8+fMz57GdnZ3Vtm1b9enTR23atMmXV+1i/ePOsf4BAADsLf/9VArcpkWLFtnsd+jQgV9mblGpUqXUt29fm7GvvvpKGRkZhhIBAAAAAAAAABxVRkaGZsyYoSpVqmjYsGGKjo6Wj4+PXnzxRe3cuVM7d+7UgAEDdO+99161zHUrfH199eijj2ry5Mk6fvy45s6dq6ZNmyo9PV3Lly9Xu3bt1Lx5cx04cCCHPp3jYP3jzrH+AQAA7I1CFyDp+PHj+uWXX2zGnn32WUNp8ras5+3IkSPasmWLoTQAAAAAAAAAAEd04MABNWvWTH379tWFCxdUr149ffHFFzpx4oQ+/fRT3Xvvvbn23l5eXurZs6c2btyoyMhIvfrqq/L29taGDRtUt25dvfPOOza3e8zLWP/IOax/AAAAe6LQBUhasmSJ/n33UR8fHz322GMGE+VdderUUUBAgM3YV199ZSgNAAAAAAAAAMCRpKSkaMyYMapbt642btwob29vTZo0STt27NDzzz9/zVsm5paAgABNmDBB+/btU5s2bZSSkqIRI0bo3nvvzRdlHdY/cg7rHwAAwJ4odAGSduzYYbPfoUMHeXp6GkqTt1ksFnXp0sVmbOfOnYbSAAAAAAAAAAAcxZ49exQYGKiRI0cqJSVFjz32mPbt26eBAwfK2dnZaDY/Pz99//33WrhwoUqUKKF9+/apSZMmGjhwoFJTU41muxOsf+Qc1j8AAIA9UegCJEVFRdns169f31CS/CHr+ct6fgEAAAAAAAAABcu6devUtGlTRUZGqkSJElq4cKFWrFghPz8/09EyWSwWde3aVfv371evXr1ktVr1ySefqH379oqPjzcd77aw/pGzWP8AAAD2QqELBZ7VatUff/xhM1a1alVDafKHrOfvzJkzOnPmjKE0AAAAAAAAAACTvvnmGz366KO6ePGiHnzwQUVGRqpr166yWCymo11V8eLFNXv2bC1dulSenp5auXKlmjVrplOnTpmOdktY/8h5rH8AAAB7odCFAu/06dM6f/68zVi1atXMhMknKlasKBcXF5sxvqUCAAAAAAAAAAXPwoUL1bVrV6WkpOjJJ5/UTz/9pLvvvtt0rJvSoUMH/fLLLypevLh27typFi1aKC4uznSsm8b6R85j/QMAANgLhS4UeFl/0HZ1dXWoSzznRS4uLvL397cZ4xcaAAAAAAAAAChYFi9erB49eigjI0PBwcH6+uuv5eHhYTrWLWnUqJF+/fVXlSpVSvv27VOrVq109uxZ07FuCusfOY/1DwAAYC8UulDgZf3Fq3Tp0nJ2djaUJv8oW7aszX5e+QUXAAAAAAAAAHDn1q9fr65duyojI0O9e/fWZ599lmfn3qtVq6ZffvlFvr6+2rVrl9q2bavU1FTTsW6I9Y/cwfoHAACwBwpdKPCSkpJs9r28vAwlyV88PT1t9rOeZwAAAAAAAABA/nThwgX17NlT6enp6tKli2bOnCknp7y9JFWtWjX9/PPPuuuuu7R161a9++67piPdEOsfuYP1DwAAYA95+6dnIAdk/UE7r13u2VFlPY+JiYmGkgAAAAAAAAAA7GnAgAH6888/ValSJc2cOTPfXBWqRo0a+vTTTyVJ7733nrZu3Wo40fWx/pE7WP8AAAD2QKELBZ7VarXZz+vfEnIUWX9Bz3qeAQAAAAAAAAD5z+LFizV//nw5OTlp/vz58vHxMR0pRz3zzDN69tlnlZ6eru7duys+Pt50pGti/SN3sP4BAADsgZ/cAAAAAAAAAAAAcMeOHTumvn37SpLeeOMNPfDAA4YT5Y6pU6eqXLlyiomJ0eDBg03HAQAAQD5EoQsAAAAAAAAAAAB3xGq16vnnn9e5c+d03333aeTIkaYj5Zq77rpLc+fOlcVi0cyZM7VixQrTkQAAAJDPUOgCAAAAAAAAAADAHdm0aZN++uknubu7a8GCBXJ1dTUdKVc1b95cr776qiTp7bff5rZ7AAAAyFEUugAAAAAAAAAAAHBHPv74Y0lSjx49VL16dcNp7OPNN9+Up6enIiIitHHjRtNxAAAAkI9Q6AIAAAAAAAAAAMBtO3LkiMLCwiRJr7zyiuE09lO8eHF1795d0v8KbUBBFh8fr+3bt+vnn3/W+vXrtW/fPqWlpZmOBQBAnkShCwAAAAAAAAAAALdt6tSpysjIUIsWLVS7dm3TcezqSoFt6dKlio2NNRsGMGDfvn0aNGiQqlevrsKFC6thw4Zq2bKlmjVrplq1asnHx0eNGzfWRx99pLi4ONNxAQDIMyh0AQAAAAAAAAAA4LYkJCRo5syZkqRBgwaZDWNArVq1FBQUpIyMDE2dOtV0HMBu9u/frxYtWqhWrVr6+OOP9ccff8hqtWZ7XlJSkn777Te99tprKlOmjPr3768LFy4YSAwAQN5CoQsAAAAAAAAAAAC3ZcGCBTp//rz8/f3Vtm1b03GMGDhwoCTp888/V0JCguE0QO7KyMjQe++9p3r16umXX365pdempqZq2rRpqlGjhlatWpVLCQEAyB8odAEAAAAAAAAAAOC2rFixQpLUp08fOTkVzGWnxx57TOXKldP58+e1efNm03GAXJOenq5evXrprbfeUkpKym0f5/jx42rbtq3mzp2bg+kAAMhfCuZP1v81Z84cWSyW624tW7Y0HRMFSGxsbLY/g66uripTpow6d+6sHTt2SJImTZoki8Wi3r17X/NY69atk5OTkxo0aKC0tDR7fQQAAAAAAAAAQAFhtVq1bds2SdKDDz5oOI05Tk5OatKkiSRlng/8z82ufVxx6dIlVahQQR4eHoqMjLzqMcePHy+LxaLg4GB7fAT8V79+/TR//vwcOVZ6erp69+6tb7/9NkeOBwBAfuNiOoBJ9erV08iRI6/62JIlS7Rv3z49+uijdk4FSP7+/urevbskKSEhQTt37tTixYu1dOlSrVmzRgMHDtSyZcs0Z84cderUSY8//rjN6+Pj49W7d2+5u7tr3rx5cnEp0H/VAQAAAAAAAAC54M8//9SpU6fk4uKievXqmY5jVMOGDfXVV19p+/btpqM4rButfTz00EOSJB8fH82aNUtBQUF67rnntGXLFpt1jj179mjEiBHy8/PTxIkTjXyWgmjx4sWaOXNmjh7TarUqODhYDRs2VLly5XL02AAA5HUFuuVRr169q/6CkZKSoilTpsjFxUXPPfec/YOhwKtcubJGjRplMzZu3Di98cYbevvtt7V+/XrNmTNHderUUUhIiPbt26fixYtnPnfIkCGKjY3VxIkTFRAQYOf0AAAAAAAAAICC4Ep5qU6dOvL09DScxqyGDRtK4gpd13Mzax9XtGjRQv3799eUKVM0duxYjRgxQpKUmpqqnj17KjU1VbNnz5aPj489P0KBdfr0afXt2zdXjn3+/HmFhIRo5cqVuXJ8AADyqgJ9y8VrWbp0qc6cOaN27drJ19fXdBxAkvTCCy9Iknbu3ClJ8vPz06RJk3Ty5En169cv83mrVq3SjBkz1Lx5cw0cONBIVgAAAAAAAABA/nelvNSgQQPDScwLDAyUs7OzTpw4oWPHjpmOk2dkXfv4t/Hjx6ty5cp69913FRERIUkaM2aMIiIiNGDAADVv3tyeUQu0zz77TOfOncu1469atUrh4eG5dnwAAPIiCl1X8fnnn0sS992GQ/r3ZYV79+6t9u3ba/HixVq0aJHOnz+v4OBgFS5cWLNnz5bFYjGYFAAAAAAAAACQn10pdF25OlVB5uXlpVq1akniKl23499rH1d4eXlpzpw5Sk9PV8+ePbVp0yb95z//UbVq1TRu3DgDKQum1NRUTZs2Ldff5+OPP8719wAAIC+h0JXFkSNHtHbtWpUtW1atW7c2HQfIdKVo2LRpU5vxGTNm6O6771b//v3Vq1cvHT16VJMmTZKfn5+JmAAAAAAAAACAAmLv3r2SpHvvvddwEsdw5Tzs2bPHcJK841prH1c0adJEgwcP1p49exQUFCRJmjt3boG/xac9/f777zp+/Hiuv893330nq9Wa6+8DAEBekb3uXsDNnj1bGRkZ6tWrl5ydnU3HQQEVHR2deR/5hIQE7dy5U7/88ot8fX31wQcf2DzX19dXn332mZ588kktW7ZM7du3V+/evQ2kBgAAAAAAAAAUJPHx8ZKkokWLGk7iGK6ch4SEBMNJHNOtrH3824gRIzR16lQlJibq5ZdfVqNGjeyUGJL9rjh39uxZHTp0SP7+/nZ5PwAAHB2Frn/JyMjIvE3d888/bzpOjrJarbp8+bLpGA4pOTnZdIRsYmJiNHr0aJuxkiVLauPGjapcuXK253fq1EkNGzbUtm3bHPYywykpKfwSCwAAAAAAAAD5RHp6eub8ekZGhrH533+/r+k56CsXCjhz5ozi4+NlsViM5nG09Y9bXfu44sMPP1RiYqIkaeXKlbp8+bK8vLxyNeutyO/rH7///rvd3mvbtm0qWbKk3d4PAPIiLy8v4z9jwE6syLRq1SqrJGvLli1NR8lx8fHxVklsN7Hdd999xv47HT582CrJ+uijj2aOnTp1yvrBBx9YnZycrAEBAdZLly5d9bUPP/ywVZL18OHDdkp7fV26dDH+35KNjY2NjY2NjY2NjY2NjY2NjY2NjY2N7Z/N1PrHnax97Nixw+ri4mKtVq2a9bXXXrNKsr7yyiv2in5VrH+wsbGxsZnc4uPjjf47CPtxEjJduU93cHCw4STA/5QoUUKvvfaa3nzzTe3fv19vvfWW6UgAAAAAAAAAAAC37WbWPpKTk9WzZ09ZrVbNnTtXY8eOVZ06dTR58mRt2LDBQGoAAAD74ZaL/3XmzBktW7ZMxYoVU8eOHU3HyXFeXl6Z97KHrYULF6pPnz6mY9zQm2++qVmzZmnatGkaNGiQKlSoYDrSLXn99dc1YsQI0zEAAAAAAAAAADnAarWqSJEiysjIUFRUlEqXLm0kR0JCgnx9fSVJJ0+elLe3t5EckvTWW29p0qRJevHFF/XBBx8Yvx1SXlj/uN7ax1tvvaXIyEi98cYbatSokSRp7ty5atiwoZ5//nnt3r3bIW69mN/XP0aNGqUPP/zQLu+1evVq3X///XZ5LwDIqxzh3z7YB4Wu/5o/f75SUlLUvXt3ubu7m46T4ywWi9FfYhxZXvnv7enpqaFDh2rgwIF655139MUXX5iOdEvc3Nz4MwgAAAAAAAAA+ci/v0zuCPO/3t7eRnOkp6dLkooXL65ChQoZy3FFXlj/uNbax6+//qoJEyaodu3aGjVqVObz69Wrp+HDh2vUqFEaOnSoJk+ebCj5/+T39Y+mTZvapdDl7OysBx54gKICAAD/xS0X/+vKD4jcbhGOrE+fPipdurTmzZunmJgY03EAAAAAAAAAAAVYmTJlJEkHDx40nMQxREVFSfrfecHNybr2kZCQoF69esnZ2Vlz586Vm5ubzfOHDx+uwMBATZ06VevXrzeUuuBo3LixnJxyf0n53nvvpcwFAMC/UOiStG3bNu3du1cNGzZU7dq1TccBrsnDw0NvvPGG0tLSNHr0aNNxAAAAAAAAAAAFWMOGDSVJ27dvN5zEPKvVmnkeGjRoYDhN3pJ17eP1119XdHS03nrrLQUGBmZ7vouLi+bOnStXV1f17t1bCQkJBlIXHL6+vnriiSdy/X369u2b6+8BAEBewi0X9c8vHFar1XQMQBUqVLjhn8WXX35ZL7/8crbxdevW5VIqAAAAAAAAAACya9CggebPn69t27aZjmLcoUOHdPbsWbm5ualOnTqm4ziU21n7mDp16nWfX7t2bSUnJ+dIPtzYwIEDFRoammvHL168uJ599tlcOz4AAHkRV+gCAAAAAAAAAADALbtyha5t27YV+C/OXym11atXL9stAoG87qGHHlLXrl1z7fiTJk2Sp6dnrh0fAIC8iEIXAAAAAAAAAAAAblndunXl6uqq06dP68iRI6bjGHXldotXSm5AfjN16lSVK1cux4/buXNndevWLcePCwBAXkehCwAAAAAAAAAAALfMw8Mj8/aCv/32m+E0Zl25QheFLuRXRYsW1XfffadixYrl2DEfeOABff7557JYLDl2TAAA8gsKXQAAAAAAAAAAALgtTZo0kSQtXrzYcBJz/vzzT23dulWSdP/99xtOA+SeunXrasOGDSpfvvwdH6tNmzZatWqVfHx8ciAZAAD5D4UuAAAAAAAAAAAA3Jbg4GBJUlhYWIG97eLUqVOVnp6u5s2bq3LlyqbjALmqZs2a2r17t/r163dbry9cuLCmT5+uFStWqFChQjmcDgCA/INCFwAAAAAAAAAAAG5L7dq11bJlS2VkZGjq1Kmm49hdQkKCZs6cKUkaNGiQ2TCAnRQpUkTTpk3T9u3b1atXL3l6et7wNWXKlNHbb7+tAwcOqG/fvnJyYpkaAIDr4V9KAAAAAAAAAAAA3LaBAwdKkmbOnKmEhATDaexrwYIFOnfunCpVqqS2bduajgPYVf369TV79mydOHFC3333nd555x09+eSTmY93795dkyZN0oYNGxQbG6sxY8aoVKlSBhMDAJB3uJgOAAAAAAAAAAAAgLyrbdu28vf3V0xMjObPn68XX3zRdCS7sFqt+uSTTyRJAwYMkLOzs+FEgBlFihRRu3bt1K5dOyUkJOjbb7+VJE2fPl3e3t6G0wEAkDdxhS4AAAAAAAAAAADcNicnJw0YMECS9PHHHys1NdVwIvtYuXKlIiMjVahQIfXu3dt0HAAAAOQjFLoAAAAAAAAAAABwR3r37q277rpLBw4c0NixY03HyXUXLlxQv379JEnBwcEqUqSI4UQAAADITyh0AQAAAAAAAAAA4I4ULlxY06ZNkyS98847+u233wwnyl2vvPKKjhw5oooVK2rMmDGm4wAAACCfodAFAAAAAAAAAACAO9a1a1d17dpV6enp6tGjhxISEkxHyhVLlizRvHnz5OTkpPnz58vHx8d0JAAAAOQzFLqALKxWq+kI+QLnEQAAAAAAAAAKnqlTp6ps2bI6ePCghgwZYjpOjjt+/Lj69u0rSRo2bJiaNGliONHNY94+Z3AeAQCAPVDoQoHn6upqs5+ammooSf6SkpJis+/m5mYoCQAAAAAAAADAXooWLao5c+ZIkj777DN99913ZgPloIyMDPXu3Vtnz57Vvffeq5EjR5qOdF2sf+QO1j8AAIA9UOhCgefh4WGzn5iYaChJ/pKUlGSzn/U8AwAAAAAAAADyp5YtW+rVV1+V9M9tGH/99VfDie5cRkaG+vTpo59++kkeHh5asGCBwxd5WP/IHax/AAAAe6DQhQLP29vbZv/cuXOGkuQvWc+jl5eXoSQAAAAAAAAAAHsbO3asgoKClJCQoDZt2mjr1q2mI902q9Wq/v3764svvpCTk5PmzJmjgIAA07FuiPWP3MH6BwAAsAcKXSjwKlSoYLN/5swZnT171kyYfOTgwYM2+xUrVjSUBAAAAAAAAABgbx4eHlq2bJmaN2+uS5cu6ZFHHtEvv/xiOtYtS0tLU3BwsKZPny6LxaK5c+eqS5cupmPdFNY/cgfrHwAAwB4odKHAq1ixolxcXGzGsv4wjltztV8Kq1ataigNAAAAAAAAAMAELy8vfffdd2rWrJkuXbqk1q1b6+uvvzYd66YlJCSoQ4cOmjVrlpycnDR79mx1797ddKybxvpHzmP9AwAA2AuFLhR4rq6uqlSpks1YVFSUoTT5Q9bz5+rqmu2bQAAAAAAAAACA/M/b21s//vijnn76aaWkpOiZZ57R0KFDlZiYaDrade3atUtNmzbVDz/8IE9PT4WFhem5554zHeuWsP6R81j/AAAA9kKhC1D2b0/s37/fUJL8Iev58/f3z/YtIAAAAAAAAABAweDh4aGvvvpKr7zyiiTp/fffV506dfTzzz8bTpZdYmKihg0bpvvuu08REREqXry41q5dq/bt25uOdltY/8hZrH8AAAB7odAFSKpevbrN/ooVKwwlyR+ynr9q1aoZSgIAAAAAAAAAcAROTk76+OOPtWzZMpUpU0bR0dFq2bKlnn/++Wy3sDNl7dq1ql27tsaPH6/09HQ99dRT2rNnj+6//37T0W4b6x85i/UPAABgLxS6AEnt2rWz2d+zZ4/27dtnKE3eduHCBf3www82Y48//rihNAAAAAAAAAAAR9K+fXtFRkaqf//+slgsmj17tgICAjR//nylpqYayXT06FH17t1bQUFBiomJUZkyZbRs2TItXrxYpUqVMpIpp7D+kXNY/wAAAPZEoQuQ9OCDD6pMmTI2Y4sWLTKUJm8LCwtTcnJy5r6rq6s6depkMBEAAAAAAAAAwJEULlxYU6ZM0aZNm1SjRg2dOnVKPXv2VNmyZTVs2DBFR0fneoa0tDQtW7ZM7dq1k5+fn+bMmSOLxaL+/fsrMjIyz95iMSvWP3IO6x8AAMCeKHQB+udSz126dLEZmzdvnhITEw0lypusVqtmzpxpM9amTRsVLVrUUCIAAAAAAAAAgKN64IEHFB4errFjx6pkyZI6deqUxo8frypVqqhFixZatGiRkpKScvQ9Dx8+rLfeekvly5fXE088oe+//14ZGRlq1qyZfv31V02ZMkWFCxfO0fc0ifWPnMH6BwAAsDeL1Wq1mg4BOIKdO3eqfv36NmPDhw/Xu+++ayhR3jN79mw9//zzNmNfffVVtl8WAQAAAAAAAAD4t9TUVH3//feaOXOmfvzxR11ZvipcuLDuu+8+1atXT4GBgQoMDFT16tXl4uIiSUpISFChQoUkSfHx8fL29s485rlz5xQREaHw8PDM/7t3797Mx0uUKKFevXopODhYVatWteOntS/WP+4c6x8373p/JwEAwM2j0AX8l9VqVdOmTbV58+bMMRcXF0VERKhmzZoGk+UNcXFxql69us6ePZs55ufnp/3798vT09NgMgAAAAAAAABAXvLnn39q1qxZ+uKLL3T06NFsj3t4eKh27doqW7asXF1d9c0330iSunbtqvT0dMXHxysyMlKxsbHZXmuxWNSqVSuFhISoffv2cnNzy+2PYxzrH3eG9Y9bQ6ELAICcQaEL+Je9e/cqMDBQaWlpmWP33Xeffv7553x1ieWclpqaqqeeekrLly+3Gf/+++/12GOPGUoFAAAAAAAAAMjL0tPTtWfPHoWHh2duERERio+Pv+ljVKhQIfPKXoGBgbrvvvtUqlSpXEztmFj/uD2sf9w6Cl0AAOQMCl1AFsOHD9fYsWNtxurXr6+VK1eqePHihlI5rqSkJHXu3FnfffedzXjnzp319ddfG0oFAAAAAAAAAMiPMjIyFBMTo4iICJ05c0aJiYm6dOmSUlNT5ePjI09PT3l4eKhy5cqqV6+eihYtajqyw2D949aw/nF7KHQBAJAzKHQBWSQmJqp27dqKiYmxGa9Vq5Z+/PFHlS1b1lAyx3PhwgU99dRTWrNmjc14kSJFtH///gL5LScAAAAAAAAAABwR6x83j/WP20ehCwCAnOFkOgDgaDw9PbV06VL5+vrajO/du1fVq1fXe++9p8TEREPpHEN6ero+++wzValSJdsvM15eXlqyZAm/zAAAAAAAAAAA4EBY/7gx1j8AAICj4ApdwDVERUWpZcuWOnr0aLbH/Pz89Pbbb6tjx44qVqyYgXRmxMfH68cff9S7776r3bt3Z3u8cOHC+v7779W0aVMD6QAAAAAAAAAAwI2w/pEd6x85hyt0AQCQMyh0AdcRGxuroKCgbJcfvsLZ2VnNmjVTx44d1apVK1WsWFGurq52Tpl70tPT9ddff2n9+vUKDQ3VTz/9pKSkpKs+t1ixYvrpp59033332TklAAAAAAAAAAC4Fax/sP6RWyh0AQCQMyh0ATcQFxen4cOH6/PPP9eN/ro4OTmpfPny8vf3l7+/v+655x55eHjI3d1dTk6Oe4dTq9Wq5ORkJSUl6ezZs4qJiVFMTIxiY2OVmpp6w9c/8cQT+uijj1SpUiU7pAUAAAAAAAAAAHeK9Q/WP3IDhS4AAHIGhS7gJkVERGjQoEFav3696SgOo3bt2po0aZJatGhhOgoAAAAAAAAAALgNrH9kx/rH7aPQBQBAzqDQBdwCq9Wq5cuXa86cOVq5cuU1L7+bn7m4uKhZs2bq1q2bevToIWdnZ9ORAAAAAAAAAADAHWD9g/WPnEKhCwCAnEGhC7hNCQkJWrVqlUJDQ7Vy5UqdOXPGdKRcU6hQIbVs2VKdOnVSu3btVKxYMdORAAAAAAAAAABALmD9A3eCQhcAADmDQheQQ86dO5d57/WYmBgdPnxY8fHxSkpKUlJS0g3vP2/alXvde3t7y8/PT/7+/plbiRIlZLFYTEcEAAAAAAAAAAB2xvoHbgWFLgAAcgaFLgAAAAAAAAAAAADAHaPQBQBAznAyHQAAAAAAAAAAAAAAAAAA8A8KXQAAAAAAAAAAAAAAAADgICh0AQAAAAAAAAAAAAAAAICDoNAFAAAAAAAAAAAAAAAAAA6CQhcAAAAAAAAAAAAAAAAAOAgKXQAAAAAAAAAAAAAAAADgICh0AQAAAAAAAAAAAAAAAICDoNAFAAAAAAAAAAAAAAAAAA6CQhcAAAAAAAAAAAAAAAAAOAgKXQAAAAAAAAAAAAAAAADgICh0AQAAAAAAAAAAAAAAAICDoNAFAAAAAAAAAAAAAAAAAA6CQhcAAAAAAAAAAAAAAAAAOAgKXQAAAAAAAAAAAAAAAADgICh0AQAAAAAAAAAAAAAAAICDoNAFAAAAAAAAAAAAAAAAAA6CQhcAAAAAAAAAAAAAAAAAOAgKXQAAAAAAAAAAAAAAAADgICh0AQAAAAAAAAAAAAAAAICDoNAFAAAAAAAAAAAAAAAAAA6CQhcAAAAAAAAAAAAAAAAAOAgX0wGA/Or8+fO6dOmSkpKSlJycLKvVajrSdbm7u8vd3V3e3t4qXry4LBaL6UgAAAAAAAAAAAAAriEtLU1xcXFKSkpSUlKS0tLSTEe6LicnJ3l4eMjDw0PFihWTp6en6UgA4LAodAF36NixY1q9erWioqIUExOTuZ0/f950tNvm7e0tf39/m61ly5aqUqWK6WgAAAAAAAAAAABAgZKenq4tW7bot99+s1mPPHLkiMOXuK6ndOnSNuuRtWrVUqtWreTt7W06GgAYZ7E6+mWDAAd08OBBhYWFKTQ0VL/99pvpOHZTq1YtdezYUZ06dVLdunW5ihcAAAAAAAAAAAAyJSQkqFChQpKk+Ph4ijl3ICUlRT///LPCwsK0dOlSnTp1ynQku/Dw8NCjjz6qjh076vHHH1exYsVMRwIAIyh0Abfgt99+05AhQ/Trr7+ajmJcjRo19MEHH+ixxx4zHQUAAAAAAAAAAAAOgELXnUtOTtbkyZP13nvv5ek7AuUEZ2dn9ezZU2PHjlXJkiVNxwEAu6LQBdyEo0eP6o033tCCBQtu+xiOfDWrO/mfgdatW+ujjz5SjRo1cjARAAAAAAAAAAAA8hoKXbfParVq+fLlGjJkiGJiYm77OPlxTbJQoUJ688039eqrr8rDwyOHUwGAY6LQBdzAZ599psGDB+vy5cvXfE6RIkX08MMPq0qVKpn3eK5UqZLuueceeXh4yNXV1eF/eEpLS1NSUpLOnj2rQ4cO2dx/e8OGDTp58uQ1X+/s7Kxhw4bpnXfecejPCQAAAAAAAAAAgNxDoev2nDt3Ts8884x++umn6z6vVq1auu+++zLXI/39/eXn5ycfHx+5u7vLxcXFTolvT0ZGhpKTk5WYmKhjx47ZrEdGRkZq06ZNSk9Pv+brK1SooMWLF6t+/fp2TA0AZlDoAq5j/PjxGjZs2FUf8/X11RNPPKFOnTqpWbNmcnNzs3M6+0lPT9fWrVsVFham0NBQHT58+KrP69Onjz799FM5OTnZOSEAAAAAAAAAAABMo9B1606dOqVHHnlEu3btuurjjRs3VqdOndSxY0dVrlzZzuns6+zZs1qxYoXCwsK0cuVKJSUlZXuOj4+PfvjhBzVt2tRAQgCwHwpdwFVYrVaNGDFC7777brbHChcurBEjRmjAgAH5usR1LRkZGVqwYIGGDRumEydOZHu8e/fumj17tsN/AwAAAAAAAAAAAAA5i0LXrTl27JiCgoJ04MCBbI/df//9mjRpkho2bGggmXknTpzQW2+9pdmzZ2e7VaOXl5eWLVumoKAgQ+kAIPdR6AKuYtSoURo9enS28eDgYL333nu65557DKRyLPHx8Ro3bpzGjRuX7dKn3bp104IFCwwlAwAAAAAAAAAAgAkUum7e2bNn1aBBAx06dMhm3NfXVxMnTtQzzzwji8ViKJ3j2Llzp15++WVt3brVZtzNzU2rV6/WQw89ZCgZAOQuCl1AFuHh4WrQoEG2ktLEiRM1aNAgM6EcWGhoqJ555hmlpqZmG+/YsaOhVAAAAAAAAAAAALC3+Ph4+fj4SJIuXbqUWe5CdiEhIfr8889txipUqKC1a9eqUqVKhlI5pqSkJHXp0kXLly+3Ga9cubJ2794tT09PQ8kAIPdQ6AL+JT09XY0bN9aOHTsyxywWiz777DOFhIQYTObYfvzxR3Xq1MnmPtZlypRRZGSkChcubDAZAAAAAAAAAAAAcpLVatWxY8cUHh6euR04cECXL1/W5cuXdfr0aUnSPffcIy8vL911112qU6eOAgMDFRgYqHr16qlIkSKGP4VZGzduzHZlqapVq2rt2rUqW7asoVSOLTU1VT169NDXX39tMz58+HC9++67hlIBQO6h0AX8y8cff5ztKlyjR4/WiBEjzATKQ7788kt1797dZuzll1/W5MmTDSUCAAAAAAAAAABATjh06JDmzZunzZs3Kzw8PLO0dbsqVaqkwMBAtWrVSl27di1QFwhITk5WvXr1dODAgcyxQoUKad++fSpfvrzBZI4vPT1dDz30kDZv3pw55uLiooiICNWsWdNgMgDIeRS6gP+6dOmSSpcurfj4+MyxgIAARUREyM3NzWCyvMFqtap169b66aefMscsFosOHDigqlWrGkwGAAAAAAAAAACAW5WSkqKlS5dq5syZWrNmjc1jzs7OCggIyLzqVq1atXTXXXcpIyNDjRs3liRt2bJFFotFf//9tyIiIjKv5vXnn3/aHMvLy0tdunRRSEiIGjduLIvFYrfPaMLkyZP1yiuv2Ix9/PHH2cZwdXv37lVgYKDS0tIyxx577DF9//33BlMBQM6j0AX814IFC9SjRw+bsY0bN6pp06aGEuU9hw4dUq1atZSYmJg5NnLkSI0aNcpcKAAAAAAAAAAAANy0P/74Q59//rnmzJmTeSUui8WiVq1aqVOnTrr33ntVq1YteXp6ZnttQkKCChUqJEmKj4+Xt7d3tuecOXNGu3bt0m+//ab58+dr//79mY/VqlVLISEh6t69u4oVK5ZLn9Cshg0bavv27Zn7DRo00JYtW+Ts7GwwVd4yfPhwjR07NnPf2dlZx48f1z333GMwFQDkLApdwH+1bdtWP/zwQ+Z+mzZtbPZxcwYOHKhPPvkkc79q1ao6cOBAvv82BQAAAAAAAAAAQF528eJFvfHGG/r00091ZQm5dOnSev755/XCCy+oQoUKNzzGzRS6/s1qtWrz5s2aOXOmvvnmm8yLBhQpUkTvv/++goOD5eTkdGcfzIFER0erSpUqNmM//vijWrdubShR3pSQkCBfX18lJCRkjk2ZMkX9+/c3mAoAclb++dcPuAOnT5+2uVWgJD377LOG0uRtXbt2tdmPiorS77//bigNAAAAAAAAAAAAbmTp0qWqUaOGpk2bJqvVqrZt22r58uU6cuSI3nnnnZsqc90Oi8WiJk2aaM6cOTp+/LimTJmimjVr6sKFC+rbt6+aNWumAwcO5Mp7m7Bo0SKb/RIlSigoKMhQmrzL29tb7du3txlbuHChoTQAkDsodAGSvv32W5v7LHt6eqpDhw4GE+VdjRo1UsWKFW3Gsv5wCgAAAAAAAAAAAPOOHz+uJ598Uh07dtSxY8fk7++vtWvXasWKFXr88cfl4uJityx33XWX+vfvr127dmnixIny9vbWxo0bVbduXY0ZM0YpKSl2y5JbvvrqK5v9zp072/Uc5ydZL86xefNmHTlyxFAaAMh5FLoASb/99pvNfrt27eTj42MoTd5msVj0zDPP2Ixt27bNUBoAAAAAAAAAAABczZw5c1SjRg2FhobK2dlZw4YN0549e9SiRQujuZydnTVo0CDt27dPbdq0UUpKikaOHKnAwMA8fVeYS5cuKTIy0mYs65oabt4jjzyiokWL2oxt377dUBoAyHkUugBJf/zxh81+48aNDSXJH7Kev6znFwAAAAAAAAAAAGZYrVYNHz5cvXv31oULF9SgQQPt3LlT//nPf+Tp6Wk6XiY/Pz99//33WrhwoUqUKKHIyEg99NBDWrVqlelotyUqKspm32KxqEGDBobS5H1ubm669957bcZYkwSQn1DoApT9B6iqVasaSpI/ZD1/p06d0vnz582EAQAAAAAAAAAAgCQpNTVVzz//vMaOHStJGjFihLZs2aK6desaTnZ1FotFXbt21f79+xUUFKSEhAS1a9dOc+fONR3tlmVdj6xQoYLc3d0Npckfsq5JZj3HAJCXUehCgXf27FmdPn3aZoxC152pVKmSnJ2dbcYOHjxoKA0AAAAAAAAAAADS0tLUrVs3zZkzR87Ozpo5c6ZGjx6dbU3HERUvXlzff/+9unXrprS0NPXq1UszZ840HeuWcIGJnEehC0B+RqELBV7WopGLi4sqVqxoKE3+4Obmlu0ccolTAAAAAAAAAAAAM9LT0/Xcc89p8eLFcnV1VWhoqIKDg03HuiVubm6aN2+eBg0aJEnq27ev5syZYzTTrchaNqpWrZqhJPlH1nPIeiSA/IRCFwq8uLg4m/3SpUvL1dXVUJr8o3z58jb7Wa+CBgAAAAAAAAAAAPt45ZVXtHDhQrm4uGjJkiVq37696Ui3xcnJSRMmTNCAAQNktVr1/PPPa/ny5aZj3ZSsa5JZ19Jw67Kew3Pnzik9Pd1QGgDIWRS6UOAlJiba7Ht5eRlKkr9kPY9ZzzMAAAAAAAAAAABy3/LlyzVt2jRZLBZ99dVXebbMdYXFYtHHH3+skJAQWa1WvfDCC/r7779Nx7oh1iRz3tXOYVJSkoEkAJDzKHShwMv6j7qHh4ehJPlL1vPID08AAAAAAAAAAAD2dfLkycxbKw4ePFhPPvmk4UQ5w2KxaPLkyapbt65Onz6tF154QVar1XSs62JNMud5enpmG2NNEkB+QaELBV7WH+6cnZ0NJclfsp7HjIwMQ0kAAAAAAAAAAAAKHqvVqpCQEMXFxal27dp67733TEfKUe7u7vryyy/l7u6uH374QZ999pnpSNfFmmTOu9o5ZE0SQH5BoQsAAAAAAAAAAAAA8pnPP/9c3333ndzc3DKLT/lNzZo1NW7cOEnSkCFDFBUVZTgRAAA5g0IXAAAAAAAAAAAAAOQjMTExevXVVyVJY8eOVe3atQ0nyj2vvPKKWrZsqcuXL6t79+5KS0szHQkAgDtGoQsAAAAAAAAAAAAA8pF33nlHCQkJatasWWaxK79ycnLSnDlzdNddd2n79u0KDQ01HQkAgDtGoQsAAAAAAAAAAAAA8omTJ09q0aJFkqRx48bJySn/LwmXLVtWr7zyiiRp0qRJZsMAAJAD8v+/3gAAAAAAAAAAAABQQEyfPl0pKSlq1KiRGjVqZDqO3fTr10+urq7asmWLtm/fbjoOYNzly5cVFRWlvXv3Kjo6WikpKaYjAbgFFLoAAAAAAAAAAAAAIB9ITk7Wp59+KkkaOHCg4TT2VbJkSXXp0kWS9PHHHxtOA9if1WrV+vXr9fzzz6tGjRry8fFRtWrVVLt2bVWpUkWFChVSYGCgBgwYoIiICNNxAdwAhS4AAAAAAAAAAAAAyAe++eYbnTx5UqVLl9ZTTz1lOo7dDRo0SNI/5+HEiRNmwwB2tHTpUlWvXl3NmjXT7NmztX//fmVkZNg8JzU1VREREZoyZYoCAwPVqFEj/frrr4YSA7gRCl0AAAAAAAAAAAAAkMdZrdbMK1P1799frq6uhhPZ33333acmTZooNTU180plQH4WFxenTp06qWPHjoqKirql127btk1NmzbVSy+9pMuXL+dSQgC3i0IXAAAAAAAAAAAAAORxx44d086dO+Xs7Kw+ffqYjmNM//79Jf1zxSIgP4uNjdUDDzygsLCwOzrOp59+qlatWun8+fM5EwxAjijQhS6r1arQ0FA1b95cpUqVkpeXl6pVq6a+ffvq0KFDpuOhAIqNjZXFYrHZXF1dVaZMGXXu3Fk7duyQJE2aNEkWi0W9e/e+5rHWrVsnJycnNWjQQGlpafb6CAAAAAAAAAAAADBg27ZtkqRatWrp7rvvNpzGnIcffliStG/fPiUkJBhO43hudj3yikuXLqlChQry8PBQZGTkVY85fvx4WSwWBQcH2+MjQNKpU6fUokULRUdH58jxNm/erNatWyspKSlHjgfgzhXoQtdrr72mJ598Un/88YeeeOIJDRgwQBUrVtTMmTNVr1497d2713REFFD+/v4aOXKkRo4cqUGDBqlatWpavHixHnjgAW3YsEEDBw5Us2bNNGfOHH333XfZXh8fH6/evXvL3d1d8+bNk4uLi4FPAQAAAAAAAAAAAHu5Uuhq2LCh4SRmlS5dWmXKlFFGRoZ+//1303Ec1o3WI6/w8fHRrFmzlJKSoueeey7bhST27NmjESNGyM/PTxMnTrT3xyiQrFargoODdfjw4Rw97m+//abhw4fn6DEB3L4CW+j6+++/NWnSJPn5+Wn//v369NNPNX78eK1cuVIfffSRLl26pAkTJpiOiQKqcuXKGjVqlEaNGqUPPvhAP//8s/7zn/8oNTVVb7/9tiwWi+bMmaPChQsrJCREZ86csXn9kCFDFBsbq//85z8KCAgw9CkAAAAAAAAAAABgL9u3b5dEoUv63zm4UnJDdjdaj/y3Fi1aqH///tqxY4fGjh2bOZ6amqqePXsqNTVVs2fPlo+Pj70/RoE0d+7cq170IydMmDDBptAHwJwCW+iKjY1VRkaGmjRpoiJFitg81q5dO0lSXFyciWjAVb3wwguSpJ07d0qS/Pz8NGnSJJ08eVL9+vXLfN6qVas0Y8YMNW/eXAMHDjSSFQDw/+3dd3RVZb7G8eekNxKlIy10EAIEpAkoKAiItCBNRAQFHUApwwiiUkSk6EWkiII0QRgFibQBEZEBBKUYeg9NEEKTxHSSnPuHl1xPEmpO8u4k389ae83s3z5n7ycHkrDWfnw3AAAAAAAAAGSflJSU1EJXnTp1DKcx7+ZncPMzwd1Jez/y7yZOnKjy5cvrvffe0549eyRJ7777rvbs2aPXXntNTZs2zc6oeVZycrLee++9LL3GuHHjsvT8AO5Oni10VahQQR4eHvrpp58UFRXlcGz16tWSpCeffNJENOC2/v74xF69eqlt27ZaunSplixZouvXr+vll1+Wv7+/5s2bJ5vNZjApAAAAAAAAAAAAssPRo0f1559/ytvbW1WrVjUdxzhW6Mqcv9+PvMnHx0fz589XcnKyXnjhBW3dulXjx49XpUqVNGHCBAMp86Y1a9YoPDw8S6+xfv16HT58OEuvAeDO8myhq0CBApowYYLOnj2rypUr6x//+IeGDRumli1batiwYerXr58GDBhgOiaQ6vPPP5ckNWrUyGE+a9YsFSxYUP3799eLL76oc+fOpT5OFAAAAAAAAAAAALnfvn37JEk1a9bMsIyT1zzyyCOSpFOnTqVb3AO3dqv7kTc1bNhQQ4YM0f79+9WsWTNJfz3+z9vbO9sy5nXLly/PVdcBcGt5+rf54MGDVbx4cb388sv69NNPU+eNGjXSc889xz92YMyJEyc0evRoSVJMTIx2796tH3/8UUWKFNEHH3zg8NoiRYros88+U8eOHbVixQq1bdtWvXr1MpAaAAAAAAAAAAAAJtwsLRUsWNBwEmsICAiQq6urkpOTFR0dLX9/f9ORLOde7kf+3ciRIzVjxgzFxcVpwIABqlevXjYlhpR9q87xuFLAvDzdWHr33Xf13nvv6d1339Xzzz+vBx54QHv27NHgwYPVpEkTffPNN2rbtq3pmE5ht9sVGxtrOoYlJSQkmI6QTnh4uMaMGeMwK1q0qLZs2aLy5cune31ISIjq1q2rHTt2WHZJ08TERMXExJiOAQAAAAAAAAAAkOv88ccfkiR3d3ej92P+fm3T94W8vLwUExOjK1euKCAgwGgWSUpJSTEdwcG93o+86cMPP1RcXJwkad26dYqNjZWPj0+WZr0XMTExlsrjTPHx8Tpy5Ei2XCssLMz49zAy5uPjI5vNZjoGsoM9j/r+++/tkuyDBw9Od+zChQt2b29ve/ny5Q0kyxrR0dF2SWx3sdWuXdvYn9OpU6fskuwtWrRInV26dMn+wQcf2F1cXOxVqlSx//nnnxm+9/HHH7dLsp86dSqb0t5ely5djP9ZsrGxsbGxsbGxsbGxsbGxsbGxsbGxsbGxsbFZcVuwYIGRe3iZuR+5a9cuu5ubm71SpUr2oUOH2iXZX3/99eyKns6lS5eM/zmysWX3Fh0dbex7DtnLRXnU2rVrJUlNmzZNd6xo0aKqXLmyTpw4oejo6OyOBjgoVKiQhg4dqhEjRujw4cN6++23TUcCAAAAAAAAAAAAkEvczf3IhIQEvfDCC7Lb7VqwYIHef/99Va9eXdOmTdPmzZsNpAaA3C3PPnIxMTFRknT58uUMj1++fFkuLi5yd3fPzlhZxsfHh3LaLSxevFh9+/Y1HeOORowYoblz5+qTTz7RoEGDFBgYaDrSPXnjjTc0cuRI0zEAAAAAAAAAAABynU8//VRDhw5Vu3bt9OWXXxrLERMToyJFikiSIiIi5OvrayxLwYIFFR8frwMHDljivlrjxo0VFhZmOsZt3e5+5Ntvv61Dhw7pzTffVL169SRJCxYsUN26ddW7d2/t27fPEo86PHXqlAoVKmQ6RpZITk5WsWLFFBsbm+XXqlq1qn755Zcsvw7unRW+z5A98myhq2HDhpo+fbomT56sjh07Ojw3+dNPP9W5c+fUsGFDeXp6GkzpPDabzeg/mKwsp/wZe3t7a9iwYRo4cKDGjh2rOXPmmI50Tzw8PPg7CAAAAAAAAAAAkAUefPBBSdKNGzcscz/G19fXWBa73a6EhARJfxW7rPCZuLhY/+FZt7of+dNPP2ny5MkKCgrS6NGjU19fs2ZNvfXWWxo9erSGDRumadOmGUr+/0z+vcsOtWvX1pYtW7L8OvXr18/VnyOQE1j/t0YW6dSpkx577DEdPHhQFStWVJ8+ffSvf/1LTz75pP7xj3/I29tbkydPNh0TcNC3b1899NBD+uKLLxQeHm46DgAAAAAAAAAAACygaNGikqSTJ08aTmINp0+flt1ul7u7e2rZDXcn7f3ImJgYvfjii3J1ddWCBQvk4eHh8Pq33npLwcHBmjFjhv773/8aSp13NGjQIFddB8Ct5dlCl6urq9avX6/x48erePHiWrx4saZMmaKjR4/q+eef1+7du1W3bl3TMQEHXl5eevPNN5WUlKQxY8aYjgMAAAAAAAAAAAALeOSRRyRJR48eVWRkpOE05u3cuVOSVKNGjXQFJNxe2vuRb7zxhk6cOKG3335bwcHB6V7v5uamBQsWyN3dXb169VJMTIyB1HlH7969s/wa+fLlU6dOnbL8OgBuL88+clH661F7w4cP1/Dhw01HASRJgYGBstvtt33NgAEDNGDAgHTzTZs2ZVEqAAAAAAAAAAAAWFnhwoVVunRpnTlzRrt379YTTzxhOpJRO3bskCQW8MjA/dyPnDFjxm1fHxQUlPqIS2StSpUqqVWrVlq7dm2WXaNXr17y9/fPsvMDuDt5doUuAAAAAAAAAAAAAMgtbpaXbpaZ8jIKXcjNJk2aJE9Pzyw5d+HChfXWW29lybkB3BsKXQAAAAAAAAAAAACQw90sL9183GBelZSUpN27d0uS6tSpYzgN4HzVqlXT+PHjs+Tcc+bMUeHChbPk3ADuDYUuAAAAAAAAAAAAAMjhbpaX8voKXYcPH1ZsbKzy5cunSpUqmY4DZImBAweqV69eTj3nuHHj9Mwzzzj1nADuH4UuAAAAAAAAAAAAAMjhateuLXd3d507d067du0yHceY0NBQSX+tWObq6mo4DZA1XFxcNHv2bL322muZPpfNZtPkyZM1YsQIJyQD4CwUugAAAAAAAAAAAAAgh/Pz81Pnzp0lSR9//LHhNGYkJiZq5syZkqTevXsbTgNkLVdXV02dOlWhoaF66KGH7uscDz/8sLZu3arBgwc7OR2AzKLQBQAAAAAAAAAAAAC5wMCBAyVJX331lS5cuGA4Tfb7+uuvdfHiRRUrVkzPPvus6ThAtmjfvr0OHTqksWPHqnTp0nf1nqCgIE2bNk2//vqrHn300SxOCOB+UOgCAAAAAAAAAAAAgFygTp06atCggW7cuKFPP/3UdJxsZbfbU1cm69evnzw8PAwnArJPQECA3n77bZ08eVIbN27U+PHjFRISknq8bt266tGjhyZPnqwdO3Zo7969GjBggDw9PQ2mBnA7bqYDAAAAAAAAAAAAAACcY9CgQdq+fbs+/fRTjRgxIs8UNrZv365du3bJ09NTr7zyiuk4gBEuLi5q2rSpmjZtqpiYGC1fvlyStHHjRvn6+hpOB+BesEIXAAAAAAAAAAAAAOQSHTp0UIkSJXTp0iV9+eWXpuNkm48++kiS1L17dxUqVMhwGgAAModCFwAAAAAAAAAAAADkEu7u7nrttdckScOGDVNERIThRFlv9erVWrZsmSRp4MCBhtMAAJB5FLoAAAAAAAAAAAAAIBcZOHCgatSooStXruill16S3W43HSnLXLp0SS+99JIkaciQIapevbrhRAAAZB6FLgAAAAAAAAAAAADIRTw9PbVo0SJ5eHhozZo1mjVrlulIWcJut6tPnz66dOmSgoKCNG7cONORAABwCgpdQBq5+b9QyE58jgAAAAAAAAAAAOZUq1ZN48ePl/TXylXHjh0znMj55syZo5UrV8rDw0OLFi2Sl5eX6Uh3jXtpmcdnCCA3o9CFPM/Nzc1hPykpyVCS3OXGjRsO++7u7oaSAAAAAAAAAAAA5E2DBg3SE088odjYWPXo0SPd/ZucLDw8XIMGDZIkjRs3zvKPWuSepPNl9PeZe5IAcgsKXcjzvL29Hfbj4uIMJcld4uPjHfbTfs4AAAAAAAAAAADIWi4uLpo/f74CAgK0Y8cO9ezZU8nJyaZjZdrvv/+uVq1aKSYmRk2aNNGQIUNMR7oj7kk6X0afIfckAeQWFLqQ56X9pR4ZGWkoSe6S9nPkH08AAAAAAAAAAADZr2TJkvryyy/l5uamJUuWqFevXjm61BUREaEnn3xSx48fV2BgoBYuXCgXF+vf9uaepPOl/QxtNps8PDwMpQEA57L+bzYgi5UqVcph/9KlS4qKijKUJvc4ceKEw37azxkAAAAAAAAAAADZo3Xr1vrqq6/k6uqqhQsX6oUXXlBiYqLpWPfs7Nmzatq0qY4cOaKSJUtq48aNKlGihOlYdyXtvbK099Jw7zK6H2mz2QylAQDnotCFPK9cuXLpWvvHjh0zlCZ3uH79ui5duuQwq1SpkqE0AAAAAAAAAAAACAkJ0ZIlS+Tm5qbFixerdevWOWqRg3379qlBgwY6fPiwSpQooY0bN6pMmTKmY921tPfKjh49aihJ7pH2M+R+JIDchEIX8jxPT08FBgY6zCh0ZU7az8/V1TVH/YMaAAAAAAAAAAAgN+rUqZNWrVolX19fbdiwQY0bN9bevXtNx7otu92uJUuWqHHjxvr9999VtWpVbdu2TeXLlzcd7Z5UrFjRYZ/7kZmX9jNM+xkDQE5GoQtQ+rb2kSNHDCXJHdK24cuWLcvzqgEAAAAAAAAAACygZcuW2rRpkwoXLqx9+/apdu3aevPNNxUXF2c6WjqnT59W69at9dxzzykqKkqNGzfWli1bVLJkSdPR7lna+5FXr17VlStXDKXJHVihC0BuRqELUPpf7uvWrTOUJHdYu3atwz5teAAAAAAAAAAAAOt45JFHtGfPHnXs2FHJycmaMGGCgoKC9MMPP5iOJklKTk7WRx99pKpVq2rt2rXy8PDQu+++qw0bNujBBx80He++BAYGyt3d3WHGPcn7d/HiRf36668OM+5JAshNKHQB+uu/RPi7nTt36sSJE4bS5GwxMTFasWKFw6xVq1aG0gAAAAAAAAAAACAjxYoV07Jly/Ttt9+qePHiCg8PV7NmzdSrVy9FREQYy7Vr1y7Vr19fQ4YMUWxsbOpjId95550c/UQYNzc3NW/e3GG2ZMkSQ2lyvqVLlyolJSV139fXV40aNTKYCACci0IXIOnJJ59UoUKFHGb//ve/DaXJ2VatWqXY2NjUfVdXV3Xq1MlgIgAAAAAAAAAAANxKu3btdOjQIfXv3182m03z589XiRIl1KlTJ61fv96hNJNVoqOjNWfOHNWrV0916tTRrl27FBAQoFmzZmnTpk2qXLlylmfIDt26dXPYX79+va5evWooTc6WtgzXvn17+fj4GEoDAM5HoQvQX434tKWjL774Qjdu3DCUKGey2+2aO3euw+zJJ59U4cKFDSUCAAAAAAAAAADAnfj7+2v69OnaunWr6tevr6SkJC1btkwtWrRQuXLl9N577+n8+fNOvabdbteuXbv0yiuvqFixYnr55Ze1Y8cOubm5qXv37jp8+LD69OkjF5fcc0u7Xbt28vLySt1PSkrSF198YTBRznT48GFt377dYZa2LAcAOZ3NbrfbTYcArOCnn35KtwznxIkT9cYbbxhKlPMsX75cHTt2dJjNnz9fPXv2NJQIAAAAAAAAAAAA92rfvn2aPXu2Fi1apOvXr0uSXFxc1KBBA9WqVUs1a9ZUcHCwqlat6vAYxJiYGPn5+Un6a9UtX1/f1GORkZHas2ePwsLCtGfPHu3YsUOHDx9OPV6hQgX16dNHPXv2zNWLBXTp0kVff/116n5AQIAOHz6sYsWKGUyVc9jtdj3xxBPatGlT6qxAgQK6cOGC3N3dzQWzoNt9PwKwPgpdwP9JSUlRcHCw9u3blzrz9vbWwYMHVaZMGYPJcobIyEg9/PDD+v3331NnhQsX1vHjx+Xv728wGQAAAAAAAAAAAO5HXFycli1bptmzZ2vLli3pjru7u6tq1aoKCgpSQECAXFxcNHXqVEnSa6+9puTkZEVERCgsLEwnT55M935PT0917NhRffr00eOPPy6bzZblX5NpmzZtUtOmTR1mnTt31ldffWUoUc4yb9489e7d22E2bNgwTZgwwVAi66LQBeRsFLqAv/nll1/UoEED/f3bokmTJlq7dq3D8qdwlJKSol69eqVbEnbx4sUsbwoAAAAAAAAAAJALhIeHa/v27QoLC0vdbq7edbdKlSql4ODg1K1Ro0bKnz9/1gS2sB49emjRokUOsyVLlqhr166GEuUM4eHhqlu3rq5du5Y6K126tA4ePEhZKQMUuoCcjUIXkMaAAQM0Y8YMh1nz5s0VGhrKL7kMJCcnq0+fPpo3b57DvEWLFlq7dm2e+C8pAAAAAAAAAAAA8hq73a4zZ84oLCxMR44cUWxsrKKiolJX6Bo8eLD8/f0VEBCg6tWrq2bNmipQoIDh1NZw+fJlVa5c2aGY5OrqqgULFqh79+4Gk1nXoUOH1KxZM124cMFhvmbNGj399NOGUlkbhS4gZ6PQBaQRFRWlKlWqODw6UJIaNWqkVatW6YEHHjATzIISEhLUs2fPdEvA8qhKAAAAAAAAAACAvMdutys2NlaS5OPjw3/4fxsZPTrQZrNp5syZeuWVVwylsqZff/1VLVq00JUrVxzmPKry9ih0ATmbi+kAgNX4+/tr6dKl8vf3d5hv3bpVlStX1pw5c5ScnGwonTXY7XatWLFC1apVS/ePJDc3Ny1YsIAyFwAAAAAAAAAAQB5js9nk6+srX19fylx38OKLL6Yrbtntdr366qtq1aqVDh8+bCiZdVy/fl1DhgxRvXr10pW5goOD0z11CQByEwpdQAYeffRR/fDDD+me2R0REaGXX35ZderU0Zo1a5SYmGgooRnJycnasmWLmjdvrvbt2+vEiRMOxz09PRUaGqpOnToZSggAAAAAAAAAAABY383VuAYPHpzu2Lp16xQUFKTXX39dx48fN5DOrGvXrmnatGmqUKGCPvroIyUlJTkcb9CggTZu3KiCBQsaSggAWY9HLgK3sX//fjVv3lwREREZHg8ICNAzzzyjDh06qHnz5ulW9coN4uLitHnzZi1fvlwrVqy45Wfh4+OjFStWqFmzZtmcEAAAAAAAAAAAAMiZ7Ha7Ro0apbFjx97yNdWqVVOHDh3UoUMHBQUFyc3NLRsTZj273a7ffvtNq1ev1vLly7Vp06ZbPjGpadOmWrlyZeqjBHFrPHIRyNkodAF3cOrUKQ0cOFCrVq2642sLFSqkcuXKpW6FChWSl5eXPD095eJi3QXx7Ha7EhISFB8fr2vXrunkyZMKDw9XeHi4fv/99zu+v379+poxY4Zq1aqVDWkBAAAAAAAAAACA3GXRokV64403dOHChdu+zs3NTYGBgan3IwMDA+Xn5ycvLy+5u7tb+lGXSUlJio+PV1xcnM6fP596P/LkyZOKjo6+7Xs9PDw0ePBgjRo1St7e3tmUOGej0AXkbBS6gLu0fv16DRkyRAcPHjQdxTJKlCihiRMnqlu3bpb+xyEAAAAAAAAAAABgddHR0ZowYYI+/PBDJSQkmI5jGSEhIZo0aZLKlStnOkqOQqELyNkodAH3ICkpSXPmzNH8+fP1888/m45jTLVq1dS9e3e9/vrr8vHxMR0HAAAAAAAAAAAAyDVOnz6tiRMnKjQ0VBEREabjGOHl5aUWLVpo4MCBatq0qek4ORKFLiBno9AF3Kfz589rxYoVCg0N1Y8//njL5zjnFvXr11dISIg6dOig8uXLm44DAAAAAAAAAAAA5GrJycnavn27QkNDFRoaqlOnTpmOlKUCAgL0zDPPKCQkRC1atKCAlEkUuoCcjUIX4ATx8fE6ffp06nOe//6s5/j4eMXHx8vq32peXl7y9PSUr6+vw3O3y5UrpzJlyqT+sgcAAAAAAAAAAACQvex2u65evepwPzI8PFznz59PvR9548YN0zFvy8XFRd7e3vLy8lL+/PlVrlw5lS9fPvWeZPHixeXq6mo6Zq5BoQvI2Sh0AQAAAAAAAAAAAAAA5CIUuoCczcV0AAAAAAAAAAAAAAAAAADAXyh0AQAAAAAAAAAAAAAAAIBFUOgCAAAAAAAAAAAAAAAAAIug0AUAAAAAAAAAAAAAAAAAFkGhCwAAAAAAAAAAAAAAAAAsgkIXAAAAAAAAAAAAAAAAAFgEhS4AAAAAAAAAAAAAAAAAsAgKXQAAAAAAAAAAAAAAAABgERS6AAAAAAAAAAAAAAAAAMAiKHQBAAAAAAAAAAAAAAAAgEVQ6AIAAAAAAAAAAAAAAAAAi6DQBQAAAAAAAAAAAAAAAAAWQaELAAAAAAAAAAAAAAAAACyCQhcAAAAAAAAAAAAAAAAAWASFLgAAAAAAAAAAAAAAAACwCApdAAAAAAAAAAAAAAAAAGARFLoAAAAAAAAAAAAAAAAAwCIodAEAAAAAAAAAAAAAAACARVDoAgAAAAAAAAAAAAAAAACLoNAFAAAAAAAAAAAAAAAAABZBoQsAAAAAAAAAAAAAAAAALMLNdAAgt7Lb7UpKSlJ8fLwSEhJkt9tNR7otT09PeXp6ysPDQzabzXQcAAAAAAAAAAAAAABylJsdgfj4eMt3BNzd3eXl5SVPT086AhZEoQvIpOjoaG3ZskXHjh1TeHh46nb69GklJCSYjnfP3NzcVKpUKZUrVy51K1++vB577DHlz5/fdDwAAAAAAAAAAAAAAIxJTEzU1q1bdeTIEYeOwMmTJxUbG2s63j2z2WwqUaKEQ0egXLlyatiwoYoXL246Xp5ls1u9EghY0NWrV7Vq1SqFhoZq/fr1io+PNx0py7m6uqpJkybq0KGD2rdvzw9uAAAAAAAAAAAAALComJgY+fn5SfprkRJfX1/DiXK26OhorVu3TqGhoVq9erWioqJMR8oW9erVU0hIiDp06KAKFSqYjpOnUOgC7sHx48c1bNgwrVy5UsnJyabjGNWkSRNNmjRJderUMR0FAAAAAAAAAAAAAPA3FLqc4+LFi3rnnXe0aNGiPLHQy+3UrFlT48ePV8uWLU1HyRNcTAcAcoLIyEgNHTpUVatWVWhoaJ4vc0nSpk2bVLduXfXs2VO///676TgAAAAAAAAAAAAAADhFQkKCJk6cqIoVK+rzzz/P82UuSdqzZ49atWql1q1b6+jRo6bj5Hqs0AXcwfLly/Xqq6/q8uXLt3yNq6urateurQoVKjg8U7Zw4cLy8vKSh4eHXFys25+02+1KTExUfHy8rl275vCc3/DwcO3cufO2v6B8fX01YcIEDRgwIBtTAwAAAAAAAAAAAAAywgpd92/btm3q0aOHTp48edvX1ahRQ5UqVXLoCBQrVkze3t7y9PS0fEfgxo0bOnv2rCZPnqwuXbo4dAR27dp128dKurm5aejQoRo3bpylv86cjEIXcBvz5s3Tyy+/rJSUlHTHvL291aJFC3Xo0EHPPPOM8ufPbyBh9oiJiXF4HnBkZGSGr3vnnXc0ZswY2Wy2bE4IAAAAAAAAAAAAALiJQtf92bBhg9q1a6fY2Nh0x9zc3NSkSRN16NBB7dq1U/HixQ0kdJ6dO3eqQ4cOat++vaZPn+5wLDExUT/++KNCQ0P17bffKiIiIsNz9OjRQ3PnzpWbm1t2RM5TKHQBtzBjxowMV5xyd3fXoEGD9NZbbykgIMBAMrPi4+M1depUvffee/rzzz/THR8yZIg+/PBDSl0AAAAAAAAAAAAAYAiFrnu3atUqPfvss0pMTEx37MUXX9S4ceP00EMPGUjmfIsXL9ZLL72k+Ph4LVmyRF27dr3la5OTk7Vw4UK9+eabunjxYrrjISEhWrJkiTw8PLIycp5DoQvIwLRp0/T666+nm7dp00aTJ09W+fLlDaSyloiICL399tv6/PPP0x0bOHCgpkyZkv2hAAAAAAAAAAAAAAAUuu7RqlWrFBISoqSkJId5gwYNNHXqVD3yyCOGkjlXcnKyRowYoUmTJqXOzp49q5IlS97xvX/++afGjx+vDz/8UDdu3HA41rp1a61cuZLHLzoRhS4gjaNHj6p69erpWrfDhw/X+++/z8pTacyaNUuvvvqq0v4o+f7779WsWTNDqQAAAAAAAAAAAAAg74qOjla+fPkk/VXEuVnuQnrXrl1T5cqVdfnyZYd5ly5dtHDhQrm7uxtK5lyRkZF67rnn9J///Cd1VqpUKZ05c+aezrN27VqFhIQoPj7eYT5z5ky9+uqrTskKCl2AA7vdrieeeEKbNm1ymI8bN04jRowwEyoHWLRokV588UUlJyenzsqVK6f9+/fL29vbYDIAAAAAAAAAAAAAyL3sdrsuXLigsLAwhYWFac+ePbpw4YL+/PNP7d+/X5JUqVIl+fn5ycvLS6VKlVJwcHDqVqBAAcNfgXkvv/yy5syZ4zDr3bu3Zs2aJVdXV0OpnOv48eNq27atjhw54jDv1q2bFi9efM/n27Rpk9q0aaPo6OjUWUBAgA4fPqxixYplOi8odAEO5s2bp969ezvMBg0apI8++shQopxjxowZGjBggMNsxIgRGjdunKFEAAAAAAAAAAAAAJC72O127d69W8uXL9evv/6qsLAwXbp06b7PV7JkSQUHB6t27drq2rWrKlas6MS01rd582Y9/vjjDrNnnnlGK1asyDWPD1y/fr26dOmi69evpzs2Y8YM9evX777O+91336lly5YOs86dO+urr766r/PBEYUu4P/ExcWpZMmSunr1auqsdOnSOnjwIM8TvgspKSlq3Lixtm3bljpzc3PTiRMnVLp0aYPJAAAAAAAAAAAAACBni4yM1JdffqnZs2drz549DsdcXFxUuXLl1FW3ypQpIxcXF3Xo0EGStGbNGklSbGysjh07lrqaV3h4eLrrPPbYY+rbt686duwoLy+vLP+6TLLb7apZs6b27duXOvPz89OhQ4dUsmRJg8mcw263a8qUKRo6dKhSUlIyfM3evXtVvXr1+75Gjx49tGjRIofZ5s2b1bhx4/s+J/5CoQv4P8uWLVOnTp0cZmvWrNHTTz9tKFHOc+DAAQUHByspKSl1Nn78eA0fPtxgKgAAAAAAAAAAAADIeex2u7Zt26bZs2fr66+/VlxcnCTJ09NTISEhevzxxxUcHKxq1arJx8fH4b0xMTHy8/OTJEVHR2e4iElkZKT27t2rPXv2aP369Vq7dm1q8efBBx9Ujx491KdPH1WrVi2Lv1Iz9uzZo+DgYIfZxx9/rNdff91QIudJSEjQq6++qvnz59/yNf7+/rp27VqmHit5+fJlVa5cWdeuXUudvfTSS/r888/v+5z4C4Uu4P907NhRy5cvT91v0qSJfvzxR4OJcqY+ffo4/HCuXr269u7dazARAAAAAAAAAAAAAOQsR44cUd++fbVly5bUWdWqVdWnTx/16NFD+fPnv+3776bQlda5c+c0d+5czZkzR2fPnk2dd+zYUdOmTVOxYsXu86uxpmHDhmnSpEmp+6VKldLJkyczVXCyggsXLigkJEQ///zzbV/XsmVLrV27NtPXmzhxosMiLwEBAYqIiJCnp2emz52X5Y4HfgKZFBkZmbrM5E3du3c3lCZnS/u57du3TwcPHjSUBgAAAAAAAAAAAAByjsTERL377ruqUaOGtmzZIm9vb/Xq1Uvbtm3T/v37NXDgwDuWue5XiRIlNHLkSJ08eVJr165VSEiIXF1d9c0336hKlSqaNWvWLR/dl9OkpKRoyZIlDrNu3brl+DLXzp07VadOnQzLXGm/toYNGzrlms8995zDfmRkpNatW+eUc+dlFLoASaGhoUpISEjdd3d3V8eOHQ0myrkaN26s4sWLO8zS/iIEAAAAAAAAAAAAADj66aefFBwcrFGjRikxMVFPP/20Dh8+rLlz56pBgway2WzZksPV1VUtW7bUN998o927d6tOnTqKjIzUK6+8oiZNmujIkSPZkiMrbdu2Tb/99pvDLG0xKadZvHixHnvsMZ0/f95h7ufnp4ULFyrtA/waNWrklOuWLFlSjRs3TpcFmUOhC9Bfvxj/rmXLlnrwwQcNpcnZXF1d1aVLF4dZ2s8XAAAAAAAAAAAAAPCX2NhY9evXT40aNdKhQ4dUuHBhLVmyRKtXr1bp0qWNZqtRo4a2b9+ujz76SL6+vtqyZYtq1KihsWPHKjk52Wi2zEh7D/vhhx9WUFCQoTSZk5ycrGHDhql79+6Kj493OFamTBlt27ZNRYsWdVhdzc3NTXXr1nVahm7dujnsb9u2zWnnzqsodAGSjh075rDvrCZqXpV2aca0ny8AAAAAAAAAAAAAQLp69aqaNWummTNnSpJ69+6tw4cPq2vXrtm2IteduLq6atCgQTp48KBatWqlxMREjRw5Ul27dk1XIMop0t7DbtiwoWU+73sRGRmptm3batKkSemONW3aVDt27FBQUFC6AlutWrXk4+PjtBxpOxbnzp1TTEyM086fF1HoApT+h3XFihUNJckd0n5+v//+u6Kjow2lAQAAAAAAAAAAAADrOX36tBo2bKjt27frgQce0Pr16zVnzhzlz5/fdLQMlS5dWmvWrNH8+fPl4eGhZcuWqUWLFvrjjz9MR7tnuaEjcPz4cdWvX1//+c9/0h3r37+/vvvuOxUsWFCStHXrVofjzl7kpnz58hnmw/2j0IU8LyoqShcvXnSYVapUyVCa3KF8+fLp2sus0gUAAAAAAAAAAAAAfzl58qQaN26so0ePqmTJkvrpp5/UvHlz07HuyGazqWfPnlq3bp38/f21efNmPfnkkzmu1HX06FGH/ZzWEVi/fr3q1q2rI0eOpDsWFBSkyZMny93dXZKUlJSk7du3O7zG2YUub29vlSpVymFGRyBzKHQhz0v7Q8TFxUVly5Y1lCZ38PLySvcs57S/EAEAAAAAAAAAAAAgLzpz5oyaNm2qc+fOqXLlytq+fbsefvhh07HuSdOmTbVlyxYVLlxYYWFheuqpp3T9+nXTse7K9evXdfnyZYdZTluh67fffkstbKW1f/9+eXp6atSoUZKkffv2pXv84aOPPur0TGk/QzoCmUOhC3leRESEw/5DDz0kT09PQ2lyj8DAQIf9S5cumQkCAAAAAAAAAAAAABZx9epVPfHEEzp79qwqVqyojRs3qnjx4qZj3Zfq1avrhx9+UMGCBbVr1y49/fTTSkxMNB3rjtJ2BKT097et7qWXXtLx48c1dOjQWxa73n33XdlsNs2dO9dhXqFCBRUpUsTpmcqUKeOwn9HnjLtHoQt5XlxcnMO+r6+voSS5S9rPMe3nDAAAAAAAAAAAAAB5id1u16uvvqqTJ0+qTJky2rhxo4oVK2Y6VqZUq1ZNGzZs0AMPPKDt27drzJgxpiPdUdp7166urjly0ZeAgAB98MEHOnjwoNq1a3fL182YMcNhv2HDhlmSx8fHx2GfjkDmuJkOAJgWHx/vsO/t7W0oSe7i5eXlsM8PawAAAAAAAAAAAAB52aJFi7Rs2TK5ubnp66+/zrErc6VVo0YNzZ49W506ddKECRP09NNPZ1lpyBnSdgTS3ts2LTIyUgcOHNCBAwd04cIFJSQkKCEhQa6urvLy8lK+fPlUuXJlBQUFqXTp0qpQoYK+/PJL+fn53dX5GzVqlCW503Yt6AhkDoUu5HkpKSkO+66uroaS5C5ubo4/XtJ+zgAAAAAAAAAAAACQV5w5c0YDBgyQJI0aNUqPPPKI4UTO9eyzz+qFF17QF198oR49emjv3r3Kly+f6VgZslpHIDw8XEuWLNHPP/+s/fv36+zZs3f9Xj8/P1WtWlV79uy56/dkVaGLjoBz8chFAAAAAAAAAAAAAACALJKcnKwXXnhBUVFRatCggYYPH246UpaYOnWqSpcurVOnTmnQoEGm41ja1atXNXPmTDVs2FDly5fXO++8ozVr1txTmUuSoqOj9csvvyghISHdsYEDB6YrWRUsWFAVK1bMVHZkDwpdAAAAAAAAAAAAAAAAWeR//ud/tHnzZvn5+WnhwoXpSja5RUBAgBYuXCibzaa5c+fq22+/NR3Jcs6fP6+ePXuqWLFi6tevn7Zt25Zl19qwYYOmTp2qNm3apM4aNmwom82WZdeE8+TOnxIAAAAAAAAAAAAAAACG/fHHHxozZowkacqUKSpXrpzhRFmrcePGeuONNzRx4kQNHTpUbdq0Mf5IQyuIj4/X5MmT9f777ysmJuaOr3dzc1OlSpVUoUIF+fr6ysPDQ8nJyUpISNCFCxe0f/9+/fHHH7c9x8GDB9WvXz899dRTmj17tqZMmaKGDRs660tCFqPQBQAAAAAAAAAAAAAAkAXmzJmj2NhYVatWTb179zYdJ1u88847+uyzzxQeHq41a9aobdu2piMZtXLlSg0ePFgnT5685WsKFCigzp07q2HDhgoKClKlSpXk6el5y9fb7XZt3bpVjz322B2vv379em3cuFH9+/dX586d7+trQPbjkYsAAAAAAAAAAAAAAABOlpSUpOnTp0uSBg4cmGcedefr66s+ffpIkj7++GPDacxJSkrS4MGD1a5duwzLXJ6enurcubNWrlypCxcu6JNPPlH37t1VvXr125a5JMlms2VY5qpWrZrKlCmTYZaPP/5YTz31lI4ePXr/XxSyDYUuAAAAAAAAAAAAAAAAJ1u5cqXOnDmjAgUKqHv37qbjZKsBAwbI1dVVGzdu1P79+03HyXZRUVFq3bq1pkyZku6YzWZTnz59dPbsWX311Vdq06aN3N3d7+n8Y8eOzXC+b98+nThxQosWLdJDDz2U7vixY8dUr149bdiw4Z6uh+xHoQsAAAAAAAAAAAAAAMDJbq5O9corr8jb29twmuxVqlQpdejQQZI0depUw2my15UrV/Tkk09q/fr16Y49+uij2rVrl2bNmqXChQvf1/kjIyM1cuTIdPOtW7fKZrPJxcVF3bt319GjRzVixAh5eHike3/r1q21fPny+7o+sgeFLgAAAAAAAAAAAAAAACfas2ePNm/eLDc3N/Xr1890HCMGDhwoSVq0aJGuXLliOE32iI6OVtOmTbVr1y6HuYeHh2bNmqWtW7eqVq1ambpGgQIF0s3Kli2rhg0bOsz8/Pw0btw4HTx4UMHBwQ7HEhMT1alTJ61YsSJTWZB1KHQBAAAAAAAAAAAAAAA40dKlSyVJHTp0UPHixQ2nMaNhw4aqUaOG4uPjtXr1atNxspzdblffvn114MABh3mhQoW0adMm9enTRzabLVPXWLFihZKTk9PNDx48eMv3lC9fXlu3btWzzz7rME9JSdELL7yg8PDwTGVC1sjTha6UlBRNnz5dtWrVko+Pj/z9/fXYY49p5cqVpqMhjzp9+rRsNpvD5u7uruLFi6tz586pLd4pU6bIZrOpV69etzzXpk2b5OLiojp16igpKSm7vgQAAAAAAAAAAAAAyPN27NghSWrWrJnhJObYbLbUr3/nzp2G02S9Tz/9VEuWLHGYlSxZUlu3blWDBg0yff6kpCS1b98+3fzzzz+Xl5fXbd/r4+Ojf//733rllVcc5lFRUerUqZPi4+MznQ/OlWcLXXa7XZ07d9Zrr72mqKgovfTSS+ratauOHj2qdu3aafr06aYjIg8rV66cRo0apVGjRmnQoEGqVKmSli5dqkcffVSbN2/WwIED1aRJE82fP1+rVq1K9/7o6Gj16tVLnp6e+uKLL+Tm5mbgqwAAAAAAAAAAAACAvCclJSV1sY46deoYTmPWza//ZsEtt9q1a5cGDRrkMAsICNCPP/6oihUrOuUaTzzxRIbzl1566a7e7+rqqpkzZ6pbt24O87CwsHTZYV6eLXR98803+uabb9SwYUPt379f06ZN06xZs3Tw4EGVLl1aQ4cO1enTp03HRB5Vvnx5jR49WqNHj9YHH3ygjRs3avz48bpx44beeecd2Ww2zZ8/X/7+/urTp4+uXr3q8P5//vOfOn36tMaPH68qVaoY+ioAAAAAAAAAAAAAIO85ceKErl+/Li8vL1WrVs10HKPq1q0rSdq7d68SEhIMp8kaSUlJeu6555SYmOgwX7BggcqVK+eUaxw4cEBbtmxJN79w4cI9ncdms2nWrFnpegSfffaZ1qxZk6mMcK48W+hasWKFJGnEiBHy9vZOnRcsWFCDBw9WQkKC5s2bZyoekM7NVu3u3bslSaVLl9aUKVMUERGhf/zjH6mv++677zRr1iw1bdpUAwcONJIVAAAAAAAAAAAAAPKqm6tRBQcHy93d3XAaswIDA1WgQAHduHFDe/fuNR0nS3z11Vc6fvy4w2zo0KFq166dU85vt9sVFBSUbt6vXz8VLVr0ns/n5+enZcuWycfHx2E+duxY2e32+84J58qzha6LFy9KksqUKZPu2M3Zxo0bszUTcDf+/vjEXr16qW3btlq6dKmWLFmi69ev6+WXX5a/v7/mzZsnm81mMCkAAAAAAAAAAAAA5D07d+6U9P+rU+VlNpst9XPIjY9dTElJ0fjx4x1mtWrV0vvvv++0awwbNizD+fTp0+/7nA8//LCmTJniMPvll1+0adOm+z4nnCvPFroKFiwoSTp16lS6Yzdnx44dy9ZMwO18/vnnkqRGjRo5zGfNmqWCBQuqf//+evHFF3Xu3DlNmTJFpUuXNhETAAAAAAAAAAAAAPK0sLAwSdIjjzxiOIk11KlTR5L066+/Gk7ifKtXr9bBgwcdZiNHjnTaymxXrlzRBx98kG6+e/fuTC/w0qtXLwUGBjrM0pbTYE6eLXS1atVKkjRhwgTFx8enzq9evZraQrx+/bqBZMBfz1QePXq0Ro8erX/961964oknNGLECBUpUiTdD+siRYros88+0x9//KEVK1aobdu26tWrl6HkAAAAAAAAAAAAAJC33ewaFClSxGwQiyhcuLAkKTIy0nAS55s4caLD/sMPP6w2bdo47fyFChVKNwsODlatWrUyfW43Nze98cYbDrPvv/9eu3fvzvS5kXlud35J7vTcc89p/vz5+vHHHxUUFKSWLVvqxo0b+vbbb1N/qLq45J6+m91uV2xsrOkYlpSQkGA6Qjrh4eEaM2aMw6xo0aLasmWLypcvn+71ISEhqlu3rnbs2KEJEyZkV8x7kpiYqJiYGNMxAAAAAAAAAAAAACDL2O12h/uipu6RWiHDTTe7F5GRkYqOjs70ylKZFRcX55TzXLlyRdu2bXOYDR8+3Gldky+//DLD+S+//OKU80t/rdI1ZswYRUREpM5WrVql2rVrO+0auD95ttDl5uamtWvXasKECVq8eLFmzZqlgIAAdejQQUOHDlXFihVTW6K5QWxsrPz8/EzHwF1q0aKF1q1bJ0m6fPmyFixYoGHDhqlt27basWNHhn+W3t7eDv9rNZMmTdKkSZNMxwAAAAAAAAAAAACAbPHUU0+ZjiDJOiuF/fDDD8qXL5/pGE6zfft2h30fHx916dLFKedOTEzU888/n26+ZMkSpz3OUZK8vLzUvXt3TZ48OXWWtqQGM3LPElT3wdPTU6NGjdLRo0eVkJCgS5cu6bPPPtP58+cl8TxbWEOhQoU0dOhQjRgxQocPH9bbb79tOhIAAAAAAAAAAAAAAHnaTz/95LBft25deXh4OOXcderUyXDetWtXp5z/7xo2bOiw//PPPys5Odnp18G9ybMrdN3OzWXrsuIbwRQfHx9FR0ebjmFJixcvVt++fU3HuKMRI0Zo7ty5+uSTTzRo0CAFBgaajnRP3njjDY0cOdJ0DAAAAAAAAAAAAADIMna7XTVr1lR4eLi+++67dGWZ7BITE5O6MldERIR8fX2N5JCkBQsWqH///mrWrJlCQ0ONP3Lx559/VrNmzTJ9nrQrWTnrz3rXrl3at29fuvmVK1eccv60Hn30UYf9P//8UwcOHFCNGjWy5Hq4O3m60BUVFSV/f3+H2bJlyzR37lzVqVNHISEhhpI5n81mM/oD2so8PT1NR7gr3t7eGjZsmAYOHKixY8dqzpw5piPdEw8PD/4OAgAAAAAAAAAAAMj1/Pz8Uv+/Fe6R+vr6Gs2RkpIiSXrggQccPhtTvL29M30Ou92unTt3OszSFqPu97wZrc41bNgwFShQINPnz0jRokVVtmxZnTx5MnW2c+dOCl2G5elCV7169VSyZElVqVJFXl5e2rFjhzZt2qSyZctq6dKlcnV1NR0RcNC3b19NnDhRX3zxhUaMGKFy5cqZjgQAAAAAAAAAAAAA+JtChQpJks6cOWM4iTWcPXtWklSwYEHDSZwnMTFR8fHxDrMKFSpk+rz9+vXLcD5+/PhMn/t2Klas6FDoun79epZeD3fmYjqASV26dNHFixc1b948TZ06VREREXr77bcVFham0qVLm44HpOPl5aU333xTSUlJGjNmjOk4AAAAAAAAAAAAAIA0HnnkEUlKt4JTXrVjxw5JynDlqZwqLi5OXl5eDrPMroJ24cIFffrpp+nmBw4cyPLHVPr4+KT+f1dXV924cSNLr4c7y9MrdI0ePVqjR482HQNIFRgYKLvdftvXDBgwQAMGDEg337RpUxalAgAAAAAAAAAAAADcrZvFJQpdUnJysnbv3i1Jqlu3ruE0zvPAAw8oLi5OKSkpiouLU1xcnB588MFMnfOhhx5KN2vSpImqVq2aqfPejblz52ru3Lny8fGRu7t7ll8Pd5anC10AAAAAAAAAAAAAAADOdLO4tH//fsXGxjqsfpTXHDlyRNHR0fL19VWVKlVMx3E6FxcX+fr6Znp1rtmzZ2c4//777zN13rsVEBCQLdfB3cvTj1wEAAAAAAAAAAAAAABwpuLFi6to0aJKTk5WWFiY6ThG3XzcYu3ateXq6mo4jTXFx8erb9++6eYrV66UmxvrNOVVFLoAAAAAAAAAAAAAAACcxGazpa7Sldcfu3jz689Nj1t0toxWLvPw8FCbNm0MpIFVUOgCAAAAAAAAAAAAAABwonr16kmSVq9ebTiJOcnJyVq7dq0kCl23smXLFp0+fTrd/PLly9kfBpZCoQsAAAAAAAAAAAAAAMCJunfvLhcXF/3www86cOCA6ThGrFy5UqdPn1b+/PnVunVr03EsJyUlRY899li6+bhx4+Tv728gEayEQhcAAAAAAAAAAAAAAIATlS5dWu3bt5ckTZ061WwYQz7++GNJUt++feXj42M4jfU8//zzGc5HjBiRzUlgRRS6AAAAAAAAAAAAAAAAnGzgwIGSpIULF+rq1auG02SvPXv26L///a9cXV3Vr18/03Es58yZM1qyZEm6+fHjxw2kgRVR6AIAAAAAAAAAAAAAAHCyxo0bq2bNmoqPj9fs2bNNx8lWN1cl69ixo0qWLGk4jfUEBgamm7Vp00bly5fP/jCwJApdAAAAAAAAAAAAAAAATmaz2VJX6ZoxY4YSExMNJ8oely5d0uLFiyX9/ypl+H8fffRRhvNvv/02e4PA0ih0AQAAAAAAAAAAAAAAZIGuXbuqcOHCOnfunN59913TcbKc3W7XgAEDlJCQoDp16qhBgwamI1lKTEyMhgwZkm7+/fffy8WFCg/+H38bAAAAAAAAAAAAAAAAsoCXl5emTZsmSRo/fry2bdtmOFHW+vLLL7V06VK5ublpxowZstlspiNZSqlSpdLNChYsqGbNmhlIAyuj0AUAAAAAAAAAAAAAAJBFOnfurOeff14pKSnq0aOH/vzzT9ORssSZM2fUv39/SdLIkSNVp04dw4msZf369bp27Vq6+enTp7M/DCyPQheALGG3201HAAAAAAAAAAAAAABLmD59ukqVKqWTJ09q8ODBpuM4XXJysnr27KmoqCjVr19fb775pulIlpKcnKwWLVqkm3/88cfy9fU1kMj56Ag4F4Uu5Hmurq4O+zdu3DCUJHdJSkpy2HdzczOUBAAAAAAAAAAAAADMCggI0BdffCGbzaY5c+bo22+/NR3JqT766CP997//la+vrxYtWmTp+8NpOwJp721nhenTp2c4f/3117P82tklbdfCyn8HcgIKXcjzvL29Hfbj4+MNJcld4uLiHPbTfs4AAAAAAAAAAAAAkJc8/vjjGjp0qCSpZ8+e2rlzp+FEzvHtt9+mrsg1ZcoUlStXznCi20t77zouLi5LV5c6f/683nnnnXTzs2fPZtk1TUjbtaAjkDkUupDnpf0hEhUVZShJ7pL2uc9eXl6GkgAAAAAAAAAAAACANYwdO1aPPfaYoqKi9NRTT+nXX381HSlTVq9erc6dOyspKUk9evTQSy+9ZDrSHaXtCNjtdsXGxmbp9V544QWHlcHGjx+vkiVLZtk1TUjbEaDQlTkUupDnlShRwmH/4sWLiomJMZQm9wgPD3fYz22/jAAAAAAAAAAAAADgXnl6emr16tV69NFHdf36dTVv3ly//PKL6Vj35dtvv1XHjh1148YNdenSRXPnzpXNZjMd644eeuihdLO097edKX/+/Jo+fbr27t2r5s2b6/HHH9ewYcOy7Hqm0BFwLgpdyPPKly+f7pfK8ePHDaXJHf78809duHDBYVaxYkVDaQAAAAAAAAAAAADAOvLly6e1a9eqXr16unbtmpo2barVq1ebjnVPZs6cqY4dOyoxMVEdO3bUwoUL5ebmZjrWXfH19U238MuxY8ey/LpVq1bVd999p9WrV+eI4tu9Onr0qMM+HYHModCFPM/b21ulSpVymGXHD+vcLG0hzmazqXz58obSAAAAAAAAAAAAAIC1+Pv7a8OGDWrZsqXi4uLUvn17ffjhh0pOTjYd7bZiY2M1ePBg9evXTykpKerTp4/+/e9/y93d3XS0e1KpUiWH/ezqCNhsNvn5+WXLtbJTZGSkIiIiHGYUujKHQheg9D9I0jZHcW/Sfn6BgYHy9PQ0lAYAAAAAAAAAAAAArMfPz08rV65Uz549lZycrH/961+qX7++9u7dazpahjZs2KDq1atrypQpkqQxY8bos88+yzErc/0dHQHnSrvoi4uLi8qWLWsoTe5AoQtQ+h/WGzZsMJQkd0j7+dG8BQAAAAAAAAAAAID03N3dNW/ePH322WcKCAjQrl27VLt2bQ0fPlxxcXGm40mSrl69qhdffFHNmzdXeHi4ihcvrhUrVmjkyJE59tGBae9hb9y4USkpKYbS5HxpOwIs+pJ5FLoASc2aNXPY37Jli3777TdDaXK2hIQEffPNNw6ztJ8vAAAAAAAAAAAAAOAvNptNffv21eHDh/Xss88qOTlZEydOVFBQkNHFSFJSUrR48WJVqVJFCxYskM1mU//+/XXo0CG1bdvWWC5nSHsP+9y5c9q6dauhNDnf4sWLHfbpCGQehS5AUqtWrRQQEJC6b7fb9dVXXxlMlHOtXbtWkZGRqfs2m01du3Y1mAgAAAAAAAAAAAAArK9YsWJaunSpVqxYoeLFiys8PFzNmzdXrVq1NHPmTIf7sFnp4sWLmjBhgipWrKju3bvr8uXLqlq1qn766SdNnz5d/v7+2ZIjK1WrVk1BQUEOs7SlJNydAwcOaP/+/Q6z5557zlCa3INCFyDJ09NTHTt2dJh98cUXLKl4HxYsWOCw37hxY5UoUcJQGgAAAAAAAAAAAADIWdq2batDhw5pwIAB8vT0VFhYmPr166eHHnpIvXr10vbt22W32516zeTkZK1bt04hISEqWbKk3nzzTYWHhytfvnwaO3asfv31VzVo0MCp1zStW7duDvtLly5VTEyMoTQ5V9qOQPHixdW4cWNDaXIPm93Z3+VADrVhwwY1b97cYfbpp5/qlVdeMZQo58noM5w5c6ZeffVVQ4kAAAAAAAAAAAAAIOe6evWqFi5cqNmzZ+vQoUOp8ypVqujxxx9XzZo1FRwcrKCgIHl7e6cej4mJkZ+fnyQpOjpavr6+DueNiorS3r17FRYWpj179uiHH37Q2bNnU483aNBAffr0UefOndO9N7c4deqUypYt6zAbOnSoPvjgA0OJcp6jR4+qevXqSkxMTJ3985//1IcffmgwVe5AoQv4P8nJyapcubJOnDiROgsICNDhw4dVrFgxg8lyhri4OAUFBSk8PDx1FhAQoPDwcBUoUMBgMgAAAAAAAAAAAADI2ex2u7Zv365Zs2bp66+/VlxcnMNxV1dXVa5cWcHBwSpbtqxcXV01atQoSdL48eOVkpKi2NhYHTt2TGFhYQ73xW968MEH1aNHD/Xp00fVqlXLlq/LtKeeekrff/996r6rq6t27typ4OBgg6lyBrvdrieeeEKbNm1Knbm6umrfvn16+OGHzQXLJSh0AX/zww8/qFmzZg6zdu3a6ZtvvpGrq6uhVNZnt9s1ZMgQTZkyxWHOCmcAAAAAAAAAAAAA4FzXr1/XunXrFBYWlrpduXLlns9TokSJ1BW+ateuraeeesphla+8IKMVpmrVqqXNmzfn2pXJnOWTTz5R//79HWascOY8FLqANF544QUtXLjQYdalSxctXLhQ7u7uhlJZl91u15tvvqmJEyc6zBs2bKjNmzfLxcXFUDIAAAAAAAAAAAAAyP3sdrt+//331HLXxYsXFRUVpUWLFkmSOnfuLD8/P3l5eal06dIKDg5WzZo1VahQIcPJreHdd99NXc3spkaNGmnNmjXy9/c3lMraZs2apVdffVV/rxyVLl1aBw8epAjnJBS6gDQuX76sKlWq6OrVqw7zNm3a6Ouvv5aXl5ehZNaTkpKigQMHavr06Q5zd3d3hYWFqWrVqoaSAQAAAAAAAAAAAEDeZbfbFRsbK0ny8fGRzWYznMi6EhISVLNmTR05csRh/sgjj2jdunUqUKCAoWTWNGXKFA0ePDjdfM2aNXr66acNJMqdWDoHSKNQoUJauHChPD09HearVq1SjRo1tHr1atGDlLZv364GDRqkK3NJ0rRp0yhzAQAAAAAAAAAAAIAhNptNvr6+8vX1pcx1B56enlq8eLHy58/vMN+1a5eqVaumefPmKSUlxVA66zhy5Ihat26dYZlr6NChlLmcjEIXkIFWrVpp9erV8vHxcZgfO3ZMbdq0UYsWLbRr1648Wew6duyYunfvrkcffVQ7duxwOObi4qL58+frlVdeMZQOAAAAAAAAAAAAAIB7ExwcrE2bNqlIkSIO84sXL6p3796qU6eONmzYoOTkZEMJzTl//rwGDRqkoKAg/ec//0l3fOTIkZo0aZKBZLkbj1wEbmPr1q1q3bq1oqKiMjweGBiokJAQdejQQQ0aNJCrq2s2J8x6drtde/bsUWhoqJYvX66DBw9m+Do3Nzd9+eWX6ty5czYnBAAAAAAAAAAAAAAg844dO6ZmzZrpt99+y/B4kSJF1K5dO4WEhKhp06by8PDI5oTZ4/jx46kdgV9++eWWr5s0aZL+9a9/ZWOyvINCF3AHe/fuVd++fdOtRpWWj4+PypYtq3LlyqVuhQoVkpeXlzw9PeXiYt0F8ex2uxISEhQfH69r167p5MmTCg8PT91uVWi7qWLFivrkk0/05JNPZlNiAAAAAAAAAAAAAACc7+zZs/rHP/6R4WpUf+fh4aEyZco4dASKFi0qb29veXp6WnpBGLvdrsTERMXHxysyMlKnTp1y6AhcvXr1tu8vWrSoJk+erG7dumVT4ryHQhdwF1JSUrR48WINHz5c58+fNx3HMgICAjRq1Cj1798/1zaPAQAAAAAAAAAAAAB5z7p16zRkyBAdPnzYdBTL8PT01D//+U8NHz5c+fLlMx0nV6PQBdyDmJgY/c///I/mz5+vU6dOmY5jTJEiRdStWze99dZbKliwoOk4AAAAAAAAAAAAAAA43Y0bN/TZZ59p1qxZ2r9/v+k4xgQEBKhDhw4aOXKkypQpYzpOnkChC7gPdrtd+/bt0/LlyxUaGponfnCXKVNGISEh6tChg+rXr2/p5SEBAAAAAAAAAAAAAHCmEydOKDQ0VMuXL9fPP/9sOk6WK1KkiNq3b6+QkBA1adKEp3ZlMwpdgBP8/vvvOn78uMMzZU+ePKno6GjFx8crPj5eVv9W8/Lykqenp3x9fRUYGOjwnN9y5copMDBQNpvNdEwAAAAAAAAAAAAAAIy6cuWKjh075tARCA8PV2RkZGpHICUlxXTM2/Lw8JCXl5e8vb1VqlSpdB2BcuXKsdCLQRS6AAAAAAAAAAAAAAAAAMAiXEwHAAAAAAAAAAAAAAAAAAD8hUIXAAAAAAAAAAAAAAAAAFgEhS4AAAAAAAAAAAAAAAAAsAgKXQAAAAAAAAAAAAAAAABgERS6AAAAAAAAAAAAAAAAAMAiKHQBAAAAAAAAAAAAAAAAgEVQ6AIAAAAAAAAAAAAAAAAAi6DQBQAAAAAAAAAAAAAAAAAWQaELAAAAAAAAAAAAAAAAACyCQhcAAAAAAAAAAAAAAAAAWASFLgAAAAAAAAAAAAAAAACwCApdAAAAAAAAAAAAAAAAAGARFLoAAAAAAAAAAAAAAAAAwCIodAEAAAAAAAAAAAAAAACARVDoAgAAAAAAAAAAAAAAAACLoNAFAAAAAAAAAAAAAAAAABZBoQsAAAAAAAAAAAAAAAAALIJCFwAAAAAAAAAAAAAAAABYBIUuAAAAAAAAAAAAAAAAALAICl0AAAAAAAAAAAAAAAAAYBEUugAAAAAAAAAAAAAAAADAIih0AQAAAAAAAAAAAAAAAIBFUOgCAAAAAAAAAAAAAAAAAIug0AUAAAAAAAAAAAAAAAAAFkGhCwAAAAAAAAAAAAAAAAAsgkIXAAAAAAAAAAAAAAAAAFgEhS4AAAAAAAAAAAAAAAAAsAgKXQAAAAAAAAAAAAAAAABgERS6AAAAAAAAAAAAAAAAAMAiKHQBAAAAAAAAAAAAAAAAgEVQ6AIAAAAAAAAAAAAAAAAAi6DQBQAAAAAAAAAAAAAAAAAWQaELAAAAAAAAAAAAAAAAACyCQhcAAAAAAAAAAAAAAAAAWASFLgAAAAAAAAAAAAAAAACwCApdAAAAAAAAAAAAAAAAAGARFLoAAAAAAAAAAAAAAAAAwCIodAEAAAAAAAAAAAAAAACARVDoAgAAAAAAAAAAAAAAAACLoNAFAAAAAAAAAAAAAAAAABZBoQsAAAAAAAAAAAAAAAAALIJCFwAAAAAAAAAAAAAAAABYBIUuAAAAAAAAAAAAAAAAALAICl0AAAAAAAAAAAAAAAAAYBEUugAAAAAAAAAAAAAAAADAIih0AQAAAAAAAAAAAAAAAIBFUOgCAAAAAAAAAAAAAAAAAIug0AUAAAAAAAAAAAAAAAAAFkGhCwAAAAAAAAAAAAAAAAAsgkIXAAAAAAAAAAAAAAAAAFgEhS4AAAAAAAAAAAAAAAAAsAgKXQAAAAAAAAAAAAAAAABgERS6AAAAAAAAAAAAAAAAAMAiKHQBAAAAAAAAAAAAAAAAgEVQ6AIAAAAAAAAAAAAAAAAAi6DQBQAAAAAAAAAAAAAAAAAWQaELAAAAAAAAAAAAAAAAACyCQhcAAAAAAAAAAAAAAAAAWASFLgAAAAAAAAAAAAAAAACwCApdAAAAAAAAAAAAAAAAAGARFLoAAAAAAAAAAAAAAAAAwCIodAEAAAAAAAAAAAAAAACARVDoAgAAAAAAAAAAAAAAAACLoNAFAAAAAAAAAAAAAAAAABZBoQsAAAAAAAAAAAAAAAAALIJCFwAAAAAAAAAAAAAAAABYBIUuAAAAAAAAAAAAAAAAALAICl0AAAAAAAAAAAAAAAAAYBEUugAAAAAAAAAAAAAAAADAIih0AQAAAAAAAAAAAAAAAIBFUOgCAAAAAAAAAAAAAAAAAIug0AUAAAAAAAAAAAAAAAAAFkGhCwAAAAAAAAAAAAAAAAAsgkIXAAAAAAAAAAAAAAAAAFgEhS4AAAAAAAAAAAAAAAAAsIj/BaKmt8okAZbLAAAAAElFTkSuQmCC\n"
+          },
+          "metadata": {}
+        }
+      ],
+      "source": [
+        "dev = qml.device(\"default.qubit\", wires=10)\n",
+        "\n",
+        "\n",
+        "@qml.qnode(dev, interface=\"autograd\")\n",
+        "def circuit(template_weights):\n",
+        "    qml.MPS(\n",
+        "        wires=range(10),\n",
+        "        n_block_wires=2,\n",
+        "        block=block,\n",
+        "        n_params_block=2,\n",
+        "        template_weights=template_weights,\n",
+        "    )\n",
+        "    return qml.expval(qml.PauliZ(wires=9))\n",
+        "\n",
+        "\n",
+        "np.random.seed(1)\n",
+        "weights = np.random.random(size=[9, 2])\n",
+        "qml.drawer.use_style(\"black_white\")\n",
+        "fig, ax = qml.draw_mpl(circuit, expansion_strategy=\"device\")(weights)\n",
+        "fig.set_size_inches((24, 12))"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "U51UHgieqtzI"
+      },
+      "source": [
+        "Using the `~pennylane.MPS`{.interpreted-text role=\"class\"} template we\n",
+        "can easily change the block type, depth, and size. For example, the\n",
+        "block can contain a template like\n",
+        "`~pennylane.StronglyEntanglingLayers`{.interpreted-text role=\"class\"},\n",
+        "yielding a deeper block.\n"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": 94,
+      "metadata": {
+        "id": "o5CdoHOVqtzI"
+      },
+      "outputs": [],
+      "source": [
+        "def deep_block(weights, wires):\n",
+        "    qml.StronglyEntanglingLayers(weights, wires)"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "ZA19lHijqtzI"
+      },
+      "source": [
+        "We can use the `~pennylane.MPS`{.interpreted-text role=\"class\"} template\n",
+        "again and simply set `n_params_block = 3` to suit the new block.\n"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": 95,
+      "metadata": {
+        "id": "NYC8u_nBqtzI"
+      },
+      "outputs": [],
+      "source": [
+        "dev = qml.device(\"default.qubit\", wires=4)\n",
+        "\n",
+        "\n",
+        "@qml.qnode(dev, interface=\"autograd\")\n",
+        "def circuit(template_weights):\n",
+        "    qml.MPS(\n",
+        "        wires=range(4),\n",
+        "        n_block_wires=2,\n",
+        "        block=deep_block,\n",
+        "        n_params_block=3,\n",
+        "        template_weights=template_weights,\n",
+        "    )\n",
+        "    return qml.expval(qml.PauliZ(wires=3))"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "VLvvNISZqtzI"
+      },
+      "source": [
+        "To ensure that the weights of the block and `template_weights` sent to\n",
+        "the `~pennylane.MPS`{.interpreted-text role=\"class\"} template are\n",
+        "compatible, we use the\n",
+        "`~pennylane.StronglyEntanglingLayers.shape`{.interpreted-text\n",
+        "role=\"class\"} function and replicate the elemnts for the number of\n",
+        "expected blocks. Since this example will have three blocks, we replicate\n",
+        "the elements three times using `[list]*3`. The resulting circuit is\n",
+        "illustrated in the figure below the code. Note that this circuit retains\n",
+        "the layout of an MPS, but each block is now a deeper circuit with more\n",
+        "gates. Both this circuit and the previous circuit can be represented by\n",
+        "an MPS with a bond dimension of two.\n"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": 96,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 363
+        },
+        "id": "WnFzFoclqtzI",
+        "outputId": "0056e345-f32e-42cc-a00f-142dc9e63106"
+      },
+      "outputs": [
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "<Figure size 2100x500 with 1 Axes>"
+            ],
+            "image/png": "iVBORw0KGgoAAAANSUhEUgAACEgAAAIHCAYAAACGv/uSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACbE0lEQVR4nOz9e3gUdZ73/786BzoERIZA4qAuIQeZjYwKCe44QkRF2RkBOVygsuveIOEkB8FRAb8OiqOSeEJEIJBwGGaVe0CGEXB3EFhnyHDPLZJcASTKJg3JjbgTTipCTEjo/v2RXxqbJNBJursO/Xxcl9dlVTrV7+6iXpWqetenHB6PxyMAAAAAAAAAAAAAAAAbizC6AAAAAAAAAAAAAAAAgGCjQQIAAAAAAAAAAAAAANgeDRIAAAAAAAAAAAAAAMD2aJAAAAAAAAAAAAAAAAC2R4MEAAAAAAAAAAAAAACwPRokAAAAAAAAAAAAAACA7dEgAQAAAAAAAAAAAAAAbI8GCQAAAAAAAAAAAAAAYHs0SAAAAAAAAAAAAAAAANujQQIAAAAAAAAAAAAAANgeDRIAAAAAAAAAAAAAAMD2aJAAAAAAAAAAAAAAAAC2R4MEAAAAAAAAAAAAAACwPRokAAAAAAAAAAAAAACA7dEgAQAAAAAAAAAAAAAAbI8GCQAAAAAAAAAAAAAAYHs0SAAAAAAAAAAAAAAAANujQQIAAAAAAAAAAAAAANgeDRIAAAAAAAAAAAAAAMD2aJAAAAAAAAAAAAAAAAC2R4MEAAAAAAAAAAAAAACwPRokAAAAAAAAAAAAAACA7dEgAQAAAAAAAAAAAAAAbI8GCQAAAAAAAAAAAAAAYHs0SAAAAAAAAAAAAAAAANujQQIAAAAAAAAAAAAAANgeDRIAAAAAAAAAAAAAAMD2aJAAAAAAAAAAAAAAAAC2R4MEAAAAAAAAAAAAAACwPRokAAAAAAAAAAAAAACA7dEgAQAAAAAAAAAAAAAAbI8GCQAAAAAAAAAAAAAAYHs0SAAAAAAAAAAAAAAAANujQQIAAAAAAAAAAAAAANgeDRIAAAAAAAAAAAAAAMD2aJAAAAAAAAAAAAAAAAC2R4MEAAAAAAAAAAAAAACwPRokAAAAAAAAAAAAAACA7dEgAQAAAAAAAAAAAAAAbI8GCQAAAAAAAAAAAAAAYHs0SAAAAAAAAAAAAAAAANujQQIAAAAAAAAAAAAAANgeDRIAAAAAAAAAAAAAAMD2aJAAAAAAAAAAAAAAAAC2R4MEAAAAAAAAAAAAAACwPRokAAAAAAAAAAAAAACA7dEgAQAAAAAAAAAAAAAAbI8GCQAAAAAAAAAAAAAAYHs0SAAAAAAAAAAAAAAAANujQQIAAAAAAAAAAAAAANgeDRIAAAAAAAAAAAAAAMD2aJAAAAAAAAAAAAAAAAC2R4MEAAAAAAAAAAAAAACwPRokAAAAAAAAAAAAAACA7dEgAQAAAAAAAAAAAAAAbI8GCQAAAAAAAAAAAAAAYHs0SAAAAAAAAAAAAAAAANujQQIAAAAAAAAAAAAAANgeDRIAAAAAAAAAAAAAAMD2aJAAAAAAAAAAAAAAAAC2R4MEAAAAAAAAAAAAAACwPRokAAAAAAAAAAAAAACA7dEgAQAAAAAAAAAAAAAAbI8GCQAAAAAAAAAAAAAAYHs0SAAAAAAAAAAAAAAAANujQQIAAAAAAAAAAAAAANgeDRIAAAAAAAAAAAAAAMD2aJAAAAAAAAAAAAAAAAC2F2V0AUAo1NTU6MiRIyotLVVZWZlOnTql6upq1dTUGF2aD6fTqZiYGHXt2lUpKSlKTU1VUlKSnE6n0aUBCBHyCgAAAAAAAAAAIDhokIAt1dXV6S9/+Ys2btyo7du3q6KiQh6Px+iyWsXhcKhHjx4aPHiwRo8erbvuuktRUWy6gF2QVwAAAAAAAAAAAKHh8Fj1KgzQhLKyMr3xxhvatGmTTp48aXQ5QdGtWzeNGjVKTz31lJKTk40uB0ArkVcAAAAAAAAAAAChRYMEbKGqqkrZ2dnKycnRhQsXjC4nJJxOp5555hnNnTtXsbGxRpcDwE/kFXkFAAAAAAAAAACMQYMELO+jjz7SpEmTVFFRcdXXJiQkKCUlRTfeeKNiY2PVrl07RUREhKDKq3O73bpw4YKqqqp07NgxlZWVqbKy8qq/l5iYqBUrVuj+++8PQZUA2oK8Iq8AAAAAAAAAAIBxaJCApW3evFljxoxRXV1dkz9PT0/X6NGjNWjQIKWmpqpTp04hrrBtzp49q9LSUu3cuVMbNmxQUVFRk6+LiorShg0bNGLEiBBXCMBf5FU98goAAAAAAAAAABiFBglYVnMXGyMjIzVjxgzNmDFDSUlJBlUXHC6XS++8846WLFmiixcv+vyMi46AeZFX5BUAAAAAAAAAADAeDRKwpI8++kgPPPBAo4uNmZmZWrp0qXr37m1QZaHx2Wefadq0adq9e7fP/KioKH344YcMXw+YCHlFXgEAAAAAAAAAAHOgQQKWU1VVpbS0NFVUVPjMnzhxonJzcxUREWFQZaHldrs1ZcoU5eXl+cxPTExUSUmJ2rdvb1BlQD23261vvvlGktS5c+ew2TZ/iLyqR17B7MgrAAAAAAAAAAgPUUYXALRUdnZ22F9slKSIiAjl5uZKks9Fx/LycmVnZ2vBggVGlYYw8/XXX6uoqEj79u1TYWGhCgsL9dVXX6m6utrndTExMerevbvS09OVkZGh9PR09e3bVz/60Y8Mqjz4yKt65BXMgrwCAAAAAAAAgPDGCBKwlLKyMvXu3Vs1NTXeeZmZmfr444/D6mLjD7ndbg0cOFAFBQXeeU6nU4cOHVJycrKBlcHODh8+rOXLl2vr1q06cuRIm5aVlJSkoUOHaurUqerVq1eAKjQeedUYeQUjkFcAAAAAAAAAgAY0SMBSpk6d6r0LWZIiIyNVXFys3r17G1iV8Q4ePKg+ffro4sWL3nlTpkzR8uXLDawKdlNXV6ctW7Zo2bJl2rVrl8/Pevbs6XOndXJysjwej/eit8vlksPhkMvlUmFhoffu7aNHj/os595779Xjjz+uYcOGKSrK2oMckVdNI68QCuQVAAAAAAAAAKApNEjAMurq6tS9e3edPHnSO2/WrFlatGiRgVWZx+zZs/XWW295p+Pj43X8+HEu2qDNqqur9eabb2rZsmU6fvy4pPpHJgwZMkRZWVm688471aVLl0a/d/78eXXs2FGSdO7cOXXo0KHRa86cOaM9e/YoPz9f27Ztk9vtliRdf/31mjZtmp588kk5nc4gfrrgIK+ujLxCsJBXAAAAAAAAAIAroUEClrFr1y4NGjTIZ57L5VJSUpJBFZmLy+VSSkqKz7xdu3bpnnvuMagi2MHevXs1fvx4lZSUSJK6deumiRMnatKkSerRo8cVf9efC44/VFFRoZUrVyovL8/bWJCWlqa1a9eqX79+Afg0oUNeXRl5hWAgrwAAAAAAAAAAVxOeD0GHJW3cuNFnOj09nYuNP5CcnKy+ffv6zLv8OwP8VV1drblz5+qOO+5QSUmJEhIStG7dOh07dkwvv/zyVS82tkaPHj308ssv69ixY1q3bp0SEhJUUlKin/3sZ5o3b56qq6sD/p7BQl5dGXmFQCKvAAAAAAAAAAD+okEClrF9+3af6dGjRxtUiXld/p1c/p0B/ti7d6/69u2rnJwcud1ujR07VocOHdKjjz4akuHjnU6nHn30UR06dEhjx46V2+1Wdna20tPTtXfv3qC/fyCQV1dHXiEQyCsAAAAAAAAAQEvQIAFLqKmpUUVFhc+8y4evh3Tffff5TFdUVKimpsagamBF77//vvr376/PP/9cCQkJ2rx5s959913FxcWFvJa4uDi9++672rx5s+Lj41VSUqL+/ftr06ZNIa+lJcgr/5BXaCvyCgAAAAAAAADQUjRIwBKOHDkij8fjM++mm24yqBrzSk1N9Zl2u906evSoQdXAalavXq2HHnpItbW1evDBB3Xo0CENHz7c6LI0fPhwlZSU6MEHH1Rtba3GjBmjNWvWGF1Ws8gr/5BXaAvyCgAAAAAAAADQGjRIwBJKS0t9phMSEnTNNdcYVI15derUSfHx8T7zLv/ugKasWbNGEyZMkNvt1oQJE7Rp0yZD7sJuTlxcnDZt2uSt8bHHHjPtRUfyyj/kFVqLvAIAAAAAAAAAtBYNErCEsrIyn+mUlBSDKjG/y+/K5oIjrmbTpk3KysqSJD3xxBPKy8tTZGSkwVU1FhkZqby8PD3xxBOSpKysLP3hD38wuKrGyCv/kVdoKfIKAAAAAAAAANAWNEjAEk6dOuUzfeONNxpUifndcMMNPtOnT582qBJYwd69e/XII4/I7XYrKytLixYtksPhMLqsZjkcDi1atMh7Z/bDDz+sTz/91OiyfJBX/iOv0BLkFQAAAAAAAACgrWiQgCVUV1f7TMfGxhpUifld/t1c/t0BDaqrqzVu3DjV1tbqwQcfVG5urqkvNjZwOBxasWKFHnzwQdXW1mrcuHGm+ndOXvmPvIK/yCsAAAAAAAAAQCDQIAFLqKmp8Zlu166dQZWYn9Pp9JnmQgyas2DBAn3++edKSEjQqlWrTDlMfXMiIyOVn5+v+Ph4lZSU6MUXXzS6JC/yyn/kFfxFXgEAAAAAAAAAAoEGCVhSRAT/dJvDdwN/7N27V6+++qokKTc3V3FxcQZX1HJdu3ZVbm6uJCknJ8e0Q9ezTTaP7wb+IK8AAAAAAAAAAIHClQkACDPV1dUaP3683G63xo4dq+HDhxtdUquNGDFCjzzyiNxut8aNG9do9AYA1kZeAQAAAAAAAAACiQYJAAgzixYtUklJiRISEvT2228bXU6bLVmyRAkJCSopKdGbb75pdDkAAoi8AgAAAAAAAAAEEg0SABBG6urqtHTpUknSa6+9Zsmh6i8XFxfnHX5/2bJlqqurM7giAIFAXgEAAAAAAAAAAo0GCQC2UVtbqzNnzujMmTOqra01uhxT2rJli44fP674+HiNGTPG6HIC5qGHHlK3bt305ZdfauvWrUaXA1wVeXV15BUAAAAAAAAAINBokABgacXFxZo5c6b69eunjh07Ki4uTnFxcerYsaP69eunmTNnav/+/UaXaRrLli2TJGVlZcnpdBpcTeA4nU5lZWVJuvQZAbMhr1qGvAIAAAAAAAAABBoNEgAs6cCBA8rMzFSfPn20ZMkS7du3TxcuXPD+/MKFC9q3b5+WLFmi2267TZmZmTpw4ICBFRvviy++0K5duxQREaFJkyYZXU7ATZ48WQ6HQzt37tThw4eNLgfwIq9ajrwCAAAAAAAAAAQDDRIALMXj8Sg7O1sZGRkqKCjw+/cKCgqUkZGh7OxseTyeIFZoXrm5uZKkIUOGqEePHgZXE3g9evTQkCFDJEnLly83uBqAvGoL8goAAAAAAAAAEAw0SACwDI/HoxkzZmjevHmqra1t8e/X1tZq3rx5mjFjRlhedGx41n3D0O521PDZtm3bZnAlCHfkVduQVwAAAAAAAACAYAiLBolPP/1Uv/zlL9W5c2d16NBBP/vZz7Rhwwajy4IJlZeXy+Fw+PwXHR2t66+/XmPGjNG+ffvatPxx48bJ4XCovLw8MAWHmZycHC1durTNy1m6dKlycnICUJF1fP311zpy5Igk6c477zS4muBp+Gwul0vffPONscUEGXllbuRV65FXAAAAAAAAAIBgiTK6gGD7+OOPNXjwYMXExOjhhx/WNddco02bNumhhx7SsWPH9Ktf/croEmFCycnJ+td//VdJ0vnz51VYWKiNGzfqj3/8o3bu3KnMzEyDKww/Bw4c0Pz58wO2vPnz5+uXv/ylbrnlloAt08yKiookST179lSXLl0MriZ44uLilJiYqPLychUVFemee+4xuqSgI6/Mh7xqG/IKAAAAAAAAABAsth5Boq6uThMnTlRERIR2796tlStX6o033tD+/ft100036dlnn1VFRYXRZcKEUlJS9MILL+iFF17Qa6+9pv/6r//SwoULVVtbq1//+tdGlxeWpk+f3qph6ptTW1ur6dOnB2x5ZtcwmkB6errBlQRfRkaGJLV5BAWrIK/Mh7xqG/IKAAAAAAAAABAstm6Q+K//+i+5XC6NHTtWt912m3f+tddeq2effVYXLlzQb3/7W+MKhKVMmDBBklRYWOgz/9SpU5o1a5Z69uwpp9Op+Ph4jRkzRp999pnP6xITE73/3nr27OkdEn/gwIEhqd/KiouLVVBQEPDlFhQUaP/+/QFfrhk1/LttuBhnZw0XVS/fVsMJeWUc8qrtyCsAAAAAAAAAQLDY+hEbf/7znyVJ999/f6OfDR48WJL0l7/8JZQlwQaioi5tNidPntQdd9whl8ulgQMH6uGHH9bRo0f1/vvv68MPP9T27dvVv39/SdKsWbO0du1a7d+/X0888YQ6d+4sqf5CJK5s9erVQV324sWLg7Z8s2i4+BYOd2RzwfES8ir0yKu2I68AAAAAAAAAAMFi6waJ0tJSSVJqamqjn1133XXq2LGj9zXA1eTn50uS9wKiJM2ZM0cul0vz5s3TK6+84p3/H//xH3rggQc0fvx4HT58WBEREZo1a5aKi4u1f/9+zZo1iwuNLfC3v/3Nkss2k6+++kqSlJycbHAlwZeSkiLp0mcOR+SVccirtiOvAAAAAAAAAADBYusGiW+//VZS/SM1mtKpUyfva6zC4/GoqqrK6DJCLpDPcvdHWVmZXnjhBUnS+fPnVVhYqI8//lgJCQl67bXXJEkXLlzQ+vXrFRcXp+eee87n93/5y1/qvvvu044dO7Rnzx4NGDAgpPX/UG1trc6fP2/Y+7dVbW2tDhw4ELTlHzhwQN9++63PnfZ243a7VV1dLak+Q0L17+GH7xPKf4Mej0eS9P333+u7775TRERonyZFXrUeeXVl5FXwhGteAQAAAAAAAGib2NhYORwOo8tAC9j3DLtNVVVVqWPHjkaXYXsul0sLFizwmXfdddepoKDAe7fnF198oerqat19992KjY1ttIy7775bO3bsUHFxsaEXHPPy8pSXl2fY+5tdTU2N9/EB4cCoO7ITEhIMed9OnToZ8r6hRF6FD/IqNMgrAAAAAAAAAP46d+6cOnToYHQZaAFb36bWMHJEc6NEnD17ttnRJRDeBg8eLI/HI4/HoxMnTui1117TiRMnNGzYMJ07d05S/b8fqfkLKT/+8Y99XgcAwUBeAQAAAAAAAAAA+MfWI0ikpqZKkkpLS5Wenu7zs7///e86d+6cbr/9diNKa7XY2FjvBa9wMnv2bMPuKu7WrZueeuopffvtt3rppZf03HPP6a233vLe6VlZWdnk7/3973+XZPwdoRMnTtSiRYsMraEtamtrlZCQoAsXLgRl+U6nU5WVlbYfsr7h36HL5QrZ3dHnz5/3vldlZWXIOigrKyu9d56fPXs25EPWk1etR15dGXkVPOGaVwAAAAAAAADapqlRm2Fu9j3DLumuu+7SwoUL9dFHH+nhhx/2+dn27du9r7ESh8MRlsO0REdHG12Cnn32Wa1evVrLli3TrFmz9JOf/EQxMTH69NNPVVVV1SgA//znP0uSbrvtNu+8yMhISdLFixdDVbaio6Mt/2/mlltu0b59+4K27HAYSSYmJkbV1dWGZUiHDh1C9r4Nz/pq3769rrnmmpC85w+RV61HXl192eRV8IVTXgEAAAAAAABAuLH1bWr33nuvkpKS9N5776m4uNg7/9tvv9Urr7yidu3a6d/+7d+MKxCW0r59e82ZM0e1tbX6zW9+o3bt2umRRx7RqVOntHDhQp/X/ulPf9L27duVkpKiO++80zu/S5cukqRjx46FtHaru+OOOyy5bDPp3r27pPo7su2urKxM0qXPHI7IK+OQV21HXgEAAAAAAAAAgsXWDRJRUVHKz8+X2+1WZmamJk2apF/96le69dZb9d///d965ZVXlJiYaHSZsJBJkyape/fuWrdunVwul3JycpSUlKSXXnpJ9957r5599lmNHTtWQ4cOVWxsrNasWeMzXPY999zjXc68efP00ksv6Xe/+51RH8cyHnvsMUsu20waHjNUWFhocCXB1/AZL3+0Urghr4xBXrUdeQUAAAAAAAAACBZbN0hI0t13362//vWvuvPOO/X73/9ey5cvV0JCgv73//7f+tWvfmV0ebCYmJgYzZs3T3V1dVqwYIG6deumTz75RDNnzpTL5dLrr7+uHTt2aPjw4frkk0/Uv39/n9//xS9+oVdffVWS9MYbb+jXv/61Vq1aZcRHsZTbbrtNAwYMCPhyBwwYoFtvvTXgyzWjhotvwRr630y44FiPvDIGedV25BUAAAAAAAAAIFiijC4gFG6//Xb953/+p9FlwAISExPl8Xiu+Jrp06dr+vTp3umuXbtq8eLFWrx4sV/v8fTTT+vpp59uU53h6J133lFGRoZqa2sDsrzo6GgtXbo0IMuygoyMDEnhcUd2w0XVhs9sV+SVeZFXbUNeAQAAAAAAAACCxfYjSACwh1tuuUUvvvhiwJb34osv6qc//WnAlmd2ffv2lSQdPXpUZ86cMbia4Dl9+rTKy8slXfrMQKiRV21DXgEAAAAAAAAAgoUGCQCWMWfOHE2bNq3Ny5k+fbrmzJkTgIqs40c/+pGSkpIkSXv27DG4muBp+GzJycnq3LmzscUgrJFXrUdeAQAAAAAAAACChQYJAJbhcDi0ZMkSLVy4UNHR0S3+/ejoaC1cuFBvv/22HA5HECo0t6FDh0qS8vPzDa4keBo+25AhQwyuBOGOvGob8goAAAAAAAAAEAw0SACwFIfDoblz52rfvn0aMGCA3783YMAAFRYWau7cuWF5sVGSpk6dKknatm2bKioqDK4m8MrLy7Vt2zZJlz4rYCTyqvXIKwAAAAAAAABAMNAgAcCSbrnlFu3evVvFxcWaOXOm+vXrp3bt2nl/7nQ61a9fP82cOVPFxcXavXu3fvrTnxpYsfF69eqle++9V263WytXrjS6nIBbuXKlPB6PBg0apF69ehldDuBFXrUceQUAAAAAAAAACIYoowsAgLa49dZbtXjxYknSt99+632Oe2Vlpa699loDKzOnxx9/XLt27VJ+fr7mz58vp9NpdEkBUVNT4x2u/vHHHze4GqBp5FXLkFcAAAAAAAAAgEBjBAkAthEVFdXk/+OSYcOG6frrr9eJEye0YcMGo8sJmN///vc6efKkbrjhBg0dOtTocoCrIq+ujrwCAAAAAAAAAAQaDRIAEEaioqI0bdo0SdLTTz+t06dPG1xR250+fVrPPPOMpPq7sbnYDNgDeQUAAAAAAAAACDQaJAAgzDz55JNKS0tTZWWlZs6caXQ5bTZjxgxVVlYqLS1NTz75pNHlAAgg8goAAAAAAAAAEEg0SABAmHE6nVqzZo0iIiL03nvv6Y9//KPRJbXa5s2btX79ekVGRmrt2rVyOp1GlwQggMgrAAAAAAAAAEAg0SABS3K73UaXYFp8N/DH7bff7h3mfcqUKZYcuv7UqVOaMmWKJOmZZ55Rv379DK6oaWyTzeO7gT/IKwAAAAAAAABAoNAgAUu4/C7LCxcuGFSJ+dXU1PhMx8TEGFQJzO7555/3Dl0/YcIEXbx40eiS/Hbx4kVlZWXpxIkTSktL0/PPP290SV7klf/IK/iLvAIAAAAAAAAABAINErCEyy+aVVVVGVSJ+V3+3XDBEc2JiYnRmjVrFB0drQ8++ECTJ0+Wx+Mxuqyr8ng8mjx5sj744AO1a9fOdEPVk1f+I6/gL/IKAAAAAAAAABAINEjAErp27eozfezYMYMqMb8vv/zSZzouLs6gSmAFt99+u9avX6+IiAitWrVKs2fPNvVFR4/Ho9mzZ2vVqlWKiIjQ+vXrTTdUPXnlP/IKLUFeAQAAAAAAAADaigYJWEJKSorPdFlZmUGVmF9paanPdGpqqkGVwCpGjRql/Px8SdLixYs1ceJEUw5f3zBM/eLFiyVJq1at0siRIw2uqjHyyn/kFVqKvAIAAAAAAAAAtAUNErCEyy+aVVZW6uzZswZVY15nz57ViRMnfOZxwRH+GD9+vFavXu29M3vUqFE6ffq00WV5nTp1SqNGjfLWuGbNGo0bN87osppEXvmHvEJrkVcAAAAAAAAAgNaiQQKWkJSUJIfD4TPv8juP0fg7iYiIUM+ePQ2qBlYzfvx4bdiwQdHR0frggw+UlpamzZs3G12WNm/erJtvvlkffPCBoqOjtXHjRlNfbCSv/ENeoS3IKwAAAAAAAABAa9AgAUtwOp3q0aOHz7ydO3caVI157dixw2e6R48ecjqdBlUDKxo1apT++te/6h//8R914sQJjRw5Uv/yL/9iyN3Zp0+f1tixYzVy5EidOHFCaWlp2rNnj+mHqSev/ENeoa3IKwAAAAAAAABAS9EgAcsYPHiwz/TGjRsNqsS8Lv9OLv/OAH/cfvvtKioq0ty5cxUREaH33ntPN998s9atW6eampqgv39NTY3WrVunm2++WevXr1dERITmzZunwsJC9evXL+jvHwjk1dWRVwgE8goAAAAAAAAA0BIOj8fjMboIwB+7du3SoEGDfOa5XC4lJSUZVJG5uFwupaSk+MzbtWuX7rnnHoMqCr3z58+rY8eOkqRz586pQ4cOBldkfZ9++qnGjRunkpISSVK3bt2UlZWlyZMnNxol4XItXR8VFRVasWKF8vPzdfLkSUlSWlqa1q5da7kLjeTVlZFX5FUwkFcAAAAAAAAAgKthBAlYxl133aVu3br5zFuyZIlB1ZjPO++84zMdHx+vzMxMg6qBXfTr10+FhYV65ZVXdP311+vkyZNauHChkpKSNGzYMG3ZskVnzpxp9fLPnDmjLVu2aNiwYerZs6cWLlyokydP6oYbbtArr7yioqIiS15sJK+ujLxCMJBXAAAAAAAAAICrYQQJWMrUqVOVm5vrnY6MjFRxcbF69+5tYFXGO3jwoPr06aOLFy96502ZMkXLly83sKrQ447s4Kqrq9PWrVu1bNky7dy50+dniYmJysjIUHp6utLT05WSkiKPx6Pk5GRJ9SMGOBwOlZWVqbCwUIWFhdq3b5/Ky8t9ljNo0CA9/vjjGjp0qKKiokL10YKCvGoaeVWPvAou8goAAAAAAAAA0BQaJGApLpdLN998s89zxTMzM/Xxxx8rIiI8B0Rxu90aOHCgCgoKvPOcTqcOHTrkvdgTLrjgGDqHDx/W8uXLtW3bNrlcrjYtKzk5WUOGDNHUqVPVq1evAFVoPPKqMfLqEvIqdMgrAAAAAAAAAEADGiRgOfPnz9dvfvMbn3kTJ05Ubm5u2F10dLvdmjJlivLy8nzmz58/XwsWLDCoKuNwwdEY33zzjYqKirRv3z7v3dZfffWVvv/+e5/XtW/fXt27d1d6err37u2+ffuqc+fOxhQeAuTVJeSVL/LKGOQVAAAAAAAAAIQ3GiRgOVVVVUpLS1NFRYXP/HC76NjcxcbExESVlJSoffv2BlVmHC44mst3332nTp06SZLOnj2ra665xuCKQo+8qkdeNUZemQt5BQAAAAAAAADhITyuzMBWYmNjtXLlykbP+87Ly9PAgQN18OBBgyoLnYMHD2rgwIGNLjZGRUVpxYoVYXmxEebzw4v/4dIIcDnyiryCNZBXAAAAAAAAABAeOAMMS7r//vu1YcOGRhcdCwoK1KdPH82ePbvNzxk3I5fLpdmzZ6tPnz4qKCjw+VlUVJQ2bNig+++/36DqADSFvCKvAAAAAAAAAACAOfCIDVja5s2bNWbMGNXV1TX58759+2r06NG67777lJqa6h0+2yrOnj2r0tJS7dixQxs3blRRUVGTr2u42DhixIgQV2guDFlvLqwPX+RVPfKqHtuHubA+AAAAAAAAACA80CABy/voo480efJklZeXX/W18fHxSk1N1Q033KDY2Fg5nU7TDKXtdrtVU1OjqqoqffnllyotLdWJEyeu+nuJiYlasWIFd2KLC1xmw/pojLwirxqwfZgL6wMAAAAAAAAAwgMNErCF77//XtnZ2crJyVFNTY3R5YSE0+nUnDlzNHfuXLVv397ockyBC1zmwvpoGnlFXklsH2bD+gAAAAAAAACA8ECDBGzF5XLp9ddf16ZNm3Ty5EmjywmK+Ph4jRw5Uk899ZSSk5ONLsdUuMBlLqyPKyOvwhvbh7mwPgAAAAAAAAAgPNAgAVuqq6vT7t27tXHjRm3fvl3l5eWy6j91h8OhxMREDR48WKNHj1ZmZqaioqKMLsuUuMBlLqwP/5BX4Yntw1xYHwAAAAAAAAAQHmiQQFioqanR0aNHVVpaqtLSUp0+fVrV1dWqrq42ujQfMTExiomJUVxcnFJTU5WamqqePXvK6XQaXZolcIHLXFgfrUNehQe2D3NhfQAAAAAAAABAeOC2ToQFp9Opn/zkJ/rJT35idCkAcEXkFQAAAAAAAAAAQHBEGF0AAAAAAAAAAAAAAABAsNEgAQAAAAAAAAAAAAAAbI8GCQAAAAAAAAAAAAAAYHs0SAAAAAAAAAAAAAAAANujQQIAAAAAAAAAAAAAANgeDRIAAAAAAAAAAAAAAMD2aJAAAAAAAAAAAAAAAAC2R4MEAAAAAAAAAAAAAACwPRokAAAAAAAAAAAAAACA7dEgAQAAAAAAAAAAAAAAbI8GCQAAAAAAAAAAAAAAYHs0SAAAAAAAAAAAAAAAANujQQIAAAAAAAAAAAAAANgeDRIAAAAAAAAAAAAAAMD2aJAAAAAAAAAAAAAAAAC2R4MEAAAAAAAAAAAAAACwPRokAAAAAAAAAAAAAACA7dEgAQAAAAAAAAAAAAAAbI8GCQAAAAAAAAAAAAAAYHtRRhcAhEJNTY2OHDmi0tJSlZWV6dSpU6qurlZNTY3RpflwOp2KiYlR165dlZKSotTUVCUlJcnpdBpdGoAQIa8AWAV5BcAqyCsAAAAAANCABgnYUl1dnf7yl79o48aN2r59uyoqKuTxeIwuq1UcDod69OihwYMHa/To0brrrrsUFcWmC9gFeQXAKsgrAFZBXgEAAAAAgOY4PFY9SwA0oaysTG+88YY2bdqkkydPGl1OUHTr1k2jRo3SU089peTkZKPLMZXz58+rY8eOkqRz586pQ4cOBlcU3lgfV0ZehTe2D3NhfVwZeQXAKsgrAAAAAABwNTRIwBaqqqqUnZ2tnJwcXbhwwehyQsLpdOqZZ57R3LlzFRsba3Q5psAFLnNhfTSNvCKvJLYPs2F9NI28Iq8AqyCvyCsAAAAAAPxFgwQs76OPPtKkSZNUUVFx1dcmJCQoJSVFN954o2JjY9WuXTtFRESEoMqrc7vdunDhgqqqqnTs2DGVlZWpsrLyqr+XmJioFStW6P777w9BlebGBS5zYX00Rl6RVw3YPsyF9dEYeUVeAVZBXpFXAAAAAAC0BA0SsLTNmzdrzJgxqqura/Ln6enpGj16tAYNGqTU1FR16tQpxBW2zdmzZ1VaWqqdO3dqw4YNKioqavJ1UVFR2rBhg0aMGBHiCs2FC1zmwvrwRV7VI6/qsX2YC+vDF3lVj7wCzI+8qkdeAQAAAADgPxokYFnNnQyLjIzUjBkzNGPGDCUlJRlUXXC4XC698847WrJkiS5evOjzM06KcYHLbFgfl5BX5NXl2D7MhfVxCXlFXgFWQV6RVwAAAAAAtAYNErCkjz76SA888ECjk2GZmZlaunSpevfubVBlofHZZ59p2rRp2r17t8/8qKgoffjhh2E7vCoXuMyF9VGPvCKvmsL2YS6sj3rkFXkFWAV5RV4BAAAAANBaNEjAcqqqqpSWltboGbMTJ05Ubm6uaZ4hG2xut1tTpkxRXl6ez/zExESVlJSoffv2BlVmnO+++847bO7Zs2d1zTXXGFxReOOCI3nVgLxqjLwyF/KKvGpAXsHs3G63vvnmG0lS586dw2bb/CHyqh55BbMjrwAAAACYVZTRBQAtlZ2dHfYnwyQpIiJCubm5kuRzUqy8vFzZ2dlasGCBUaUF3ddff62ioiLt27dPhYWFKiws1FdffaXq6mrvazp16qSYmBh1795d6enpysjIUHp6uvr27asf/ehHBlaPcEJe1SOvyCuYH3lVL5zzCubiz/5DUljuP8ireuQVzIK8AgAAAGA1jCABSykrK1Pv3r1VU1PjnZeZmamPP/44rE6G/ZDb7dbAgQNVUFDgned0OnXo0CElJycbWFlgHT58WMuXL9fWrVt15MiRNi0rKSlJQ4cO1dSpU9WrV68AVYjLhfsd2eRVY+RVy5FXoUFekVeXC5e8grmw/7g68qox8gpGIK8AAAAAWBkNErCUqVOneu+SkaTIyEgVFxfb/hmzV3Pw4EH16dNHFy9e9M6bMmWKli9fbmBVbVdXV6ctW7Zo2bJl2rVrl8/Pevbs6XPnSXJysjwej/ckoMvlksPhkMvlUmFhofdulqNHj/os595779Xjjz+uYcOGKSqKQXUCKdwvOJJXTSOvyCszIq/Iq6bYNa9gLuw/Woa8ahp5hVAgrwAAAADYBQ0SsIy6ujp1795dJ0+e9M6bNWuWFi1aZGBV5jF79my99dZb3un4+HgdP37ckicVqqur9eabb2rZsmU6fvy4pPohZIcMGaKsrCzdeeed6tKlS6Pf8+cC15kzZ7Rnzx7l5+dr27ZtcrvdkqTrr79e06ZN05NPPimn0xnETxc+wvmCI3l1ZeQVeWU25BV51Rw75RXMhf1Hy5FXV0ZeIVjIKwAAAAB2Q4MELGPXrl0aNGiQzzyXy6WkpCSDKjIXl8ullJQUn3m7du3SPffcY1BFrbN3716NHz9eJSUlkqRu3bpp4sSJmjRpknr06HHF323pBa6KigqtXLlSeXl53hOtaWlpWrt2rfr16xeATxPewvmCI3l1ZeQVeWU25BV51Ry75BXMhf1H65BXV0ZeIRjIKwAAAAB2FJ4P6YQlbdy40Wc6PT2dk2E/kJycrL59+/rMu/w7M7Pq6mrNnTtXd9xxh0pKSpSQkKB169bp2LFjevnll6968qU1evTooZdfflnHjh3TunXrlJCQoJKSEv3sZz/TvHnzVF1dHfD3RHggr66MvGo58grBQl5dmdXzCubC/qNtyKsrI68QSOQVAAAAADujQQKWsX37dp/p0aNHG1SJeV3+nVz+nZnV3r171bdvX+Xk5Mjtdmvs2LE6dOiQHn300ZAMp+l0OvXoo4/q0KFDGjt2rNxut7Kzs5Wenq69e/cG/f1hP+TV1ZFXrUNeIdDIq6uzal7BXNh/tB15dXXkFQKBvAIAAABgdzRIwBJqampUUVHhM+/y4VUh3XfffT7TFRUVqqmpMaga/7z//vvq37+/Pv/8cyUkJGjz5s169913FRcXF/Ja4uLi9O6772rz5s2Kj49XSUmJ+vfvr02bNoW8FlgXeeUf8qptyCsEAnnlHyvmFcyF/UfbkVf+Ia/QVuQVAAAAgHBAgwQs4ciRI/J4PD7zbrrpJoOqMa/U1FSfabfbraNHjxpUzdWtXr1aDz30kGpra/Xggw/q0KFDGj58uNFlafjw4SopKdGDDz6o2tpajRkzRmvWrDG6LFgEeeUf8iowyCu0BXnlH6vlFcyF/UdgkFf+Ia/QFuQVAAAAgHBBgwQsobS01Gc6ISFB11xzjUHVmFenTp0UHx/vM+/y784s1qxZowkTJsjtdmvChAnatGmTIXelNCcuLk6bNm3y1vjYY49xEgZ+Ia/8Q14FDnmF1iKv/GOlvIK5sP8IHPLKP+QVWou8AgAAABBOaJCAJZSVlflMp6SkGFSJ+V1+15AZT4ht2rRJWVlZkqQnnnhCeXl5ioyMNLiqxiIjI5WXl6cnnnhCkpSVlaU//OEPBlcFsyOv/EdeBQ55hdYgr/xnhbyCubD/CCzyyn/kFVqKvAIAAAAQbmiQgCWcOnXKZ/rGG280qBLzu+GGG3ymT58+bVAlTdu7d68eeeQRud1uZWVladGiRXI4HEaX1SyHw6FFixZ571R5+OGH9emnnxpdFkyMvPIfeRVY5BVairzyn9nzCubC/iPwyCv/kVdoCfIKAAAAQDiiQQKWUF1d7TMdGxtrUCXmd/l3c/l3Z6Tq6mqNGzfO+0zT3NxcU598aeBwOLRixQrvM0/HjRtnqu8V5kJe+Y+8CjzyCi1BXvnPzHkFc2H/ERzklf/IK/iLvAIAAAAQrmiQgCXU1NT4TLdr186gSszP6XT6TJvpRMGCBQv0+eefKyEhQatWrTLlsJ3NiYyMVH5+vuLj41VSUqIXX3zR6JJgUuSV/8ir4CCv4C/yyn9mziuYC/uP4CCv/EdewV/kFQAAAIBwRYMELCkign+6zTHrd7N37169+uqrkqTc3FzFxcUZXFHLde3aVbm5uZKknJwchvKEX8y6TZqBWb8b8grhyqzbpBnw3cAf7D9Ch22yeXw38Ad5BQAAACCcceQMIOiqq6s1fvx4ud1ujR07VsOHDze6pFYbMWKE9xmt48aNa3Q3GwBrI68AAK3B/gOAVZBXAAAAAMIdDRIAgm7RokUqKSlRQkKC3n77baPLabMlS5YoISFBJSUlevPNN40uB0AAkVcAgNZg/wHAKsgrAAAAAOGOBgkAQVVXV6elS5dKkl577TVLDt15ubi4OO9wpMuWLVNdXZ3BFQEIBPIKANAa7D8AWAV5BQAAAAA0SAAIsi1btuj48eOKj4/XmDFjjC4nYB566CF169ZNX375pbZu3Wp0OaZUW1vb5P8DZkVehS/yCmhebW2tzpw5ozNnzrB9NIP9B2AO5NXVkVcAAAAAQIMEgCBbtmyZJCkrK0tOp9PgagLH6XQqKytL0qXPCKm4uFgzZ85Uv379lJCQ4J2fkJCgfv36aebMmdq/f7+BFQLNI6/CC3kFNO+H20fHjh0VFxenuLg4dezYke2jCew/AOOQVy1DXgEAAAAADRIAguiLL77Qrl27FBERoUmTJhldTsBNnjxZDodDO3fu1OHDh40ux1AHDhxQZmam+vTpoyVLlmjfvn26cOGC9+cXLlzQvn37tGTJEt12223KzMzUgQMHDKwY8EVehQ/yCmge20fLsf8AjEFetRx5BQAAAAD1aJAAEDS5ubmSpCFDhqhHjx4GVxN4PXr00JAhQyRJy5cvN7gaY3g8HmVnZysjI0MFBQV+/15BQYEyMjKUnZ0tj8cTxAoB/5BX9kdeAc1j+2g99h9AaJFXrUdeAQAAAEA9GiQABE3Dsz8bhrq0o4bPtm3bNoMrCT2Px6MZM2Zo3rx5rXrGb21trebNm6cZM2aE7UlKmAd5ZW/kFdA8to+2Yf8BhA551TbkFQAAAADUs32DxL//+79r8uTJysjIkNPplMPh0Nq1a40uCyZVXl4uh8Ph8190dLSuv/56jRkzRvv27WvT8seNGyeHw6Hy8vLAFGxiX3/9tY4cOSJJuvPOOw2uJngaPpvL5dI333xjbDEhlpOTo6VLl7Z5OUuXLlVOTk4AKgov5FXgkFf2R14Zi7wyN7aP1mP/YT/klbmRV61HXgEAAADAJVFGFxBszz33nCoqKtS1a1f9+Mc/VkVFhdElwQKSk5P1r//6r5Kk8+fPq7CwUBs3btQf//hH7dy5U5mZmQZXaH5FRUWSpJ49e6pLly4GVxM8cXFxSkxMVHl5uYqKinTPPfcYXVJIHDhwQPPnzw/Y8ubPn69f/vKXuuWWWwK2zHBBXrUdeWVv5JV5kFfmw/bRNuw/7Iu8Mh/yqm3IKwAAAAC4xPYjSOTn56u8vFwnT57UlClTjC4HFpGSkqIXXnhBL7zwgl577TX913/9lxYuXKja2lr9+te/Nro8S2i4uyo9Pd3gSoIvIyNDktp8R5mVTJ8+vVXD2jantrZW06dPD9jywgl51Xbklb2RV+ZBXpkP20fbsP+wL/LKfMirtiGvAAAAAOAS2zdIDBo0SD169DC6DNjAhAkTJEmFhYU+80+dOqVZs2apZ8+ecjqdio+P15gxY/TZZ5/5vC4xMVG//e1vJdXftdEwZOvAgQNDUn+oNXxPDScn7KzhJNPl/zbsqri4WAUFBQFfbkFBgfbv3x/w5YYj8qplyCv7Iq/Mj7wyDttH27H/CC/klXHIq7YjrwAAAADgEts/YgMItKioS5vNyZMndccdd8jlcmngwIF6+OGHdfToUb3//vv68MMPtX37dvXv31+SNGvWLK1du1b79+/XE088oc6dO0uqP1FmRw0nI8LhDpVwOwGzevXqoC578eLFQVt+uCGv/ENe2Rd5ZR3kVeixfbQd+4/wRF6FHnnVduQVAAAAAFxCgwTgp/z8fEnynuCSpDlz5sjlcmnevHl65ZVXvPP/4z/+Qw888IDGjx+vw4cPKyIiQrNmzVJxcbH279+vWbNm2f5E2FdffSWp/vm9dpeSkiLp0me2u7/97W+WXHY4Ia9ahryyL/LK/Mgr47B9tB37j/BCXhmHvGo78goAAAAALqFBwmI8Ho+qqqqMLiPkAvmsUX+UlZXphRdekCSdP39ehYWF+vjjj5WQkKDXXntNknThwgWtX79ecXFxeu6553x+/5e//KXuu+8+7dixQ3v27NGAAQNCWv8P1dbW6vz58yF9T7fbrerqakn1/2ZD9f4/fJ9QfmaPxyNJ+v777/Xdd98pIsK+Ty+qra3VgQMHgrb8AwcO6Ntvv/W5M89qyKvWI6+Cj7wKHPKq5cgr82D7aDv2H6Hdf5BXrUdeXRl5FTzhmlcAAAAIP7GxsXI4HEaXgRaw7xGgTVVVValjx45Gl2F7LpdLCxYs8Jl33XXXqaCgwHs3whdffKHq6mrdfffdio2NbbSMu+++Wzt27FBxcbGhJ8Ty8vKUl5dn2PsbdYdKQkKCIe/bqVMnQ97XLmpqarzDDcM/5FXgkFdoCfKq5cir8BFu2wf7D/shr8IHeRUa5BUAAADs7Ny5c+rQoYPRZaAFaKMGmjB48GB5PB55PB6dOHFCr732mk6cOKFhw4bp3LlzkqSzZ89Kav5A/8c//rHP6wAgGMgrAFZBXgGwCvIKAAAAAAD7YgQJi4mNjfWekAkns2fPNuyul27duumpp57St99+q5deeknPPfec3nrrLe+dCJWVlU3+3t///ndJxt+xMHHiRC1atCik7+l2u72f2+VyhexukfPnz3vfq7KyMmQde5WVld47cc6ePWvrITxra2uVkJCgCxcuBGX5TqdTlZWVlh7ilrxqPfIq+MirwCGv2oa8MhbbR9ux/wjt/oO8aj3y6srIq+AJ17wCAABA+GlqVEGYm32PAG3K4XCE5TAt0dHRRpegZ599VqtXr9ayZcs0a9Ys/eQnP1FMTIw+/fRTVVVVNQrAP//5z5Kk2267zTsvMjJSknTx4sVQla3o6GhD/s3ExMSourrasH+zHTp0CNn7Njxbqn379rrmmmtC8p5GuuWWW7Rv376gLfvaa68NyrJDhbxqPfIq+MirwC6bvGo78so4bB9tx/4jdMir1iOvrr5s8ir4wimvAAAAAJgfbdSAn9q3b685c+aotrZWv/nNb9SuXTs98sgjOnXqlBYuXOjz2j/96U/avn27UlJSdOedd3rnd+nSRZJ07NixkNZuhO7du0uqv0PF7srKyiRd+sx2d8cdd1hy2eGEvGoZ8sq+yCvzI6+Mw/bRduw/wgt5ZRzyqu3IKwAAAAC4xPYNEvn5+Ro3bpzGjRunjRs3NpqXn59vcIWwkkmTJql79+5at26dXC6XcnJylJSUpJdeekn33nuvnn32WY0dO1ZDhw5VbGys1qxZ4zOc4z333ONdzrx58/TSSy/pd7/7nVEfJ6jS09MlSYWFhQZXEnwNn7HhM9vdY489Zsllhxvyyn/klX2RV9ZAXhmD7aPt2H+EH/LKGORV25FXAAAAAHCJ7Rsk/vrXv+q3v/2tfvvb36qoqEiStGfPHu+8v/71rwZXCCuJiYnRvHnzVFdXpwULFqhbt2765JNPNHPmTLlcLr3++uvasWOHhg8frk8++UT9+/f3+f1f/OIXevXVVyVJb7zxhn79619r1apVRnyUoGs4GRGsoVDNJNxOwNx2220aMGBAwJc7YMAA3XrrrQFfbrgir/xHXtkXeWUN5JUx2D7ajv1H+CGvjEFetR15BQAAAACXRBldQLCtXbtWa9euNboMWERiYqI8Hs8VXzN9+nRNnz7dO921a1ctXrxYixcv9us9nn76aT399NNtqtMKMjIyJIXHHSoNJ5kaPnM4eOedd5SRkaHa2tqALC86OlpLly4NyLLCBXkVOOSVvZFXxiOvzIvto23Yf9gPeWVe5FXbkFcAAAAAcIntR5AAYIy+fftKko4ePaozZ84YXE3wnD59WuXl5ZIufeZwcMstt+jFF18M2PJefPFF/fSnPw3Y8oCWIK/sjbwCmsf20TbsP4DQIa/ahrwCAAAAgEtokAAQFD/60Y+UlJQkqf6xNnbV8NmSk5PVuXNnY4sJsTlz5mjatGltXs706dM1Z86cAFQEtA55ZX/kFdA8to/WY/8BhBZ51XrkFQAAAABcQoMEgKAZOnSoJCk/P9/gSoKn4bMNGTLE4EpCz+FwaMmSJVq4cKGio6Nb/PvR0dFauHCh3n77bTkcjiBUCPiPvLI38gpoHttH27D/AEKHvGob8goAAAAA6tEgASBopk6dKknatm2bKioqDK4m8MrLy7Vt2zZJlz5ruHE4HJo7d6727dunAQMG+P17AwYMUGFhoebOnRuWJydhPuSV/ZFXQPPYPlqP/QcQWuRV65FXAAAAAFCPBgkAQdOrVy/de++9crvdWrlypdHlBNzKlSvl8Xg0aNAg9erVy+hyDHXLLbdo9+7dKi4u1syZM9WvXz+1a9fO+3On06l+/fpp5syZKi4u1u7du8Pqmb8wP/IqfJBXQPPYPlqO/QdgDPKq5cgrAAAAAKgXZXQBAOzt8ccf165du5Sfn6/58+fL6XQaXVJA1NTUeIfvfPzxxw2uxjxuvfVWLV68WJJUV1ens2fPSpI6deqkqCh2OTA38iq8kFdA8364fXz77bfe57hXVlbq2muvNbAyc2L/ARiHvGoZ8goAAAAAGEECQJANGzZM119/vU6cOKENGzYYXU7A/P73v9fJkyd1ww03eJ/lCl9RUVHq0qWLunTpwsVGWAJ5Fb7IK6B5P9wm2D6axv4DMAfy6urIKwAAAACgQQJAkEVFRWnatGmSpKefflqnT582uKK2O336tJ555hlJ9XencPINsAfyCgDQGuw/AFgFeQUAAAAANEgACIEnn3xSaWlpqqys1MyZM40up81mzJihyspKpaWl6cknnzS6HAABRF4BAFqD/QcAqyCvAAAAAIQ7GiQABJ3T6dSaNWsUERGh9957T3/84x+NLqnVNm/erPXr1ysyMlJr1661zTNbAdQjrwAArcH+A4BVkFcAAAAAwh0NErAkt9ttdAmmZdbv5vbbb/cOezllyhRLDuV56tQpTZkyRZL0zDPPqF+/fgZXBCsw6zZpBmb9bsgrhCuzbpNmwHcDf7D/CB22yebx3cAf5BUAAACAcEaDBCzh8rsALly4YFAl5ldTU+MzHRMTY1AljT3//PPeoTwnTJigixcvGl2S3y5evKisrCydOHFCaWlpev75540uCSZFXvmPvAoO8gr+Iq/8Z+a8grmw/wgO8sp/5BX8RV4BAAAACFc0SMASLj+pU1VVZVAl5nf5d2OmE2IxMTFas2aNoqOj9cEHH2jy5MnyeDxGl3VVHo9HkydP1gcffKB27doxdCeuiLzyH3kVeOQVWoK88p+Z8wrmwv4jOMgr/5FX8Bd5BQAAACBc0SABS+jatavP9LFjxwyqxPy+/PJLn+m4uDiDKmna7bffrvXr1ysiIkKrVq3S7NmzTX0SxuPxaPbs2Vq1apUiIiK0fv16hu7EFZFX/iOvAou8QkuRV/4ze17BXNh/BB555T/yCi1BXgEAAAAIRzRIwBJSUlJ8psvKygyqxPxKS0t9plNTUw2qpHmjRo1Sfn6+JGnx4sWaOHGiKYfzbBi2c/HixZKkVatWaeTIkQZXBbMjr/xHXgUOeYXWIK/8Z4W8grmw/wgs8sp/5BVairwCAAAAEG5okIAlXH5Sp7KyUmfPnjWoGvM6e/asTpw44TPPrCfExo8fr9WrV3vvVBk1apROnz5tdFlep06d0qhRo7w1rlmzRuPGjTO6LFgAeeUf8ipwyCu0FnnlHyvlFcyF/UfgkFf+Ia/QWuQVAAAAgHBCgwQsISkpSQ6Hw2fe5XfGoPF3EhERoZ49expUzdWNHz9eGzZs8D7zNC0tTZs3bza6LG3evFk333yzPvjgA0VHR2vjxo2cfIHfyCv/kFeBQV6hLcgr/1gtr2Au7D8Cg7zyD3mFtiCvAAAAAIQLGiRgCU6nUz169PCZt3PnToOqMa8dO3b4TPfo0UNOp9OgavwzatQo/fWvf9U//uM/6sSJExo5cqT+5V/+xZC7VU6fPq2xY8dq5MiROnHihNLS0rRnzx6G7USLkFf+Ia/ahrxCIJBX/rFiXsFc2H+0HXnlH/IKbUVeAQAAAAgHNEjAMgYPHuwzvXHjRoMqMa/Lv5PLvzOzuv3221VUVKS5c+cqIiJC7733nm6++WatW7dONTU1QX//mpoarVu3TjfffLPWr1+viIgIzZs3T4WFherXr1/Q3x/2Q15dHXnVOuQVAo28ujqr5hXMhf1H25FXV0deIRDIKwAAAAB25/B4PB6jiwD8sWvXLg0aNMhnnsvlUlJSkkEVmYvL5VJKSorPvF27dumee+4xqKLW+fTTTzVu3DiVlJRIkrp166asrCxNnjy50V1jlzt//rw6duwoSTp37pw6dOhwxddXVFRoxYoVys/P18mTJyVJaWlpWrt2LSde0Cbk1ZWRV+QVzIO8ujK75FVbtDSvcHXsP1qHvLoy8oq8CgbyCgAAAIAdMYIELOOuu+5St27dfOYtWbLEoGrM55133vGZjo+PV2ZmpkHVtF6/fv1UWFioV155Rddff71OnjyphQsXKikpScOGDdOWLVt05syZVi//zJkz2rJli4YNG6aePXtq4cKFOnnypG644Qa98sorKioq4uQL2oy8ujLyyj/kFUKBvLoyu+QVzIX9R+uQV1dGXiEYyCsAAAAAdsQIErCUqVOnKjc31zsdGRmp4uJi9e7d28CqjHfw4EH16dNHFy9e9M6bMmWKli9fbmBVbVdXV6etW7dq2bJljZ4xnJiYqIyMDKWnpys9PV0pKSnyeDxKTk6WVH8HlcPhUFlZmQoLC1VYWKh9+/apvLzcZzmDBg3S448/rqFDhyoqKipUHw1hgLxqGnlFXsF8yKum2TWvWoo7soOL/UfLkFdNI6/qkVfBRV4BAAAAsAsaJGApLpdLN998s89zLzMzM/Xxxx8rIiI8B0Rxu90aOHCgCgoKvPOcTqcOHTrkPRlhB4cPH9by5cu1bds2uVyuNi0rOTlZQ4YM0dSpU9WrV68AVQj4Iq8aI69ajrxCKJBXjYVLXvmDC46hw/7j6sirxsirS8ir0CGvAAAAAFgZDRKwnPnz5+s3v/mNz7yJEycqNzc37E6Kud1uTZkyRXl5eT7z58+frwULFhhUVfB98803Kioq0r59+7x3n3z11Vf6/vvvfV7Xvn17de/eXenp6d67Wfr27avOnTsbUzjCDnl1CXlFXsHcyKtLwjWvmsMFR2Ow/2geeXUJeeWLvDIGeQUAAADAamiQgOVUVVUpLS1NFRUVPvPD7aRYcyfDEhMTVVJSovbt2xtUmXHcbre++eYbSVLnzp3D5t8CzIu8qkdeNUZewWzIq3rkVWNccDSX7777Tp06dZIknT17Vtdcc43BFYUeeVWPvGqMvDIX8goAAACAWYXHmQPYSmxsrFauXNnoeZR5eXkaOHCgDh48aFBloXPw4EENHDiw0cmwqKgorVixIixPhklSRESEunTpoi5duoTNiVGYG3lFXjWHvILZkFfkFazhh/uMcN1/kFfkFayBvAIAAABgVhyhwJLuv/9+bdiwodFJsYKCAvXp00ezZ89u83Mwzcjlcmn27Nnq06ePzzNmpfqTYRs2bND9999vUHUAmkJekVeAVZBX5BVgFeQVeQUAAAAAQGvxiA1Y2ubNmzVmzBjV1dU1+fO+fftq9OjRuu+++5Samuod3tEqzp49q9LSUu3YsUMbN25UUVFRk69rOBk2YsSIEFcIwF/kVT3yCjA/8qoeeVWPIevNhfXhi7yqR17VY/swF9YHAAAAALOiQQKW99FHH2ny5MkqLy+/6mvj4+OVmpqqG264QbGxsXI6naYZ6tHtdqumpkZVVVX68ssvVVpaqhMnTlz19xITE7VixQruFAIsgLwirwCrIK/IqwZc4DIX1kdj5BV51YDtw1xYHwAAAADMigYJ2ML333+v7Oxs5eTkqKamxuhyQsLpdGrOnDmaO3cuz5gFLIS8Iq8AqyCvyCuJC1xmw/poGnlFXklsH2bD+gAAAABgVjRIwFZcLpdef/11bdq0SSdPnjS6nKCIj4/XyJEj9dRTTyk5OdnocgC0EnkFwCrIq/DGBS5zYX1cGXkV3tg+zIX1AQAAAMCsaJCALdXV1Wn37t3auHGjtm/frvLycln1n7rD4VBiYqIGDx6s0aNHKzMzU1FRUUaXBSBAyCsAVkFehScucJkL68M/5FV4YvswF9YHAAAAALOiQQJhoaamRkePHlVpaalKS0t1+vRpVVdXq7q62ujSfMTExCgmJkZxcXFKTU1VamqqevbsKafTaXRpAEKEvAJgFeRVeOACl7mwPlqHvAoPbB/mwvoAAAAAYFY0SAAAAAAAmsQFLnNhfQDNY/swF9YHAAAAALOKMLoAAAAAAAAAAAAAAACAYKNBAgAAAAAAAAAAAAAA2B4NEgAAAAAAAAAAAAAAwPZokAAAAAAAAAAAAAAAALZHgwQAAAAAAAAAAAAAALA9GiQAAAAAAAAAAAAAAIDt0SABAAAAAAAAAAAAAABsjwYJAAAAAAAAAAAAAABgezRIAAAAAAAAAAAAAAAA26NBAgAAAAAAAAAAAAAA2B4NEgAAAAAAAAAAAAAAwPZokAAAAAAAAAAAAAAAALZHgwQAAAAAAAAAAAAAALA9GiQAAAAAAAAAAAAAAIDt0SABAAAAAAAAAAAAAABsjwYJAAAAAAAAAAAAAABgezRIAAAAAAAAAAAAAAAA26NBAgAAAAAAAAAAAAAA2B4NEgAAAAAAAAAAAAAAwPaijC4ACIWamhodOXJEpaWlKisr06lTp1RdXa2amhqjS/PhdDoVExOjrl27KiUlRampqUpKSpLT6TS6NAAAAACwJI4HAVgFeQXAKsgrAICV0SABW6qrq9Nf/vIXbdy4Udu3b1dFRYU8Ho/RZbWKw+FQjx49NHjwYI0ePVp33XWXoqLYdAEAAACgKRwPArAK8gqAVZBXAAA7cXisuhcDmlBWVqY33nhDmzZt0smTJ40uJyi6deumUaNG6amnnlJycrLR5QAAAMDGzp8/r44dO0qSzp07pw4dOhhcUXhjfVwZx4Phje3DXFgfV0ZeAbAK8goAYEc0SMAWqqqqlJ2drZycHF24cMHockLC6XTqmWee0dy5cxUbG2t0OQAAALAhLnCZC+ujaRwPcjwosX2YDeujaeQVeQVYBXlFXgGAndEgAcv76KOPNGnSJFVUVFz1tQkJCUpJSdGNN96o2NhYtWvXThERESGo8urcbrcuXLigqqoqHTt2TGVlZaqsrLzq7yUmJmrFihW6//77Q1AlAAAAwgkXuMyF9dEYx4McDzZg+zAX1kdj5BV5BVgFeUVeAYDd0SABS9u8ebPGjBmjurq6Jn+enp6u0aNHa9CgQUpNTVWnTp1CXGHbnD17VqWlpdq5c6c2bNigoqKiJl8XFRWlDRs2aMSIESGuEAAAAHbGBS5zYX344niwHseD9dg+zIX14Yu8qkdeAeZHXtUjrwDA3miQgGU198daZGSkZsyYoRkzZigpKcmg6oLD5XLpnXfe0ZIlS3Tx4kWfn/FHGwAAAAKNC1zmwvq4hONBjgcvx/ZhLqyPS8gr8gqwCvKKvAKAcEGDBCzpo48+0gMPPNDoj7XMzEwtXbpUvXv3Nqiy0Pjss880bdo07d6922d+VFSUPvzwQ4b/AgAAQEBwgctcWB/1OB7keLApbB/mwvqoR16RV4BVkFfkFQCEExokYDlVVVVKS0tr9Ay0iRMnKjc31zTPOAs2t9utKVOmKC8vz2d+YmKiSkpK1L59e4MqAwAAgF1899133mFzz549q2uuucbgisIbFxw5HmzA8WBj5JW5kFfkVQPyCmbndrv1zTffSJI6d+4cNtvmD5FX9cgrmB15BQROlNEFAC2VnZ0d9n+sSVJERIRyc3MlyeePtvLycmVnZ2vBggVGlQYAAACL+frrr1VUVKR9+/apsLBQhYWF+uqrr1RdXe19TadOnRQTE6Pu3bsrPT1dGRkZSk9PV9++ffWjH/3IwOoRTjgerBfOx4PkFayCvKoXznkFc/Fn/yEpLPcf5FU98gpmQV4BwccIErCUsrIy9e7dWzU1Nd55mZmZ+vjjj8Pqj7UfcrvdGjhwoAoKCrzznE6nDh06pOTkZAMrAwAAgJkdPnxYy5cv19atW3XkyJE2LSspKUlDhw7V1KlT1atXrwBViMuF+x3ZHA82Fi7Hg+SV9ZBX5NXlwiWvYC7sP66OvGqMvIIRyCsgtGiQgKVMnTrV28UpSZGRkSouLrb9M9Cu5uDBg+rTp48uXrzonTdlyhQtX77cwKoAAABgNnV1ddqyZYuWLVumXbt2+fysZ8+ePneeJCcny+PxeE8CulwuORwOuVwuFRYWeu9mOXr0qM9y7r33Xj3++OMaNmyYoqIYtDCQwv2CI8eDTbPr8SB5ZW3kFXnVFLvmFcyF/UfLkFdNI68QCuQVYBwaJGAZdXV16t69u06ePOmdN2vWLC1atMjAqsxj9uzZeuutt7zT8fHxOn78ODs9AAAAqLq6Wm+++aaWLVum48ePS6ofQnbIkCHKysrSnXfeqS5dujT6PX8ucJ05c0Z79uxRfn6+tm3bJrfbLUm6/vrrNW3aND355JNyOp1B/HThI5wvOHI8eGV2Oh4kr+yBvCKvmmOnvIK5sP9oOfLqysgrBAt5BRiPBglYxq5duzRo0CCfeS6XS0lJSQZVZC4ul0spKSk+83bt2qV77rnHoIoAAABgBnv37tX48eNVUlIiSerWrZsmTpyoSZMmqUePHlf83ZZe4KqoqNDKlSuVl5fnPdGalpamtWvXql+/fgH4NOEtnC84cjx4ZXY5HiSv7IO8Iq+aY5e8grmw/2gd8urKyCsEA3kFmEN4PkQKlrRx40af6fT0dP5Y+4Hk5GT17dvXZ97l3xkAAADCR3V1tebOnas77rhDJSUlSkhI0Lp163Ts2DG9/PLLVz350ho9evTQyy+/rGPHjmndunVKSEhQSUmJfvazn2nevHmqrq4O+HsiPHA8eGVWPx4kr2An5NWVWT2vYC7sP9qGvLoy8gqBRF4B5kKDBCxj+/btPtOjR482qBLzuvw7ufw7AwAAQHjYu3ev+vbtq5ycHLndbo0dO1aHDh3So48+GpLhNJ1Opx599FEdOnRIY8eOldvtVnZ2ttLT07V3796gvz/sh+PBq7Pq8SB5Bbshr67OqnkFc2H/0Xbk1dWRVwgE8gowHxokYAk1NTWqqKjwmXf58F+Q7rvvPp/piooK1dTUGFQNAAAAjPD++++rf//++vzzz5WQkKDNmzfr3XffVVxcXMhriYuL07vvvqvNmzcrPj5eJSUl6t+/vzZt2hTyWmBdHA/6x4rHg+QV7Ia88o8V8wrmwv6j7cgr/5BXaCvyCjAnGiRgCUeOHJHH4/GZd9NNNxlUjXmlpqb6TLvdbh09etSgagAAABBqq1ev1kMPPaTa2lo9+OCDOnTokIYPH250WRo+fLhKSkr04IMPqra2VmPGjNGaNWuMLgsWwfGgf6x2PEhewY7IK/9YLa9gLuw/AoO88g95hbYgrwDzokECllBaWuoznZCQoGuuucagasyrU6dOio+P95l3+XcHAAAAe1qzZo0mTJggt9utCRMmaNOmTYbcldKcuLg4bdq0yVvjY489xkkY+IXjQf9Y6XiQvIJdkVf+sVJewVzYfwQOeeUf8gqtRV4B5kaDBCyhrKzMZzolJcWgSszv8q5W/mADAACwv02bNikrK0uS9MQTTygvL0+RkZEGV9VYZGSk8vLy9MQTT0iSsrKy9Ic//MHgqmB2HA/6zwrHg+QV7Iy88p8V8grmwv4jsMgr/5FXaCnyCjA/GiRgCadOnfKZvvHGGw2qxPxuuOEGn+nTp08bVAkAAABCYe/evXrkkUfkdruVlZWlRYsWyeFwGF1WsxwOhxYtWuS9U+Xhhx/Wp59+anRZMDGOB/1n9uNB8gp2R175z+x5BXNh/xF45JX/yCu0BHkFWAMNErCE6upqn+nY2FiDKjG/y7+by787AAAA2Ed1dbXGjRvnfaZpbm6uqU++NHA4HFqxYoX3mafjxo3j71Y0i+NB/5n5eJC8Qjggr/xn5ryCubD/CA7yyn/kFfxFXgHWQYMELKGmpsZnul27dgZVYn5Op9Nnmh0ZAACAfS1YsECff/65EhIStGrVKlMO29mcyMhI5efnKz4+XiUlJXrxxReNLgkmxfGg/8x8PEheIRyQV/4zc17BXNh/BAd55T/yCv4irwDroEEClhQRwT/d5vDdAAAAhIe9e/fq1VdflSTl5uYqLi7O4IparmvXrsrNzZUk5eTkMJQn/MIxT/PM+t2QVwhXZt0mzYDvBv5g/xE6bJPN47uBP8grwFpIdgAAAACwmOrqao0fP15ut1tjx47V8OHDjS6p1UaMGOF9Ruu4ceMa3c0GwNrIKwBAa7D/AGAV5BVgPTRIAAAAAIDFLFq0SCUlJUpISNDbb79tdDlttmTJEiUkJKikpERvvvmm0eUACCDyCgDQGuw/AFgFeQVYDw0SAAAAAGAhdXV1Wrp0qSTptddes+TQnZeLi4vzDke6bNky1dXVGVwRgEAgrwAArcH+A4BVkFeANdEgAQAAAAAWsmXLFh0/flzx8fEaM2aM0eUEzEMPPaRu3brpyy+/1NatW40ux5Rqa2ub/H/ArMir8EVeAc2rra3VmTNndObMGbaPZrD/AMyBvLo68gqwJhokAAAAAMBCli1bJknKysqS0+k0uJrAcTqdysrKknTpM0IqLi7WzJkz1a9fPyUkJHjnJyQkqF+/fpo5c6b2799vYIVA88ir8EJeAc374fbRsWNHxcXFKS4uTh07dmT7aAL7D8A45FXLkFeANdEgAQAAAAAW8cUXX2jXrl2KiIjQpEmTjC4n4CZPniyHw6GdO3fq8OHDRpdjqAMHDigzM1N9+vTRkiVLtG/fPl24cMH78wsXLmjfvn1asmSJbrvtNmVmZurAgQMGVgz4Iq/CB3kFNI/to+XYfwDGIK9ajrwCrIsGCQAAAACwiNzcXEnSkCFD1KNHD4OrCbwePXpoyJAhkqTly5cbXI0xPB6PsrOzlZGRoYKCAr9/r6CgQBkZGcrOzpbH4wlihYB/yCv7I6+A5rF9tB77DyC0yKvWI68A66JBAgAAAAAsouHZnw1DXdpRw2fbtm2bwZWEnsfj0YwZMzRv3rxWPeO3trZW8+bN04wZM8L2JCXMg7yyN/IKaB7bR9uw/wBCh7xqG/IKsC5bN0gcP35cb731lu6//379wz/8g9q1a6frrrtOo0aN0ieffGJ0eTCh8vJyORwOn/+io6N1/fXXa8yYMdq3b1+blj9u3Dg5HA6Vl5cHpmAAAACEja+//lpHjhyRJN15550GVxM8DZ/N5XLpm2++MbaYEMvJydHSpUvbvJylS5cqJycnABWFF44HA4e8sj/yyljklbmxfbQe+w/7Ia/MjbxqPfIKsDZbN0gsWbJEs2fP1pEjR3T//ffrV7/6lfr3768PPvhAP//5z/X73//e6BJhUsnJyXr++ef1/PPPa9asWerVq5c2btyon//859q9e7fR5QEAACAMFRUVSZJ69uypLl26GFxN8MTFxSkxMVHSpc8cDg4cOKD58+cHbHnz588P+2cCtxbHg21HXtkbeWUe5JX5sH20DfsP+yKvzIe8ahvyCrC2KKMLCKbbb79df/7zn3XXXXf5zC8oKNC9996rqVOnavjw4XI6nQZVCLNKSUnRCy+84DMvOztb8+bN069//Wv95S9/MaYwAAAAhK2Gu6vS09MNriT4MjIyVF5ern379umee+4xupyQmD59equGtW1ObW2tpk+fzgnnVuB4sO3IK3sjr8yDvDIfto+2Yf9hX+SV+ZBXbUNeAdZm6xEkRo4c2ag5QpIGDBigu+++W19//bUOHjxoQGWwogkTJkiSCgsLfeafOnVKs2bNUs+ePeV0OhUfH68xY8bos88+83ldYmKifvvb30qq7ypsGFJs4MCBIakfAAAA1tbwd2hGRobBlQRfw0mmy//2tqvi4mIVFBQEfLkFBQXav39/wJcbjjgebBnyyr7IK/Mjr4zD9tF27D/CC3llHPKq7cgrwNpsPYLElURHR0uSoqLC9itAK/3w38zJkyd1xx13yOVyaeDAgXr44Yd19OhRvf/++/rwww+1fft29e/fX5I0a9YsrV27Vvv379cTTzyhzp07S5J3eCIAAADgShpORoTDHSrhdgJm9erVQV324sWLg7b8cMPxoH/IK/sir6yDvAo9to+2Y/8Rnsir0COv2o68AqwtLLsD/t//+3/auXOnfvzjH+unP/2p0eXAIvLz8yXJ+weYJM2ZM0cul0vz5s3TK6+84p3/H//xH3rggQc0fvx4HT58WBEREZo1a5aKi4u1f/9+zZo1iz/UAAAA0CJfffWVpPrn99pdSkqKpEuf2e7+9re/WXLZ4YTjwZYhr+yLvDI/8so4bB9tx/4jvJBXxiGv2o68Aqwt7Bokamtr9eijj6qmpkY5OTmKjIw0uqQW8Xg8qqqqMrqMkAvks7D8UVZW5n0m2vnz51VYWKiPP/5YCQkJeu211yRJFy5c0Pr16xUXF6fnnnvO5/d/+ctf6r777tOOHTu0Z88eDRgwIKT1/1Btba3Onz9v2PsDAACg7dxut6qrqyXVHxOE6u+7H75PKP+m9Hg8kqTvv/9e3333nSIi7Pt0yNraWh04cCBoyz9w4IC+/fZbS4+eyPFg6xlxPEhekVetRV61HHllHmwfbcf+I7T7D/Kq9cirKyOvgidc88oKYmNj5XA4jC4DLWDfhGqC2+3WuHHjtHv3bk2cOFGPPvqo0SW1WFVVlTp27Gh0Gbbncrm0YMECn3nXXXedCgoKvN1yX3zxhaqrq3X33XcrNja20TLuvvtu7dixQ8XFxYb+wZaXl6e8vDzD3h8AAACBZdQdKgkJCYa8b6dOnQx5X7uoqanxDjcM/3A8GDjkFVqCvGo58ip8hNv2wf7Dfsir8EFehQZ5ZS7nzp1Thw4djC4DLRA2bT5ut1uPPfaY3nvvPf3rv/6rcnNzjS4JJjZ48GB5PB55PB6dOHFCr732mk6cOKFhw4bp3LlzkqSzZ89Kan5H9OMf/9jndQAAAAAA8+N4EIBVkFcArIK8AgCYSViMIOF2uzV+/HitW7dOjzzyiNauXWvZIWBiY2O9fzCEk9mzZxvWldmtWzc99dRT+vbbb/XSSy/pueee01tvveXtlKusrGzy9/7+979LMr6jbuLEiVq0aJGhNQAAAKBt3G639+9Kl8sVsrtFzp8/732vysrKkN0RUVlZ6b0T5+zZs5Y9fvNHbW2tEhISdOHChaAs3+l0qrKy0tJD3HI82HpGHA+SV+RVa5FXbUNeGYvto+3Yf4R2/0FetR55dWXkVfCEa15ZQVOj3sDc7JtQ/38/bI546KGH9Lvf/U6RkZFGl9VqDocjLIdpiY6ONroEPfvss1q9erWWLVumWbNm6Sc/+YliYmL06aefqqqqqlEA/vnPf5Yk3Xbbbd55Df/2Ll68GKqyFR0dHZb/ZgAAAOwmJiZG1dXVhh0TdOjQIWTv2/Dszvbt2+uaa64JyXsa6ZZbbtG+ffuCtuxrr702KMsOFY4HW8+o40Hyyr7Iqysjr1rPDuev2D7ajv1H6JBXrUdeXX3Z5FXwhVNeAcFg6zafhsdqrFu3TqNHj9a///u/W7o5AsZq37695syZo9raWv3mN79Ru3bt9Mgjj+jUqVNauHChz2v/9Kc/afv27UpJSdGdd97pnd+lSxdJ0rFjx0JaOwAAAKyve/fukurvULG7srIySZc+s93dcccdllx2OOF4sGXIK/sir8yPvDIO20fbsf8IL+SVccirtiOvAGuzdYPEiy++qN/+9rfq2LGjbrrpJr300kt64YUXfP4rLi42ukxYyKRJk9S9e3etW7dOLpdLOTk5SkpK0ksvvaR7771Xzz77rMaOHauhQ4cqNjZWa9as8Rlu6J577vEuZ968eXrppZf0u9/9zqiPAwAAAAtJT0+XJBUWFhpcSfA1fMaGz2x3jz32mCWXHW44HvQfeWVf5JU1kFfGYPtoO/Yf4Ye8MgZ51XbkFWBttm6QKC8vlySdO3dOL7/8shYsWNDoPxok0BIxMTGaN2+e6urqtGDBAnXr1k2ffPKJZs6cKZfLpddff107duzQ8OHD9cknn6h///4+v/+LX/xCr776qiTpjTfe0K9//WutWrXKiI8CAAAAi2k4GRGsoVDNJNxOwNx2220aMGBAwJc7YMAA3XrrrQFfbrjieNB/5JV9kVfWQF4Zg+2j7dh/hB/yyhjkVduRV4C1RRldQDCtXbtWa9euNboMWEhiYqI8Hs8VXzN9+nRNnz7dO921a1ctXrxYixcv9us9nn76aT399NNtqhMAAADhJyMjQ1J43KHScJKp4TOHg3feeUcZGRmqra0NyPKio6O1dOnSgCwrXHA8GDjklb2RV8Yjr8yL7aNt2H/YD3llXuRV25BXgLXZegQJAAAAALCLvn37SpKOHj2qM2fOGFxN8Jw+fdo7GmDDZw4Ht9xyi1588cWALe/FF1/UT3/604AtD2gJ8sreyCugeWwfbcP+Awgd8qptyCvA2miQAAAAAAAL+NGPfqSkpCRJ0p49ewyuJngaPltycrI6d+5sbDEhNmfOHE2bNq3Ny5k+fbrmzJkTgIqA1iGv7I+8AprH9tF67D+A0CKvWo+8AqyNBgkAAAAAsIihQ4dKkvLz8w2uJHgaPtuQIUMMriT0HA6HlixZooULFyo6OrrFvx8dHa2FCxfq7bfflsPhCEKFgP/IK3sjr4DmsX20DfsPIHTIq7YhrwDrokECAAAAACxi6tSpkqRt27apoqLC4GoCr7y8XNu2bZN06bOGG4fDoblz52rfvn0aMGCA3783YMAAFRYWau7cuWF5chLmQ17ZH3kFNI/to/XYfwChRV61HnkFWBcNEgAAAABgEb169dK9994rt9utlStXGl1OwK1cuVIej0eDBg1Sr169jC7HULfccot2796t4uJizZw5U/369VO7du28P3c6nerXr59mzpyp4uJi7d69O6ye+QvzI6/CB3kFNI/to+XYfwDGIK9ajrwCrCvK6AIAAAAAAP57/PHHtWvXLuXn52v+/PlyOp1GlxQQNTU13uE7H3/8cYOrMY9bb71VixcvliTV1dXp7NmzkqROnTopKopDepgbeRVeyCugeT/cPr799lvvc9wrKyt17bXXGliZObH/AIxDXrUMeQVYEyNIAAAAAICFDBs2TNdff71OnDihDRs2GF1OwPz+97/XyZMndcMNN3if5QpfUVFR6tKli7p06cLFRlgCeRW+yCugeT/cJtg+msb+AzAH8urqyCvAmmiQAAAAAAALiYqK0rRp0yRJTz/9tE6fPm1wRW13+vRpPfPMM5Lq707h5BtgD+QVAKA12H8AsAryCrAmGiQAAAAAwGKefPJJpaWlqbKyUjNnzjS6nDabMWOGKisrlZaWpieffNLocgAEEHkFAGgN9h8ArIK8AqyHBgkAAAAAsBin06k1a9YoIiJC7733nv74xz8aXVKrbd68WevXr1dkZKTWrl1rm2e2AqhHXgEAWoP9BwCrIK8A66FBApbkdruNLsG0+G4AAADCw+233+4d9nLKlCmWHMrz1KlTmjJliiTpmWeeUb9+/QyuCFbAMU/zzPrdkFcIV2bdJs2A7wb+YP8ROmyTzeO7gT/IK8BaaJCAJVzepXbhwgWDKjG/mpoan+mYmBiDKgEAAECwPf/8896hPCdMmKCLFy8aXZLfLl68qKysLJ04cUJpaWl6/vnnjS4JJsXxoP/MfDxIXiEckFf+M3NewVzYfwQHeeU/8gr+Iq8A66BBApZw+R8dVVVVBlVifpd/N/zBBgAAYF8xMTFas2aNoqOj9cEHH2jy5MnyeDxGl3VVHo9HkydP1gcffKB27doxdCeuiONB/5n5eJC8Qjggr/xn5ryCubD/CA7yyn/kFfxFXgHWQYMELKFr164+08eOHTOoEvP78ssvfabj4uIMqgQAAAChcPvtt2v9+vWKiIjQqlWrNHv2bFOfhPF4PJo9e7ZWrVqliIgIrV+/nqE7cUUcD/rP7MeD5BXsjrzyn9nzCubC/iPwyCv/kVdoCfIKsAYaJGAJKSkpPtNlZWUGVWJ+paWlPtOpqakGVQIAAIBQGTVqlPLz8yVJixcv1sSJE005nGfDsJ2LFy+WJK1atUojR440uCqYHceD/rPC8SB5BTsjr/xnhbyCubD/CCzyyn/kFVqKvALMjwYJWMLlf3RUVlbq7NmzBlVjXmfPntWJEyd85vEHGwAAQHgYP368Vq9e7b1TZdSoUTp9+rTRZXmdOnVKo0aN8ta4Zs0ajRs3zuiyYAEcD/rHSseD5BXsirzyj5XyCubC/iNwyCv/kFdoLfIKMDcaJGAJSUlJcjgcPvMu79xE4+8kIiJCPXv2NKgaAAAAhNr48eO1YcMG7zNP09LStHnzZqPL0ubNm3XzzTfrgw8+UHR0tDZu3MjJF/iN40H/WO14kLyCHZFX/rFaXsFc2H8EBnnlH/IKbUFeAeZFgwQswel0qkePHj7zdu7caVA15rVjxw6f6R49esjpdBpUDQAAAIwwatQo/fWvf9U//uM/6sSJExo5cqT+5V/+xZC7VU6fPq2xY8dq5MiROnHihNLS0rRnzx6G7USLcDzoHyseD5JXsBvyyj9WzCuYC/uPtiOv/ENeoa3IK8CcaJCAZQwePNhneuPGjQZVYl6XfyeXf2cAAAAID7fffruKioo0d+5cRURE6L333tPNN9+sdevWqaamJujvX1NTo3Xr1unmm2/W+vXrFRERoXnz5qmwsFD9+vUL+vvDfjgevDqrHg+SV7Ab8urqrJpXMBf2H21HXl0deYVAIK8A83F4PB6P0UUA/ti1a5cGDRrkM8/lcikpKcmgiszF5XIpJSXFZ96uXbt0zz33GFQRAAAAzODTTz/VuHHjVFJSIknq1q2bsrKyNHny5EZ3jV3u/Pnz6tixoyTp3Llz6tChwxVfX1FRoRUrVig/P18nT56UJKWlpWnt2rWceEGbcDx4ZXY5HiSvYAfk1ZXZJa/aoqV5hatj/9E65NWVkVfkVTCQV4A5MIIELOOuu+5St27dfOYtWbLEoGrM55133vGZjo+PV2ZmpkHVAAAAwCz69eunwsJCvfLKK7r++ut18uRJLVy4UElJSRo2bJi2bNmiM2fOtHr5Z86c0ZYtWzRs2DD17NlTCxcu1MmTJ3XDDTfolVdeUVFRESdf0GYcD16ZXY4HySvYAXl1ZXbJK5gL+4/WIa+ujLxCMJBXgDkwggQsZerUqcrNzfVOR0ZGqri4WL179zawKuMdPHhQffr00cWLF73zpkyZouXLlxtYFQAAAMymrq5OW7du1bJlyxo9YzgxMVEZGRlKT09Xenq6UlJS5PF4lJycLKn+DiqHw6GysjIVFhaqsLBQ+/btU3l5uc9yBg0apMcff1xDhw5VVFRUqD4awgDHg02z6/EgeQUrI6+aZte8ainuyA4u9h8tQ141jbyqR14FF3kFGIcGCViKy+XSzTff7PNcpszMTH388ceKiAjPAVHcbrcGDhyogoIC7zyn06lDhw55d5YAAADA5Q4fPqzly5dr27ZtcrlcbVpWcnKyhgwZoqlTp6pXr14BqhDwxfFgY+FyPEhewWrIq8bCJa/8wQXH0GH/cXXkVWPk1SXkVeiQV0Bo0SABy5k/f75+85vf+MybOHGicnNzw+6PNrfbrSlTpigvL89n/vz587VgwQKDqgIAAIDVfPPNNyoqKtK+ffu8d5989dVX+v77731e1759e3Xv3l3p6eneu1n69u2rzp07G1M4wg7Hg5eE6/EgeQWrIK8uCde8ag4XHI3B/qN55NUl5JUv8soY5BUQfDRIwHKqqqqUlpamiooKn/nh9kdbc3+sJSYmqqSkRO3btzeoMgAAANiF2+3WN998I0nq3Llz2PytDfPieLAex4ONkVcwG/KqHnnVGBcczeW7775Tp06dJElnz57VNddcY3BFoUde1SOvGiOvzIW8AgInPPZssJXY2FitXLmy0fOS8vLyNHDgQB08eNCgykLn4MGDGjhwYKM/1qKiorRixYqw/GMNAAAAgRcREaEuXbqoS5cuYXNiFObG8SDHg80hr2A25BV5BWv44T4jXPcf5BV5BWsgr4DAYQuCJd1///3asGFDoz/aCgoK1KdPH82ePbvNz2kyI5fLpdmzZ6tPnz4+z0CT6v9Y27Bhg+6//36DqgMAAACA4ON4kONBwCrIK/IKsAryirwCgHDCIzZgaZs3b9aYMWNUV1fX5M/79u2r0aNH67777lNqaqp3+CGrOHv2rEpLS7Vjxw5t3LhRRUVFTb6u4Y+1ESNGhLhCAAAAADAGx4P1OB4EzI+8qkde1WPIenNhffgir+qRV/XYPsyF9QEEDg0SsLyPPvpIkydPVnl5+VVfGx8fr9TUVN1www2KjY2V0+k0zVBEbrdbNTU1qqqq0pdffqnS0lKdOHHiqr+XmJioFStW0MkKAAAAIOxwPMjxIGAV5BV51YALXObC+miMvCKvGrB9mAvrAwgcGiRgC99//72ys7OVk5Ojmpoao8sJCafTqTlz5mju3Lk8Aw0AAABA2OJ4kONBwCrIK/JK4gKX2bA+mkZekVcS24fZsD6AwKFBArbicrn0+uuva9OmTTp58qTR5QRFfHy8Ro4cqaeeekrJyclGlwMAAAAApsDxIACrIK/CGxe4zIX1cWXkVXhj+zAX1gcQODRIwJbq6uq0e/dubdy4Udu3b1d5ebms+k/d4XAoMTFRgwcP1ujRo5WZmamoqCijywIAAAAAU+J4EIBVkFfhiQtc5sL68A95FZ7YPsyF9QEEDg0SCAs1NTU6evSoSktLVVpaqtOnT6u6ulrV1dVGl+YjJiZGMTExiouLU2pqqlJTU9WzZ085nU6jSwMAAAAAS+J4EIBVkFfhgQtc5sL6aB3yKjywfZgL6wMIHBokAAAAAAAAAAAIAS5wmQvrA2ge24e5sD6AwIkwugAAAAAAAAAAAAAAAIBgo0ECAAAAAAAAAAAAAADYHg0SAAAAAAAAAAAAAADA9miQAAAAAAAAAAAAAAAAtkeDBAAAAAAAAAAAAAAAsD0aJAAAAAAAAAAAAAAAgO3RIAEAAAAAAAAAAAAAAGyPBgkAAAAAAAAAAAAAAGB7NEgAAAAAAAAAAAAAAADbo0ECAAAAAAAAAAAAAADYHg0SAAAAAAAAAAAAAADA9miQAAAAAAAAAAAAAAAAtkeDBAAAAAAAAAAAAAAAsD0aJAAAAAAAAAAAAAAAgO3RIAEAAAAAAAAAAAAAAGyPBgkAAAAAAAAAAAAAAGB7NEgAAAAAAAAAAAAAAADbo0ECAAAAAAAAAAAAAADYHg0SAAAAAAAAAAAAAADA9qKMLgAIhZqaGh05ckSlpaUqKyvTqVOnVF1drZqaGqNL8+F0OhUTE6OuXbsqJSVFqampSkpKktPpNLo0AAAAAAAAAAA43w7AMsgrNIUGCdhSXV2d/vKXv2jjxo3avn27Kioq5PF4jC6rVRwOh3r06KHBgwdr9OjRuuuuuxQVxaYLAAAAAAAAAAg+zrcDsAryCv5weKz6rwJoQllZmd544w1t2rRJJ0+eNLqcoOjWrZtGjRqlp556SsnJyUaXAwAAAAAAAMBP58+fV8eOHSVJ586dU4cOHQyuKLyxPq6M8+3hje3DXFgfV0ZeoSVokIAtVFVVKTs7Wzk5Obpw4YLR5YSE0+nUM888o7lz5yo2NtbocgAAAAAAAABcBRe4zIX10TTOt3O+XWL7MBvWR9PIK/KqNWiQgOV99NFHmjRpkioqKq762oSEBKWkpOjGG29UbGys2rVrp4iIiBBUeXVut1sXLlxQVVWVjh07prKyMlVWVl719xITE7VixQrdf//9IagSAAAAAAAAQGtxgctcWB+Ncb6d8+0N2D7MhfXRmN3y6uDBg/qf//kf1dbWkldBRoMELG3z5s0aM2aM6urqmvx5enq6Ro8erUGDBik1NVWdOnUKcYVtc/bsWZWWlmrnzp3asGGDioqKmnxdVFSUNmzYoBEjRoS4QgAAAAAAAAD+4gKXubA+fHG+vR7n2+uxfZgL68OXnfLK7Xbr2WefVU5Ojv7whz9oxIgR5FWQ0SABy2ou/CIjIzVjxgzNmDFDSUlJBlUXHC6XS++8846WLFmiixcv+vyMEAQAAAAAAADMjQtc5sL6uITz7Zxvvxzbh7mwPi6xU159//33+rd/+ze9//77kqT/+Z//0XXXXdfodeRVYNEgAUv66KOP9MADDzQKv8zMTC1dulS9e/c2qLLQ+OyzzzRt2jTt3r3bZ35UVJQ+/PBDhtMBAAAAAAAATIgLXObC+qjH+XbOtzeF7cNcWB/17JRXlZWVGjZsmPbu3Sup/pEZR48eveLvkFeBYY6HqwAtUFVVpUmTJjUKv4kTJ+rjjz+2VPi1Vu/evfXxxx9r4sSJPvPr6uo0efJkff/99wZVBgAAAAAAAKA5bre7yf8HjML5ds63N4e8gtnYKa8OHTqkf/qnf/I2R0jSHXfccdXfI68CgwYJWE52drYqKip85k2cOFG5ubmKiAiff9IRERHKzc1tFILl5eXKzs42qCoAAAAAAAAAX3/9tXbt2qWcnByNGTNGycnJat++vc8z0Dt16qT27dsrOTlZY8aM0auvvqpdu3bp66+/NrByhBvOt9cL5/Pt5BWswi55tXPnTv385z9v9Fn8aZCQwjuvAoVHbMBSysrK1Lt3b9XU1HjnZWZm6uOPP7ZU+AWS2+3WwIEDVVBQ4J3ndDp16NAhJScnG1gZAAAAAAAAED4OHz6s5cuXa+vWrTpy5EiblpWUlKShQ4dq6tSp6tWrV4AqxOXCfch6zrc3Fi7n28kr6yGv7JFX+fn5mjp1aqNRMCTp008/VUZGht/LCpe8CgYaJGApU6dOVW5urnc6MjJSxcXFlho2JxgOHjyoPn366OLFi955U6ZM0fLlyw2sCgAAAAAAALC3uro6bdmyRcuWLdOuXbt8ftazZ0+lp6crIyND6enpSk5Olsfj8V60cLlccjgccrlcKiws1L59+1RYWNjo+eP33nuvHn/8cQ0bNkxRUVEh+2zhINwvOHK+vWl2Pd9OXlkbeWXtvHK73Zo3b55effXVJn/evn17ffvtt4qOjm7Rcu2aV8FGgwQso66uTt27d9fJkye982bNmqVFixYZWJV5zJ49W2+99ZZ3Oj4+XsePH+ePEAAAAAAAACDAqqur9eabb2rZsmU6fvy4pPohr4cMGaKsrCzdeeed6tKlS6Pf8+cC15kzZ7Rnzx7l5+dr27ZtcrvdkqTrr79e06ZN05NPPimn0xnETxc+wvmCI+fbr8xO59vJK3sgr6ybV99//70effRRbdq0qdnXDBgwQLt3727V8u2UV6FCgwQsY9euXRo0aJDPPJfLpaSkJIMqMheXy6WUlBSfebt27dI999xjUEUAAAAAAACA/ezdu1fjx49XSUmJJKlbt26aOHGiJk2apB49elzxd1t6gauiokIrV65UXl6e98JQWlqa1q5dq379+gXg04S3cL7gyPn2K7PL+Xbyyj7IK2vmVWVlpYYNG6a9e/de8XXPPPOMcnJyWvUedsmrULLOQ1kQ9jZu3OgznZ6ebonwC5Xk5GT17dvXZ97l3xkAAAAAAACA1qmurtbcuXN1xx13qKSkRAkJCVq3bp2OHTuml19++aoXG1ujR48eevnll3Xs2DGtW7dOCQkJKikp0c9+9jPNmzdP1dXVAX9PhAfOt1+Z1c+3k1ewE6vm1aFDh/RP//RPjZojIiIaX56/4447Wv0+Vs8rI9AgAcvYvn27z/To0aMNqsS8Lv9OLv/OAAAAAAAAALTc3r171bdvX+Xk5Mjtdmvs2LE6dOiQHn300ZAMH+90OvXoo4/q0KFDGjt2rNxut7Kzs5Wenn7Vu1KBpnC+/eqser6dvILdWDGvduzYoZ///OeqqKjwmX/ttdfq9ddfb/T6n/3sZ216P6vmlVFokIAl1NTUNAqRy4fTgXTffff5TFdUVKimpsagagAAAAAAAADre//999W/f399/vnnSkhI0ObNm/Xuu+8qLi4u5LXExcXp3Xff1ebNmxUfH6+SkhL179//is81By7H+Xb/WPF8O3kFu7FiXuXl5ekXv/iFzp496zM/MTFR/+f//B/FxsY2mn/ddde16T2tmFdGokEClnDkyBF5PB6feTfddJNB1ZhXamqqz7Tb7dbRo0cNqgYAAAAAAACwttWrV+uhhx5SbW2tHnzwQR06dEjDhw83uiwNHz5cJSUlevDBB1VbW6sxY8ZozZo1RpcFi+B8u3+sdr6dvIIdWSmv3G635syZo0mTJunixYs+P/unf/on/d//+3+Vlpamv/3tbz4/a8vjNRpYLa+MRoMELKG0tNRnOiEhQddcc41B1ZhXp06dFB8f7zPv8u8OAAAAAAAAwNWtWbNGEyZMkNvt1oQJE7Rp0yZD7sJuTlxcnDZt2uSt8bHHHuOiI/zC+Xb/WOl8O3kFu7JKXlVVVWnMmDF69dVXm/z57373OyUkJEhSUBokrJRXZkCDBCyhrKzMZzolJcWgSszv8i4xAhAAAAAAAABomU2bNikrK0uS9MQTTygvL0+RkZEGV9VYZGSk8vLy9MQTT0iSsrKy9Ic//MHgqmB2nG/3nxXOt5NXsDOr5NWZM2f0/fffN/vzm266Sb/4xS906tQp/fd//7fPzwLRICFZI6/MggYJWMKpU6d8pm+88UaDKjG/G264wWf69OnTBlUCAAAAAAAAWM/evXv1yCOPyO12KysrS4sWLZLD4TC6rGY5HA4tWrTIe2f2ww8/rE8//dTosmBinG/3n9nPt5NXsDur5NUNN9ygbdu26YMPPlBiYmKTr/nTn/6kbt26+cxr3769br311oDV8ENmyyszoUECllBdXe0zHRsba1Al5nf5d3P5dwcAAAAAAACgadXV1Ro3bpxqa2v14IMPKjc319QXGxs4HA6tWLFCDz74oGprazVu3DjOC6JZnG/3n5nPt5NXCAdmzquLFy/q4sWL3mmHw6Fhw4appKRE8+fP92sZGRkZio6ODkg9Zs4rs6FBApZQU1PjM92uXTuDKjE/p9PpM00AAgAAAAAAAP5ZsGCBPv/8cyUkJGjVqlWmHKa+OZGRkcrPz1d8fLxKSkr04osvGl0STIrz7f4z8/l28grhwOi8unDhgj799FPl5+drxowZyszMVFxcnNq1a6eoqChFRUWpXbt2iouLU2ZmpmbMmKF3331X//AP/+DX8gP1eA3J3HllNlFGFwC0RkQEvT3N4bsBAAAAAAAAWm7v3r169dVXJUm5ubmKi4szuKKW69q1q3JzczVy5Ejl5ORoxIgR6tevn9FlweQ4p9w8s3435BXCVai2yeLiYq1evVrvvvuuzpw5c8XX1tbW6syZMyooKFBBQUGL3ieQDRJmzSsz4psCAAAAAAAAAIS16upqjR8/Xm63W2PHjtXw4cONLqnVRowYoUceeURut1vjxo1rdPctAGsjr4DgqKur04oVK9SnTx/16dNHS5YsuWpzREs88MADjUZ5+NnPfhaw5cN/NEgAAAAAAAAAAMLaokWLVFJSooSEBL399ttGl9NmS5YsUUJCgkpKSvTmm28aXQ6AACKvgMD729/+poyMDE2ZMkXFxcVBeY8PP/xQPXv29I4akZiYqOuuuy4o74Uro0ECAAAAAAAAABC26urqtHTpUknSa6+9Zsmh6i8XFxfnHX5/2bJlqqurM7giAIFAXgGBdfr0aU2cOFE///nPtX///mZfd9NNN2n06NF66aWXtHXrVhUVFenQoUM6dOiQioqKtHXrVr300kuNRoi43BdffKG//e1vuu+++zRixIhAfxz4KcroAgAAAAAAAAAAMMqWLVt0/PhxxcfHa8yYMUaXEzAPPfSQnnrqKX355ZfaunUrF2KaUFtb2+T/A2ZFXoUv8irwiouLNWTIEB0/frzJn994440aN26c/tf/+l9KTk6+4rL69OmjuLg4Pffcc369944dO1RSUqJ/+7d/02233dbS0tFGjCABAAAAAAAAAAhby5YtkyRlZWVd9c5PK3E6ncrKypJ06TOi/oLYzJkz1a9fPyUkJHjnJyQkqF+/fpo5c+YV7yIGjERehRfyKnj+9Kc/qX///k02R/Tu3Vv/+Z//qaNHj+rFF1+8anOEJHk8Hv385z9vNH/RokX6z//8T/Xu3bvRz44fP67+/fvrT3/6U+s+BFqNBgkAAAAAAAAAQFj64osvtGvXLkVERGjSpElGlxNwkydPlsPh0M6dO3X48GGjyzHUgQMHlJmZqT59+mjJkiXat2+fLly44P35hQsXtG/fPi1ZskS33XabMjMzdeDAAQMrBnyRV+GDvAqurVu3atiwYTp//rzP/A4dOuj1119XUVGR/vmf/1mRkZF+L/P/+//+vybnz5o1S//8z/+soqIivf766+rQoYPPz8+fP68HH3xQW7dubfkHQavRIAEAAAAAAAAACEu5ubmSpCFDhqhHjx4GVxN4PXr00JAhQyRJy5cvN7gaY3g8HmVnZysjI0MFBQV+/15BQYEyMjKUnZ0tj8cTxAoB/5BX9kdeBd+ePXs0atSoRo8pGTBggD7//P/X3r0HWVmXDwB/dtllAc0M85LiT2BhJCx0BZwRxfCG4w1TJsdLzaiJF8SNiwYrhVkm2n1TMwHFtIkJahSzlMgsiQFHYBBTdGBztXJiV7yAriCw5/cHw9ph0ZbdPfue857PZ8aZ3sdzvu9zTruPO8/7vN93bUyZMiXKy8v3as3NmzfHzJkzW8XXrl3b8r/Ly8tjypQpsXbt2jjxxBOzXvfBBx/E2LFjY+nSpXt1XtrPgAQAAAAAAEVp1x2bu7Z2T6Ndn+2xxx5LOJOul8lk4vrrr4+amppWF8PaYtu2bVFTUxPXX3+9i44kTr1KN/Uq995666245JJLWn2/F198cSxevDgOP/zwdq27p0dwVFVVxaBBg1rFDz/88PjTn/4UF198cVZ827Ztcckll8Tbb7/drhzYO6kekNiyZUtMnjw5TjrppDj00EOjR48eccghh8QJJ5wQc+fObVeBId3q6+ujpKQk65/y8vI47LDD4sILL4wVK1Z0aP3LLrssSkpKor6+vnMSBgAAAADa5a233op//OMfERFxwgknJJxN7uz6bHV1dUV34eWOO+6Iu+++u8Pr3H333XHHHXd0QkbFRb+986hX6ade5VYmk4lx48bFa6+9lhW/4oor4qGHHoqKiop2rbts2bJobGxsFV++fPlHvqeioiIeeuihuOKKK7Lir732WowbN86ASxdI9YDEu+++G/fcc0+UlJTE2WefHZMnT47zzz8//v3vf8cVV1wR55xzTjQ3NyedJnmosrIybr755rj55ptj4sSJceSRR8aCBQtixIgR8fTTTyedHgAAAADQQatWrYqIiH79+kXv3r0TziZ3DjjggOjbt29EfPiZi8GaNWtixowZnbbejBkzYs2aNZ22XjHRb+849Srd1Kvcmz17dvz2t7/Nio0aNSpmzZoV3bp1a9eamUwmRowY0SpeW1sb3bt3/9j3duvWLWbNmhVf+MIXsuK/+c1vYs6cOe3Kh7YrSzqBXOrdu3e88847rX4It2/fHqeffnr88Y9/jMcffzzOPvvshDIkXw0YMCC+9a1vZcVuv/32qKmpiW9+85vx17/+NZnEAAAAAIBOsevu9aFDhyacSe4NGzYs6uvrY8WKFXHKKacknU6XmDBhQqfuIr1t27aYMGGCC/rtoN/ecepVuqlXudXU1BQ1NTVZsd69e8cvf/nLdg9HRERMnz59j/Hq6uo2vb9bt27xy1/+Mo4++uh48803W+I1NTVx6aWXRq9evdqdGx8v1TtIlJaW7nFCp6ysLM4///yIiFi/fn1Xp0WB+upXvxoREStXrsyKv/HGGzFx4sTo169fVFRUxEEHHRQXXnhh/P3vf896Xd++feMXv/hFROyc8ty1pdioUaO6JH8AAAAA4EO7+nzDhg1LOJPc23VRdffeZlqtXr06lixZ0unrLlmyJJ577rlOX7cY6bfvHfUqvdSr3HvggQeyBhAiIubOnRuHHXZYu9fcvHlzzJw5s1V87dq1e7VOnz594v7778+Kbdy4saW+kRup3kHiozQ3N8cTTzwRERGf+9znEs6GQlNW9uGvTWNjYxx//PFRV1cXo0aNiosuuiheeeWV+M1vfhO///3vY9GiRXHiiSdGRMTEiRPjgQceiOeeey6+9rWvxf777x8R0bJdFAAAAADQdXZdfCuGO7KL7YLj7hebOnvt2tranK1fbPTb20a9Si/1Krd27NgRP/rRj7JiZ555ZowZM6ZD61ZWVraKVVVVxaBBg/Z6rfPOOy/OPPPMePzxx1tiP/rRj+Kqq67q0A4XfLSiGJD44IMP4rbbbotMJhMbN26MJ598Ml566aW4/PLL49RTT006PQrErmf+7PoDLCJi6tSpUVdXFzU1NXHbbbe1xP/whz/E2WefHZdffnm8/PLLUVpaGhMnTozVq1fHc889FxMnTkztH2oAAAAAUAhef/31iNjzRY60GTBgQER8+JnTbtmyZQW5djHRb9876lV6qVe5tXDhwqirq8uK3XDDDR1ac9myZdHY2Ngqvnz58navOWXKlKwBifXr18ejjz7a8kQEOlfRDEjccsstLcclJSVxww037HHrk3yXyWSiqakp6TS6XGc+e6kt1q9f3/JMtPfeey9WrlwZTz31VBx88MHx/e9/PyJ2/lzNmzcvDjjggPjGN76R9f6zzjorTj/99Fi8eHEsXbo0Ro4c2aX5/7dt27bFe++9l9j5AQAAACDfNDc3x5YtWyJiZ8+1q/pn/32eruzZZTKZiIh4//33Y/PmzVFamt6nb2/bti3WrFmTs/XXrFkT77zzTtbOB4VGv739kui3q1fqVXupVxHz58/POq6qqoqTTz653etlMpkYMWJEq3htbW1079693euecsopccwxx8Tq1atbYr/+9a8NSORI4f5G7IV99903MplMNDc3x+uvvx6/+93v4qabboply5bFH/7wh9hvv/2STrHNmpqaYt999006jdSrq6vLGqqJiDjkkENiyZIlLdOLL730UmzZsiVOPvnk6NWrV6s1Tj755Fi8eHGsXr060T/YZs+eHbNnz07s/AAAAACQz5K6I/vggw9O5LyF1A/PR1u3bm15nANto9/eedQr9oZ61XpXh6uuuipKSkravd706dP3GK+urm73mhE7b+6/6qqrYvz48S2xZ555pkNr8tHSO3a1B6WlpdGnT5+49tprY9asWbF06dL47ne/m3Ra5KEzzjgjMplMZDKZaGhoiO9///vR0NAQY8aMiXfffTciIjZt2hQRH/2HwWc+85ms1wEAAAAAQLHRbweS8J///CdeffXVrNh/P9Znb23evHmPTydYu3Ztu9f8b7vnVl9fHxs2bOiUtclWFDtI7Mno0aMjIuIvf/lLsonspV69erX8wVBMJk2alNhU5oEHHhg33HBDvPPOO3HrrbfGN77xjfjJT37SMrn4UcXpP//5T0QkP+E4bty4+PGPf5xoDgAAAACQT5qbm1v6dnV1dV12d/R7773Xcq4NGzbEPvvs0yXn3bBhQ8ud55s2bUr9lvUHH3xwfPDBBzlZv6KiIjZs2FDQW9brt7dfEv129Uq9aq9ir1e778DwiU98Ij772c+2O5c97eBSVVUVgwYNavea/23w4MGx7777Zl0HfuaZZ2LMmDGdsj4fKtzfiA56/fXXIyKivLw84Uz2TklJSZf9Ryif5MP/TzfddFPcf//98bOf/SwmTpwYgwYNih49esSzzz4bTU1Nrbb92jV8c8wxx7TEunXrFhERO3bs6Kq0o7y8vCh/ZgAAAADg4/To0SO2bNmSWM91n3326bLz7tpOvGfPnvGJT3yiS86ZpCFDhsSKFStytvYnP/nJnKzdVfTb2y+pfrt6lV7q1cfrSL167rnnso6HDx/eUjf21rJly6KxsbFVfPdHeHREt27dYvjw4fHUU0+1xFavXm1AIgfSO3YVES+++GI0NTW1ijc1NcXkyZMjIuKss87q6rQoUD179oypU6fGtm3b4jvf+U507949Lr744njjjTdabanzxBNPxKJFi2LAgAFxwgkntMR79+4dERH//Oc/uzR3AAAAACDboYceGhE778hOu/Xr10fEh5857Y4//viCXLuY6LfvHfUqvdSr3Nm8eXPW8eGHH96udTKZTIwYMaJVvLa2Nrp3796uNT/K7jkW41MFukKqByTmz58fhxxySJx11lkxfvz4mDZtWnzlK1+J//u//4snnngiRo4cGZMmTUo6TQrIVVddFYceemg8+OCDUVdXF3fccUf0798/br311jj11FPjpptuiksuuSTOPffc6NWrV8ydOzdr+6dTTjmlZZ2ampq49dZb46GHHkrq4wAAAABA0Ro6dGhERKxcuTLhTHJv12fc9ZnT7oorrijItYuNfnvbqVfppV7lztFHHx0XXXRRnHfeeTF69Oj4/Oc/3651pk+fvsd4dXV1R9LboyFDhsTo0aPjvPPOi4suuiiOPvroTj8HKR+QOOecc+Kiiy6K1157LebNmxc//OEP4/HHH48hQ4bEvffeG3/+85+jZ8+eSadJAenRo0fU1NTE9u3b45ZbbokDDzwwnnnmmaiuro66urr4wQ9+EIsXL44vfvGL8cwzz8SJJ56Y9f4zzzwzvve970VExA9/+MP45je/Gffdd18SHwUAAAAAitqui2+52to8nxTbBcdjjjkmRo4c2enrjhw50sWqTqTf3nbqVXqpV7nz5S9/OebNmxePPPJILFq0KKZMmbLXa2zevLnVrjYREWvXru2MFFuZMmVKLFq0KB555JGYN29eXHrppTk5T7ErSzqBXBo2bFgMGzYs6TQoIH379o1MJvOxr5kwYUJMmDCh5fjTn/501NbWRm1tbZvOceONN8aNN97YoTwBAAAAgI7Z1Tsuhjuyd11ULaZ++V133RXDhg2Lbdu2dcp65eXlcffdd3fKWsVCv73zqFfppl7lr8rKylaxqqqqGDRoUALZ0FlSvYMEAAAAAADsybHHHhsREa+88kq8+eabCWeTOxs3boz6+vqI+PAzF4MhQ4bEt7/97U5b79vf/na7t2eHjlKv0k29yk/Lli2LxsbGVvHly5cnkA2dyYAEAAAAAABF51Of+lT0798/IiKWLl2acDa5s+uzVVZWxv77759sMl1s6tSpcd1113V4nQkTJsTUqVM7ISNoH/Uq/dSr/JLJZGLEiBGt4rW1tdG9e/cEMqIzGZAAAAAAAKAonXvuuRERMWfOnIQzyZ1dn+2cc85JOJOuV1JSEnfeeWfMnDkzysvL9/r95eXlMXPmzPjpT38aJSUlOcgQ2k69Sjf1Kr9Mnz59j/Hq6uouzoRcMCABAAAAAEBRuvbaayMi4rHHHotXX3014Ww6X319fTz22GMR8eFnLTYlJSUxbdq0WLFiRYwcObLN7xs5cmSsXLkypk2b5mIjeUG9Sj/1Kj9s3rw5Zs6c2Sq+du3aBLIhFwxIAAAAAABQlI488sg49dRTo7m5OWbNmpV0Op1u1qxZkclk4rTTTosjjzwy6XQSNWTIkHj66adj9erVUV1dHcOHD8/aJr2ioiKGDx8e1dXVsXr16nj66afj85//fIIZQzb1qnioV8mqrKxsFauqqopBgwYlkA25UJZ0AgAAAAAAkJTx48fHk08+GXPmzIkZM2ZERUVF0il1iq1bt7ZsVz9+/PiEs8kfRx99dNTW1kZExPbt22PTpk0REbHffvtFWZlLJuQ39aq4qFddb9myZdHY2Ngqvnz58gSyIVfsIAEAAAAAQNEaM2ZMHHbYYdHQ0BDz589POp1O8+tf/zoaGxujT58+ce655yadTl4qKyuL3r17R+/evV1spCCoV8VLvcq9TCYTI0aMaBWvra3N2sGDwmdAAgAAAACAolVWVhbXXXddRETceOONsXHjxoQz6riNGzfG17/+9YjYeTe2i2mQDuoV5M706dP3GK+uru7iTMg1AxIAAAAAABS1yZMnx+DBg2PDhg2puBBy/fXXx4YNG2Lw4MExefLkpNMBOpF6BZ1v8+bNMXPmzFbxtWvXJpANuWZAAgAAAACAolZRURFz586N0tLS+NWvfhWPPPJI0im128MPPxzz5s2Lbt26xQMPPBAVFRVJpwR0IvUKOl9lZWWrWFVVVQwaNCiBbMg1AxIUpObm5qRTyFu+GwAAAADYe8cdd1zLNu/XXHNNQW5d/8Ybb8Q111wTERFf//rXY/jw4QlnRCHQU/5o+frdqFcUq1z8Tr700kvR2NjYKr58+fJOP1cu5Wu9ykcGJCgIu08NfvDBBwllkv+2bt2addyjR4+EMgEAAACAwnLzzTe3bF3/1a9+NXbs2JF0Sm22Y8eOuPLKK6OhoSEGDx4cN998c9Ipkaf029sun/vt6hXFINf1KpPJxMSJE1vFa2tro3v37p16rlzL53qVbwxIUBB2/yVuampKKJP8t/t3owACAAAAQNv06NEj5s6dG+Xl5bFw4cK4+uqrI5PJJJ3W/5TJZOLqq6+OhQsXRvfu3W1Vz8fSb2+7fO63q1cUg1zXq4aGhnj55ZezYp/61Keiurq6U8/TFfK5XuUbAxIUhE9/+tNZx//85z8TyiT//etf/8o6PuCAAxLKBAAAAAAKz3HHHRfz5s2L0tLSuO+++2LSpEl5fdExk8nEpEmT4r777ovS0tKYN2+erer5WPrtbZfv/Xb1irTLdb06+OCD48UXX4wZM2ZERUVF7LPPPrFmzZpOPUdXyfd6lU8MSFAQBgwYkHW8fv36hDLJf+vWrcs6HjhwYEKZAAAAAEBhGjt2bMyZMycidm6zPW7cuLzcvn7XNvW1tbUREXHffffFBRdckHBW5Dv99rYrhH67ekWadUW96tmzZ9xyyy3xwgsvxIMPPhh9+vTp9HN0hUKoV/nCgAQFYfdf4g0bNsSmTZsSyiZ/bdq0KRoaGrJiCiAAAAAA7L3LL7887r///pY7s8eOHRsbN25MOq0Wb7zxRowdO7Ylx7lz58Zll12WdFoUAP32timkfrt6RVp1Zb2qrKws2KGdQqpX+cCABAWhf//+UVJSkhXbfRKK1t9JaWlp9OvXL6FsAAAAAKCwXX755TF//vwoLy+PhQsXxuDBg+Phhx9OOq14+OGH46ijjoqFCxdGeXl5LFiwwMVG2ky/vW0Krd+uXpFG6lXbFFq9SpoBCQpCRUVFHHHEEVmxP/3pTwllk78WL16cdXzEEUdERUVFQtkAAAAAQOEbO3Zs/O1vf4vPfvaz0dDQEBdccEFceumlidydvXHjxrjkkkviggsuiIaGhhg8eHAsXbq0YO94JRn67W1TiP129Yq0Ua/aphDrVZIMSFAwzjjjjKzjBQsWJJRJ/tr9O9n9OwMAAAAA9t5xxx0Xq1atimnTpkVpaWn86le/iqOOOioefPDB2Lp1a87Pv3Xr1njwwQfjqKOOinnz5kVpaWnU1NTEypUrY/jw4Tk/P+mj3/6/FWq/Xb0ibdSr/61Q61VSSjKZTCbpJKAtnnzyyTjttNOyYnV1ddG/f/+EMsovdXV1MWDAgKzYk08+GaecckpCGQEAAABA+jz77LNx2WWXxYsvvhgREQceeGBceeWVcfXVV7e6y3V37733Xuy7774REfHuu+/GPvvs87Gvf/XVV+Pee++NOXPmRGNjY0REDB48OB544AEXGukQ/faPl5Z+u3pFGqhXHy8t9aor2UGCgvGFL3whDjzwwKzYnXfemVA2+eeuu+7KOj7ooIPipJNOSigbAAAAAEin4cOHx8qVK+O2226Lww47LBobG2PmzJnRv3//GDNmTDz66KPx5ptvtnv9N998Mx599NEYM2ZM9OvXL2bOnBmNjY3Rp0+fuO2222LVqlUuNtJh+u0fLy39dvWKNFCvPl5a6lVXsoMEBeXaa6+Nn//85y3H3bp1i9WrV8fnPve5BLNK3vPPPx9VVVWxY8eOltg111wT99xzT4JZAQAAAEC6bd++PX73u9/Fz372s1bPRO/bt28MGzYshg4dGkOHDo0BAwZEJpOJysrKiNh5x2dJSUmsX78+Vq5cGStXrowVK1ZEfX191jqnnXZajB8/Ps4999woKyvrqo9GEdBv37O09tvVKwqZerVnaa1XuWZAgoJSV1cXRx11VNZzsk466aR46qmnorS0ODdEaW5ujlGjRsWSJUtaYhUVFfHCCy+0/PECAAAAAOTWyy+/HPfcc0889thjUVdX16G1Kisr45xzzolrr702jjzyyE7KELLpt7dWLP129YpCo161Viz1KhcMSFBwZsyYEd/5zneyYuPGjYuf//znRVcEm5ub45prronZs2dnxWfMmBG33HJLQlkBAAAAQHF7++23Y9WqVbFixYqWu61ff/31eP/997Ne17Nnzzj00ENj6NChLXdvH3vssbH//vsnkzhFR7/9Q8Xab1evKBTq1YeKtV51FgMSFJympqYYPHhwvPrqq1nxYiuCH1X8+vbtGy+++GL07NkzocwAAAAAgD1pbm6Ot99+OyIi9t9//6LpZZK/9Nt30m9vTb0i36hXO6lXHVccPymkSq9evWLWrFmtnl81e/bsGDVqVDz//PMJZdZ1nn/++Rg1alSr4ldWVhb33nuv4gcAAAAAeai0tDR69+4dvXv3LpoLOeQ3/Xb99o+iXpFv1Cv1qrOoaBSk0aNHx/z581sVwSVLlkRVVVVMmjSpw8/Nykd1dXUxadKkqKqqynqmUMTO4jd//vwYPXp0QtkBAAAAAFBo9Nv126FQqFfqVWfwiA0K2sMPPxwXXnhhbN++fY///thjj40vfelLcfrpp8fAgQNjv/326+IMO2bTpk2xbt26WLx4cSxYsCBWrVq1x9ftKn7nn39+F2cIAAAAAEAa6LfvpN8O+U+92km9ah8DEhS8P/7xj3H11VdHfX39/3ztQQcdFAMHDow+ffpEr169oqKiIm+2hmpubo6tW7dGU1NT/Otf/4p169ZFQ0PD/3xf375949577zUZBgAAAABAh+i367dDoVCv1Kv2MiBBKrz//vtx++23xx133BFbt25NOp0uUVFREVOnTo1p06Z5phAAAAAAAJ1Cv12/HQqFeqVetYcBCVKlrq4ufvCDH8Rvf/vbaGxsTDqdnDjooIPiggsuiBtuuCEqKyuTTgcAAAAAgBTSbwcKhXrF3jAgQSpt3749nn766ViwYEEsWrQo6uvro1B/1EtKSqJv375xxhlnxJe+9KU46aSToqysLOm0AAAAAAAoAvrtQKFQr2gLAxIUha1bt8Yrr7wS69ati3Xr1sXGjRtjy5YtsWXLlqRTy9KjR4/o0aNHHHDAATFw4MAYOHBg9OvXLyoqKpJODQAAAAAA9NuBgqFesScGJAAAAAAAAACA1CtNOgEAAAAAAAAAgFwzIAEAAAAAAAAApJ4BCQAAAAAAAAAg9QxIAAAAAAAAAACpZ0ACAAAAAAAAAEg9AxIAAAAAAAAAQOoZkAAAAAAAAAAAUs+ABAAAAAAAAACQegYkAAAAAAAAAIDUMyABAAAAAAAAAKSeAQkAAAAAAAAAIPUMSAAAAAAAAAAAqWdAAgAAAAAAAABIPQMSAAAAAAAAAEDqGZAAAAAAAAAAAFLPgAQAAAAAAAAAkHoGJAAAAAAAAACA1DMgAQAAAAAAAACkngEJAAAAAAAAACD1DEgAAAAAAAAAAKlnQAIAAAAAAAAASD0DEgAAAAAAAABA6hmQAAAAAAAAAABSz4AEAAAAAAAAAJB6BiQAAAAAAAAAgNQzIAEAAAAAAAAApJ4BCQAAAAAAAAAg9QxIAAAAAAAAAACpZ0ACAAAAAAAAAEg9AxIAAAAAAAAAQOoZkAAAAAAAAAAAUs+ABAAAAAAAAACQegYkAAAAAAAAAIDUMyABAAAAAAAAAKSeAQkAAAAAAAAAIPUMSAAAAAAAAAAAqWdAAgAAAAAAAABIPQMSAAAAAAAAAEDqGZAAAAAAAAAAAFLPgAQAAAAAAAAAkHoGJAAAAAAAAACA1DMgAQAAAAAAAACkngEJAAAAAAAAACD1DEgAAAAAAAAAAKlnQAIAAAAAAAAASD0DEgAAAAAAAABA6hmQAAAAAAAAAABSz4AEAAAAAAAAAJB6BiQAAAAAAAAAgNQzIAEAAAAAAAAApJ4BCQAAAAAAAAAg9QxIAAAAAAAAAACpZ0ACAAAAAAAAAEg9AxIAAAAAAAAAQOoZkAAAAAAAAAAAUs+ABAAAAAAAAACQegYkAAAAAAAAAIDUMyABAAAAAAAAAKSeAQkAAAAAAAAAIPUMSAAAAAAAAAAAqWdAAgAAAAAAAABIPQMSAAAAAAAAAEDqGZAAAAAAAAAAAFLPgAQAAAAAAAAAkHoGJAAAAAAAAACA1DMgAQAAAAAAAACkngEJAAAAAAAAACD1DEgAAAAAAAAAAKlnQAIAAAAAAAAASL3/B6TUktoUq0FiAAAAAElFTkSuQmCC\n"
+          },
+          "metadata": {}
+        }
+      ],
+      "source": [
+        "shape = qml.StronglyEntanglingLayers.shape(n_layers=2, n_wires=2)\n",
+        "template_weights = [np.random.random(size=shape)] * 3\n",
+        "fig, ax = qml.draw_mpl(circuit, expansion_strategy=\"device\")(template_weights)"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "l8XS5uCuqtzI"
+      },
+      "source": [
+        "In addition to deep blocks, we can easily expand to wider blocks with\n",
+        "more input wires. In the next example, we use the\n",
+        "`~pennylane.SimplifiedTwoDesign`{.interpreted-text role=\"class\"}\n",
+        "template as the block.\n"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": 97,
+      "metadata": {
+        "id": "wW-4yYPTqtzI"
+      },
+      "outputs": [],
+      "source": [
+        "def wide_block(weights, wires):\n",
+        "    qml.SimplifiedTwoDesign(initial_layer_weights=weights[0], weights=weights[1], wires=wires)"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "Jl-yrmJmqtzI"
+      },
+      "source": [
+        "To implement this wider block, we can use the\n",
+        "`~pennylane.MPS`{.interpreted-text role=\"class\"} template as before. To\n",
+        "account for the extra wires per block, we simply set the `n_block_wires`\n",
+        "argument to a higher number. The figure below shows the resulting\n",
+        "circuit. Notice that, in the circuit diagram, gates are left-justified.\n",
+        "Therefore parts of later blocks appear near the beginning of the\n",
+        "circuit. Furthermore, this circuit has a higher bond dimension than the\n",
+        "previous ones and would correspond to an MPS with a bond dimension of\n",
+        "four.\n"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": 98,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 860
+        },
+        "id": "eDZXVDOUqtzJ",
+        "outputId": "1faccbe0-b6be-4a19-9419-7fe3bf8a71fa"
+      },
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stderr",
+          "text": [
+            "/usr/local/lib/python3.10/dist-packages/pennylane/math/single_dispatch.py:39: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray.\n",
+            "  ar.register_function(\"builtins\", \"shape\", lambda x: np.array(x).shape)\n",
+            "/usr/local/lib/python3.10/dist-packages/pennylane/math/single_dispatch.py:38: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray.\n",
+            "  ar.register_function(\"builtins\", \"ndim\", lambda x: np.ndim(np.array(x)))\n",
+            "/usr/local/lib/python3.10/dist-packages/pennylane/operation.py:1027: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray.\n",
+            "  self.data = tuple(np.array(p) if isinstance(p, (list, tuple)) else p for p in params)\n"
+          ]
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "<Figure size 1800x900 with 1 Axes>"
+            ],
+            "image/png": "iVBORw0KGgoAAAANSUhEUgAABxwAAAOXCAYAAAAeqTSRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC8QklEQVR4nOzdf5CU9b0n+s8MMzYMiKkgjJvoMjJMqmIQf6F1vSeMpI5CVbKxVlg8Z7eyexYTDFFG44YSSCVuYnKOQ6mlCZIFsQjHPXWyyxQx/pHKgtyDMmfjvXeBEvxRW3dmFFbvrQtobSAwYX5k+v4xF2IzDLTNTD/P0/16VXXp80z348fnO+/n+zzPZ7q7Jp/P5wMAAAAAAACgBLVJFwAAAAAAAABkl4YjAAAAAAAAUDINRwAAAAAAAKBkGo4AAAAAAABAyTQcAQAAAAAAgJJpOAIAAAAAAAAl03AEAAAAAAAASqbhCAAAAAAAAJRMwxEAAAAAAAAomYYjAAAAAAAAUDINRwAAAAAAAKBkGo4AAAAAAABAyTQcAQAAAAAAgJJpOAIAAAAAAAAl03AEAAAAAAAASqbhCAAAAAAAAJRMwxEAAAAAAAAomYYjAAAAAAAAUDINRwAAAAAAAKBkGo4AAAAAAABAyTQcAQAAAAAAgJJpOAIAAAAAAAAl03AEAAAAAAAASqbhCAAAAAAAAJRMwxEAAAAAAAAomYYjAAAAAAAAUDINRwAAAAAAAKBkGo4AAAAAAABAyTQcAQAAAAAAgJJpOAIAAAAAAAAl03AEAAAAAAAASqbhCAAAAAAAAJRMwxEAAAAAAAAomYYjAAAAAAAAUDINRwAAAAAAAKBkGo4AAAAAAABAyTQcAQAAAAAAgJJpOAIAAAAAAAAl03AEAAAAAAAASqbhCAAAAAAAAJRMwxEAAAAAAAAomYYjAAAAAAAAUDINRwAAAAAAAKBkGo4AAAAAAABAyTQcAQAAAAAAgJJpOAIAAAAAAAAl03AEAAAAAAAASqbhCAAAAAAAAJRMwxEAAAAAAAAomYYjAAAAAAAAUDINRwAAAAAAAKBkGo4AAAAAAABAyTQcAQAAAAAAgJJpOAIAAAAAAAAl03AEAAAAAAAASqbhCAAAAAAAAJRMwxEAAAAAAAAomYYjAAAAAAAAUDINRwAAAAAAAKBkGo4AAAAAAABAyTQcAQAAAAAAgJJpOAIAAAAAAAAl03AEAAAAAAAASqbhCAAAAAAAAJRMwxEAAAAAAAAomYYjAAAAAAAAUDINRwAAAAAAAKBkGo4AAAAAAABAyeqSLgDKoa+vL959993o6uqK7u7u+PDDD+P06dPR19eXdGkFcrlcTJw4Ma688sqYPXt2tLS0xKxZsyKXyyVdGhVMPgAAAAAAuBQajlSkwcHBeO2116KjoyN27NgRhw8fjnw+n3RZJampqYmZM2fGokWLYunSpXHHHXdEXZ3oUjr5AAAAAABgLNXks3qXGc6ju7s7nn766di+fXscO3Ys6XLGxfTp02PJkiWxatWqaG5uTrocMkQ+AAAAAAAYDxqOVITe3t5ob2+PdevWRX9/f9LllEUul4tHH3001qxZEw0NDUmXQ4rJh3wAAAAAAIwnDUcyb+fOnXH//ffH4cOHL/rcxsbGmD17dlxzzTXR0NAQl112WdTW1pahyosbGhqK/v7+6O3tjffffz+6u7vjyJEjF31dU1NTbNq0KRYuXFiGKska+ZAPAAAAAIDxpuFIpr300ktx7733xuDg4Hl/fsstt8TSpUvjzjvvjJaWlpg6dWqZK7w0J06ciK6urti1a1ds27Yt9u/ff97n1dXVxbZt2+Kee+4pc4WkmXwMkw8AAAAAgPGl4UhmjdZMmTBhQrS1tUVbW1vMmjUroerGR09PTzz33HOxfv36+OMf/1jwM00VPk4+5AMAAAAAoFw0HMmknTt3xle+8pURzZTW1tbYsGFDzJkzJ6HKyuOtt96KBx98MPbs2VOwvq6uLn7961/7+MgqJx/yAQAAAABQThqOZE5vb29cd911I76Tbvny5bFx48bUfOfceBsaGooVK1bE5s2bC9Y3NTXFO++8E5MmTUqoMpIkH8PkAwAAAACgfKrjzjMVpb29veqbKRERtbW1sXHjxli+fHnB+kOHDkV7e3tCVZE0+RgmHwAAAAAA5eMdjmRKd3d3zJkzJ/r6+s6ua21tjd27d1dVM+XjhoaGYsGCBdHZ2Xl2XS6Xi7fffjuam5sTrIxyk4+R5AMAAAAAYPxV5x1oMuvpp58uaKZMmDAhNmzYULXNlIjhd3Jt2LAhJkyYcHZdX19fPPXUUwlWRRLkYyT5AAAAAAAYf9V7F5rMGRwcjO3btxesa2trizlz5iRUUXpcf/310dbWVrDul7/8ZQwODiZUEeUmH6OTDwAAAACA8aXhSGa89tprcezYsYJ15zYRqtnKlSsLlo8ePRp79uxJqBrKTT4uTD4AAAAAAMaPhiOZ0dHRUbB8yy23xKxZsxKqJn2am5vj5ptvLlh37j6jcsnHhckHAAAAAMD40XAkM3bs2FGwvHTp0oQqSa9z98m5+4zKJR8XJx8AAAAAAONDw5FM6Ovri8OHDxesu/POOxOqJr3uuuuuguXDhw9HX19fQtVQLvJRHPkAAAAAABgfGo5kwrvvvhv5fL5g3ec+97mEqkmvlpaWguWhoaF47733EqqGcpGP4sgHAAAAAMD40HAkE7q6ugqWGxsb4/LLL0+omvSaOnVqzJgxo2DdufuOyiMfxZEPAAAAAIDxoeFIJnR3dxcsz549O6FK0u/cd3FpqFQ++SiefAAAAAAAjD0NRzLhww8/LFi+5pprEqok/a6++uqC5Y8++iihSigX+SiefAAAAAAAjD0NRzLh9OnTBcsNDQ0JVZJ+5+6bc/cdlUc+iicfAAAAAABjT8ORTOjr6ytYvuyyyxKqJP1yuVzBsoZK5ZOP4skHAAAAAMDY03Akk2pr/eqOxr7B78Do7BsAAAAAgLHnzisAAAAAAABQMg1HAAAAAAAAoGQajgAAAAAAAEDJ6pIuAGCsDAwMxO9///uIiLj88sujvr4+4YoAAAAAAKDyeYcjkGlvvPFGPPTQQ3HrrbfGlClTYtq0aTFt2rSYMmVK3HrrrfHQQw/FgQMHki4TAAAAAAAqloYjkEkHDx6M1tbWuOmmm2L9+vWxd+/e6O/vP/vz/v7+2Lt3b6xfvz5uvPHGaG1tjYMHDyZYMQAAAAAAVCYNRyBT8vl8tLe3x7x586Kzs7Po13V2dsa8efOivb098vn8OFYIAAAAAADVRcMRyIx8Ph9tbW2xdu3aGBgY+MSvHxgYiLVr10ZbW5umIwAAAAAAjJGqaDj+t//23+LLX/5yfOpTn4rJkyfH//K//C+xbdu2pMsiAw4dOhQ1NTUFj/r6+vjsZz8b9957b+zduzciIp599tmoqamJZcuWjbqtV199NWpra+PWW2+NwcHBcv0vVJR169bFhg0bLnk7GzZsiHXr1o1BRdVNPgAAAAAAiIioS7qA8bZ79+5YtGhRTJw4Mf7yL/8yLr/88ti+fXv8xV/8Rbz//vvxne98J+kSyYDm5ub42te+FhERp06din379kVHR0f86le/il27dsXDDz8cL7/8cmzdujUWL14cX/3qVwtef/LkyVi2bFnkcrl48cUXo66u4qM35g4ePBiPPfbYmG3vscceiy9/+csxd+7cMdtmtZIPAAAAAIDqVtF3dQcHB2P58uVRW1sbe/bsiRtvvDEihhsNt912W3z3u9+Nf/Ev/kXMnDkz2UJJvdmzZ8cPfvCDgnXt7e2xdu3a+P73vx+vvfZabN26NebOnRvLly+Pt99+O6ZNm3b2ud/5znfi0KFD8cwzz8TnP//5MldfGVauXFnSx6iOZmBgIFauXBl79uwZs21WK/kAAAAAAKhuFf2Rqv/wD/8QPT098a/+1b8622yMiLjiiiviu9/9bvT398ff/u3fJlcgmfb1r389IiL27dsXEREzZ86MZ599No4cORLf+ta3zj5vx44d8fzzz8eXvvSlePjhhxOpNeveeOON6OzsHPPtdnZ2xoEDB8Z8u8gHAAAAAEA1qeiG46uvvhoREQsXLhzxs0WLFkVExGuvvVbOkqhAH//4x2XLlsXdd98dHR0d8Ytf/CJ+97vfxTe+8Y2YOnVq/PznP4+ampoEK82uLVu2ZHLbyAcAAAAAQDWo6I9U7erqioiIlpaWET+76qqrYsqUKWefA5/UCy+8EBERX/ziFwvWP//88/Hb3/42HnzwwWhtbY0PPvggtmzZ4qN7L8Hrr7+eyW1XM/kAAAAAAKgeFd1wPH78eEQMf4Tq+UydOvXsc7Iin89Hb29v0mWU3Vh+d18puru7z35H3alTp2Lfvn2xe/fuaGxsjCeffLLguY2NjbFp06ZYsmRJvPzyy3H33XfHsmXLEqh62MDAQJw6dSqx//6lGhgYiIMHD47b9g8ePBjHjx8veCde1shH6bKeDwAAAACoRA0NDT4RLWOye4e9SvX29saUKVOSLqPq9PT0xA9/+MOCdVdddVV0dnbG7NmzRzx/8eLFcdttt8X/+X/+n9He3l6uMs9r8+bNsXnz5kRrSLO+vr741Kc+lXQZmSYfAAAAAMBYOnnyZEyePDnpMvgEKvo7HM+8s3G0dzGeOHFi1Hc/wsctWrQo8vl85PP5OHr0aDz55JNx9OjRuPvuu+PkyZPnfc2kSZMK/gmVSj4AAAAAAKpbRb/D8cx3N3Z1dcUtt9xS8LP/9//9f+PkyZNx2223JVFayRoaGka9gV/JHnnkkdS8C2n69OmxatWqOH78ePz4xz+O733ve/Hss88mXdaoli9fHs8880zSZZRsYGAgGhsbo7+/f1y2n8vl4siRI5n+SFX5KF3W8wEAAAAAlaihoSHpEviEsnuHvQh33HFHPPHEE7Fz5874y7/8y4Kf7dix4+xzsqSmpqYq30ZcX1+fdAkjfPe7340tW7bEz372s/j2t78dTU1NSZd0XvX19Zn/nZk7d27s3bt33Lad9Xc6y0fpKiEfAAAAAABJq+iPVP3zP//zmDVrVvz93/99vPHGG2fXHz9+PP7mb/4mLrvssvg3/+bfJFcgmTZp0qRYvXp1DAwMxI9+9KOky6lot99+eya3Xc3kAwAAAACgelR0w7Guri5eeOGFGBoaitbW1rj//vvjO9/5Ttxwww3xf/1f/1f8zd/8TWrfdUM23H///fGZz3wmXnzxxejp6Um6nIp13333ZXLb1U4+AAAAAACqQ0U3HCMivvSlL8U//uM/xp/92Z/Ff/7P/zn+w3/4D9HY2Bj/6T/9p/jOd76TdHlk3MSJE2Pt2rUxODgYP/zhD5Mup2LdeOONMX/+/DHf7vz58+OGG24Y8+0yTD4AAAAAAKpDRX+H4xm33XZb/OY3v0m6DDKoqakp8vn8BZ+zcuXKWLly5Yj1r7766jhVVZ2ee+65mDdvXgwMDIzJ9urr62PDhg1jsq1qJR8AAAAAAERUwTscgcowd+7cePzxx8dse48//nhcf/31Y7Y9AAAAAACoVhqOQGasXr06HnzwwUvezsqVK2P16tVjUBEAAAAAAKDhCGRGTU1NrF+/Pp544omor6//xK+vr6+PJ554In76059GTU3NOFQIAAAAAADVR8MRyJSamppYs2ZN7N27N+bPn1/06+bPnx/79u2LNWvWaDYCAAAAAMAYqku6AIBSzJ07N/bs2RMHDhyILVu2xOuvvx4HDhyI/v7+iIjI5XIxd+7cuP322+O+++6LG264IeGKAQAAAACgMmk4Apl2ww03xE9+8pOIiDh+/Hh86lOfioiII0eOxBVXXJFgZQAAAAAAUB18pCpQMerq6s777wAAAAAAwPjRcAQAAAAAAABKpuEIAAAAAAAAlEzDEQAAAAAAACiZhiOZNDQ0lHQJqWXf4HdgdPYNAAAAAMDY03AkE3K5XMFyf39/QpWkX19fX8HyxIkTE6qEcpGP4skHAAAAAMDY03AkE85tCvT29iZUSfqdu280VCqffBRPPgAAAAAAxp6GI5lw5ZVXFiy///77CVWSfh988EHB8rRp0xKqhHKRj+LJBwAAAADA2NNwJBNmz55dsNzd3Z1QJenX1dVVsNzS0pJQJZSLfBRPPgAAAAAAxp6GI5lwblPgyJEjceLEiYSqSa8TJ07E0aNHC9ZpqFQ++SiOfAAAAAAAjA8NRzJh1qxZUVNTU7Du3HcqMXKf1NbWxrXXXptQNZSLfBRHPgAAAAAAxoeGI5mQy+Vi5syZBet27dqVUDXp9corrxQsz5w5M3K5XELVUC7yURz5AAAAAAAYHxqOZMaiRYsKljs6OhKqJL3O3Sfn7jMql3xcnHwAAAAAAIwPDUcyY+nSpQXL+/bti3fffTehatKnp6cn9u/fX7Du3H1G5ZKPC5MPAAAAAIDxo+FIZtxxxx0xffr0gnXr169PqJr0ee655wqWZ8yYEa2trQlVQ7nJx4XJBwAAAADA+NFwJDPq6upiyZIlBevWr18fb731VkIVpcebb745orm0ePHiqKurS6giyk0+RicfAAAAAADjqyafz+eTLgKK1dPTE1/4wheir6/v7LrW1tbYvXt31NZWZ/98aGgoFixYEJ2dnWfX5XK5ePvtt6O5uTnBysrv1KlTMWXKlIiIOHnyZEyePDnhispLPkaSDwAAAACA8Vedd6DJrObm5nj00UcL1u3ZsydWrFgRQ0NDCVWVnKGhoVixYkVBMyUiYvXq1ZopVUg+CskHAAAAAEB5eIcjmdPb2xvXXXddHD58uGD98uXLY+PGjVXzTq4zzZTNmzcXrG9qaop33nknJk2alFBlyan2dzhGyMcZ8gEAAAAAUD7VceeZitLQ0BDPP//8iO9f27x5cyxYsCDefPPNhCornzfffDMWLFgwoplSV1cXmzZt0kypYvIhHwAAAAAA5abhSCYtXLgwtm3bNqKp0tnZGTfddFM88sgj0dPTk1B146enpyceeeSRuOmmm0Z8TGRdXV1s27YtFi5cmFB1pIV8yAcAAAAAQDn5SFUy7aWXXop77703BgcHz/vzm2++OZYuXRp33XVXtLS0xNSpU8tc4aU5ceJEdHV1xSuvvBIdHR2xf//+8z7vTDPlnnvuKXOF6eIjVQvJxzD5AAAAAAAYXxqOZN7OnTvjm9/8Zhw6dOiiz50xY0a0tLTE1VdfHQ0NDZHL5VLznXZDQ0PR19cXvb298cEHH0RXV1ccPXr0oq9ramqKTZs2eedWaDiej3zIBwAAAADAeNNwpCL84Q9/iPb29li3bl309fUlXU5Z5HK5WL16daxZs8Z30v3/NBzPTz7kAwAAAABgPGk4UlF6enriqaeeiu3bt8exY8eSLmdczJgxIxYvXhyrVq2K5ubmpMtJFQ3HC5MPAAAAAADGg4YjFWlwcDD27NkTHR0dsWPHjjh06FBk9Ve9pqYmmpqaYtGiRbF06dJobW2Nurq6pMtKJQ3H4sgHAAAAAABjScORqtDX1xfvvfdedHV1RVdXV3z00Udx+vTpOH36dNKlFZg4cWJMnDgxpk2bFi0tLdHS0hLXXntt5HK5pEvLBA3H0sgHAAAAAACXQsMRqBgajgAAAAAAUH61SRcAAAAAAAAAZJeGIwAAAAAAAFAyDUcAAAAAAACgZBqOAAAAAAAAQMk0HAEAAAAAAICSaTgCAAAAAAAAJdNwBAAAAAAAAEqm4QgAAAAAAACUTMMRAAAAAAAAKJmGIwAAAAAAAFAyDUcAAAAAAACgZBqOAAAAAAAAQMk0HAEAAAAAAICSaTgCAAAAAAAAJdNwBAAAAAAAAEqm4QgAAAAAAACUTMMRAAAAAAAAKJmGIwAAAAAAAFAyDUcAAAAAAACgZHVJFwDl0NfXF++++250dXVFd3d3fPjhh3H69Ono6+tLurQCuVwuJk6cGFdeeWXMnj07WlpaYtasWZHL5ZIujQomHzA6+QAAAACAi9NwpCINDg7Ga6+9Fh0dHbFjx444fPhw5PP5pMsqSU1NTcycOTMWLVoUS5cujTvuuCPq6kSX0skHjE4+AAAAAOCTq8ln9S4anEd3d3c8/fTTsX379jh27FjS5YyL6dOnx5IlS2LVqlXR3NycdDmpcurUqZgyZUpERJw8eTImT56ccEXpIh8wOvkAAAAAgNJpOFIRent7o729PdatWxf9/f1Jl1MWuVwuHn300VizZk00NDQkXU4qaDien3zIB6OTD/kAAAAA4NJpOJJ5O3fujPvvvz8OHz580ec2NjbG7Nmz45prromGhoa47LLLora2tgxVXtzQ0FD09/dHb29vvP/++9Hd3R1Hjhy56Ouamppi06ZNsXDhwjJUmW4ajiPJh3wwOvmQDwAAAADGhoYjmfbSSy/FvffeG4ODg+f9+S233BJLly6NO++8M1paWmLq1KllrvDSnDhxIrq6umLXrl2xbdu22L9//3mfV1dXF9u2bYt77rmnzBWmi4ZjIfkYJh+cj3wMkw8AAAAAxoKGI5k12s3iCRMmRFtbW7S1tcWsWbMSqm589PT0xHPPPRfr16+PP/7xjwU/c9NYw/Hj5EM+GJ18yAcAAAAAY0vDkUzauXNnfOUrXxlxs7i1tTU2bNgQc+bMSaiy8njrrbfiwQcfjD179hSsr6uri1//+tdV+/F4Go7D5EM+GJ18yAcAAAAAY0/Dkczp7e2N6667bsR3bi1fvjw2btyYmu/UGm9DQ0OxYsWK2Lx5c8H6pqameOedd2LSpEkJVZYcDUf5OEM+OB/5GCYfAAAAAIy16rizRkVpb2+v+pvFERG1tbWxcePGWL58ecH6Q4cORXt7e0JVkTT5GCYfnI98DJMPAAAAAMaadziSKd3d3TFnzpzo6+s7u661tTV2795dVTeLP25oaCgWLFgQnZ2dZ9flcrl4++23o7m5OcHKyq/a3+EoHyPJB2fIx0jyAQAAAMBYqc47bGTW008/XXCzeMKECbFhw4aqvVkcMfxOlQ0bNsSECRPOruvr64unnnoqwapIgnyMJB+cIR8jyQcAAAAAY6V677KROYODg7F9+/aCdW1tbTFnzpyEKkqP66+/Ptra2grW/fKXv4zBwcGEKqLc5GN08oF8jE4+AAAAABgLGo5kxmuvvRbHjh0rWHfuTdJqtnLlyoLlo0ePxp49exKqhnKTjwuTj+omHxcmHwAAAABcKg1HMqOjo6Ng+ZZbbolZs2YlVE36NDc3x80331yw7tx9RuWSjwuTj+omHxcmHwAAAABcKg1HMmPHjh0Fy0uXLk2okvQ6d5+cu8+oXPJxcfJRveTj4uQDAAAAgEuh4Ugm9PX1xeHDhwvW3XnnnQlVk1533XVXwfLhw4ejr68voWooF/kojnxUJ/kojnwAAAAAcCk0HMmEd999N/L5fMG6z33ucwlVk14tLS0Fy0NDQ/Hee+8lVA3lIh/FkY/qJB/FkQ8AAAAALoWGI5nQ1dVVsNzY2BiXX355QtWk19SpU2PGjBkF687dd1Qe+SiOfFQn+SiOfAAAAABwKTQcyYTu7u6C5dmzZydUSfqd+y4VN4wrn3wUTz6qj3wUTz4AAAAAKJWGI5nw4YcfFixfc801CVWSfldffXXB8kcffZRQJZSLfBRPPqqPfBRPPgAAAAAolYYjmXD69OmC5YaGhoQqSb9z9825+47KIx/Fk4/qIx/Fkw8AAAAASqXhSCb09fUVLF922WUJVZJ+uVyuYNkN48onH8WTj+ojH8WTDwAAAABKpeFIJtXW+tUdjX2D34HR2Tf4HRidfQMAAABAqdxZAgAAAAAAAEqm4QgAAAAAAACUTMMRAAAAAAAAKFld0gUAjJWBgYHz/jswnInf//73ERFx+eWXR319fcIVAQAAAACVwjscgUx744034qGHHopbb701Ghsbz65vbGyMW2+9NR566KE4cOBAghVCcj6ejylTpsS0adNi2rRpMWXKFPkAAAAAAMaMhiOQSQcPHozW1ta46aabYv369bF3797o7+8/+/P+/v7Yu3dvrF+/Pm688cZobW2NgwcPJlgxlI98AAAAAADlpOEIZEo+n4/29vaYN29edHZ2Fv26zs7OmDdvXrS3t0c+nx/HCiE58gEAAAAAJEHDEciMfD4fbW1tsXbt2pK+o3FgYCDWrl0bbW1tmipUHPkAAAAAAJJS8Q3Hv/u7v4tvfvObMW/evMjlclFTUxNbt25Nuiwy4tChQ1FTU1PwqK+vj89+9rNx7733xt69eyMi4tlnn42amppYtmzZqNt69dVXo7a2Nm699dYYHBws1/9CRVm3bl1s2LDhkrezYcOGWLdu3RhUVN3kI13kI13kAwAAAIBqUpd0AePte9/7Xhw+fDiuvPLK+Cf/5J/E4cOHky6JDGpubo6vfe1rERFx6tSp2LdvX3R0dMSvfvWr2LVrVzz88MPx8ssvx9atW2Px4sXx1a9+teD1J0+ejGXLlkUul4sXX3wx6uoqPnpj7uDBg/HYY4+N2fYee+yx+PKXvxxz584ds21WK/lInnykl3wAAAAAUA0q/h2OL7zwQhw6dCiOHTsWK1asSLocMmr27Nnxgx/8IH7wgx/Ek08+Gf/wD/8QTzzxRAwMDMT3v//9s++cnTp1aixfvjw++uijgtd/5zvfiUOHDsUTTzwRn//85xP6v8i2lStXlvQxkaMZGBiIlStXjtn2qpl8JE8+0ks+AAAAAKgGFd9wvPPOO2PmzJlJl0EF+vrXvx4REfv27YuIiJkzZ8azzz4bR44ciW9961tnn7djx454/vnn40tf+lI8/PDDidSadW+88UZ0dnaO+XY7OzvjwIEDY75d5KOc5CN75AMAAACASlPxDUcYbx//eLtly5bF3XffHR0dHfGLX/wifve738U3vvGNmDp1avz85z+PmpqaBCvNri1btmRy28hHOchHdskHAAAAAJXCFwFBiV544YWIiPjiF79YsP7555+P3/72t/Hggw9Ga2trfPDBB7FlyxbvtL0Er7/+eia3Xc3ko3zkI3vkAwAAAIBKo+GYMfl8Pnp7e5Muo+zG8rvJStHd3R0/+MEPIiLi1KlTsW/fvti9e3c0NjbGk08+WfDcxsbG2LRpUyxZsiRefvnluPvuu2PZsmUJVD1sYGAgTp06ldh//1INDAzEwYMHx237Bw8ejOPHjxe80yhr5KN08nFh8nHp5AMAAADgk2toaPCJT1mTryJPPPFEPiLyP//5z5MupWQnT57MR0TVPx544IGy7O/33ntv1BquuuqqfFdX16ivve222/IRkX/nnXfKUusZDzzwQOLj45HsQz5GJx8e8jE6+fDw8PDw8PDw8PDw8PDw8EjL4+TJk2W9L8Kl8x2OUIRFixZFPp+PfD4fR48ejSeffDKOHj0ad999d5w8efK8r5k0aVLBP6FSyQeMTj4AAAAAqAbZ/Yy0KtXQ0DDqDcpK9sgjj8TmzZuTLiMiIqZPnx6rVq2K48ePx49//OP43ve+F88++2zSZY1q+fLl8cwzzyRdRskGBgaisbEx+vv7x2X7uVwujhw5kumPjJSP0snHhcnH2JIPAAAAgOI0NDQkXQKfUHbvIFapmpqamDx5ctJllF19fX3SJYzw3e9+N7Zs2RI/+9nP4tvf/nY0NTUlXdJ51dfXZ/53Zu7cubF3795x2/YVV1wxLtsuF/konXxcfNvyMfbkAwAAAIBK4yNVoUSTJk2K1atXx8DAQPzoRz9KupyKdvvtt2dy29VMPspHPrJHPgAAAACoNBXfcHzhhRfi3/7bfxv/9t/+2+jo6Bix7oUXXki4QrLs/vvvj8985jPx4osvRk9PT9LlVKz77rsvk9uudvJRHvKRTfIBAAAAQCWp+IbjP/7jP8bf/u3fxt/+7d/G/v37IyLiv/7X/3p23T/+4z8mXCFZNnHixFi7dm0MDg7GD3/4w6TLqVg33nhjzJ8/f8y3O3/+/LjhhhvGfLsMk4/ykI9skg8AAAAAKknFf4fj1q1bY+vWrUmXQUY1NTVFPp+/4HNWrlwZK1euHLH+1VdfHaeqqtNzzz0X8+bNi4GBgTHZXn19fWzYsGFMtlWt5CM95CN95AMAAACAalLx73AEKsPcuXPj8ccfH7PtPf7443H99deP2fYgSfIBAAAAACRJwxHIjNWrV8eDDz54ydtZuXJlrF69egwqgvSQDwAAAAAgKRqOQGbU1NTE+vXr44knnoj6+vpP/Pr6+vp44okn4qc//WnU1NSMQ4WQHPkAAAAAAJKi4QhkSk1NTaxZsyb27t0b8+fPL/p18+fPj3379sWaNWs0U6hY8gEAAAAAJKEu6QIASjF37tzYs2dPHDhwILZs2RKvv/56HDhwIPr7+yMiIpfLxdy5c+P222+P++67L2644YaEK4bykQ8AAAAAoJw0HIFMu+GGG+InP/lJREQMDg7GiRMnIiJi6tSpUVfnEEd1+3g+jh8/Hp/61KciIuLIkSNxxRVXJFgZAAAAAFBJ3I0HKkZdXV18+tOfTroMSKWPN+A14wEAAACAseQ7HAEAAAAAAICSaTgCAAAAAAAAJdNwBAAAAAAAAEqm4UgmDQ0NJV1Catk3+B0YnX2D34HR2TcAAAAAlErDkUzI5XIFy/39/QlVkn59fX0FyxMnTkyoEspFPoonH9VHPoonHwAAAACUSsORTDj3pmdvb29ClaTfufvGDePKJx/Fk4/qIx/Fkw8AAAAASqXhSCZceeWVBcvvv/9+QpWk3wcffFCwPG3atIQqoVzko3jyUX3ko3jyAQAAAECpNBzJhNmzZxcsd3d3J1RJ+nV1dRUst7S0JFQJ5SIfxZOP6iMfxZMPAAAAAEql4UgmnHvT88iRI3HixImEqkmvEydOxNGjRwvWuWFc+eSjOPJRneSjOPIBAAAAwKXQcCQTZs2aFTU1NQXrzn0nBiP3SW1tbVx77bUJVUO5yEdx5KM6yUdx5AMAAACAS6HhSCbkcrmYOXNmwbpdu3YlVE16vfLKKwXLM2fOjFwul1A1lIt8FEc+qpN8FEc+AAAAALgUGo5kxqJFiwqWOzo6Eqokvc7dJ+fuMyqXfFycfFQv+bg4+QAAAADgUmg4khlLly4tWN63b1+8++67CVWTPj09PbF///6CdefuMyqXfFyYfFQ3+bgw+QAAAADgUmk4khl33HFHTJ8+vWDd+vXrE6omfZ577rmC5RkzZkRra2tC1VBu8nFh8lHd5OPC5AMAAACAS6XhSGbU1dXFkiVLCtatX78+3nrrrYQqSo8333xzxM3zxYsXR11dXUIVUW7yMTr5QD5GJx8AAAAAjIWafD6fT7oIKFZPT0984QtfiL6+vrPrWltbY/fu3VFbW53986GhoViwYEF0dnaeXZfL5eLtt9+O5ubmBCuj3ORjJPn4k1OnTsWUKVMiIuLkyZMxefLkhCsqL/kYST4AAAAAGCvVeYeNzGpubo5HH320YN2ePXtixYoVMTQ0lFBVyRkaGooVK1YU3CyOiFi9erWbxVVIPgrJBx8nH4XkAwAAAICx5B2OZE5vb29cd911cfjw4YL1y5cvj40bN1bNO1XO3CzevHlzwfqmpqZ45513YtKkSQlVRpLkY5h8jFTt73CMkI8z5AMAAACAsVYdd9aoKA0NDfH888+P+H6pzZs3x4IFC+LNN99MqLLyefPNN2PBggUjbhbX1dXFpk2b3CyuYvIhH4xOPuQDAAAAgPGh4UgmLVy4MLZt2zbipnFnZ2fcdNNN8cgjj0RPT09C1Y2fnp6eeOSRR+Kmm24a8TF4dXV1sW3btli4cGFC1ZEW8iEfjE4+5AMAAACAsecjVcm0l156Ke69994YHBw8789vvvnmWLp0adx1113R0tISU6dOLXOFl+bEiRPR1dUVr7zySnR0dMT+/fvP+7wzN4vvueeeMldImsnHMPkY5iNVC8nHMPkAAAAAYCxoOJJ5O3fujG9+85tx6NChiz53xowZ0dLSEldffXU0NDRELpdLzXd2DQ0NRV9fX/T29sYHH3wQXV1dcfTo0Yu+rqmpKTZt2uSdKZyXfMjHGRqOI8mHfAAAAAAwNjQcqQh/+MMfor29PdatWxd9fX1Jl1MWuVwuVq9eHWvWrPGdW1yQfMhHhIbjaORDPgAAAAC4dBqOVJSenp546qmnYvv27XHs2LGkyxkXM2bMiMWLF8eqVauiubk56XLIEPmobhqOFyYfAAAAAFA6DUcq0uDgYOzZsyc6Ojpix44dcejQocjqr3pNTU00NTXFokWLYunSpdHa2hp1dXVJl0WGyUd10nAsjnwAAAAAwCen4UhV6Ovri/feey+6urqiq6srPvroozh9+nScPn066dIKTJw4MSZOnBjTpk2LlpaWaGlpiWuvvTZyuVzSpVHB5KM6aDiWRj4AAAAA4OI0HAGgCmg4AgAAAADjpTbpAgAAAAAAAIDs0nAEAAAAAAAASqbhCAAAAAAAAJRMwxEAAAAAAAAomYYjAAAAAAAAUDINRwAAAAAAAKBkGo4AAAAAAABAyTQcAQAAAAAAgJJpOAIAAAAAAAAl03AEAAAAAAAASqbhCAAAAAAAAJRMwxEAAAAAAAAomYYjAAAAAAAAUDINRwAAAAAAAKBkGo4AAAAAAABAyTQcAQAAAAAAgJJpOAIAAAAAAAAl03AEAAAAAAAASqbhCAAAAAAAAJSsLukCoBz6+vri3Xffja6uruju7o4PP/wwTp8+HX19fUmXViCXy8XEiRPjyiuvjNmzZ0dLS0vMmjUrcrlc0qVRweQDRicf6WI8YHTyAQAAQJI0HKlIg4OD8dprr0VHR0fs2LEjDh8+HPl8PumySlJTUxMzZ86MRYsWxdKlS+OOO+6IujrRpXTyAaOTj3QxHjA6+QAAACBNavJZvSqF8+ju7o6nn346tm/fHseOHUu6nHExffr0WLJkSaxatSqam5uTLocMkY/qdurUqZgyZUpERJw8eTImT56ccEXpIh/pYjxgdPIBAABAGmk4UhF6e3ujvb091q1bF/39/UmXUxa5XC4effTRWLNmTTQ0NCRdDikmH/IRoeE4GvlIVz6MR7rGg3SRD/kAAABIMw1HMm/nzp1x//33x+HDhy/63MbGxpg9e3Zcc8010dDQEJdddlnU1taWocqLGxoaiv7+/ujt7Y33338/uru748iRIxd9XVNTU2zatCkWLlxYhirJGvmQjzM0HEeSj3Tlw3ikazxIF/mQDwAAgLTTcCTTXnrppbj33ntjcHDwvD+/5ZZbYunSpXHnnXdGS0tLTJ06tcwVXpoTJ05EV1dX7Nq1K7Zt2xb79+8/7/Pq6upi27Ztcc8995S5QtJMPobJxzANx0LyMSwt+TAew9IyHqSLfAyTDwAAgHTTcCSzRrv5MmHChGhra4u2traYNWtWQtWNj56ennjuuedi/fr18cc//rHgZ27C8HHyIR/n0nD8E/lIVz6MR7rGg3SRD/kAAADICg1HMmnnzp3xla98ZcTNl9bW1tiwYUPMmTMnocrK46233ooHH3ww9uzZU7C+rq4ufv3rX/u4qSonH/JxPhqOw+QjXfkwHukaD9JFPuQDAAAgSzQcyZze3t647rrrRnyHzfLly2Pjxo2p+Y6a8TY0NBQrVqyIzZs3F6xvamqKd955JyZNmpRQZSRJPobJx0gajvJxRlryYTyGpWU8SBf5GCYfAAAA2VEdV6pUlPb29qq/+RIRUVtbGxs3bozly5cXrD906FC0t7cnVBVJk49h8sH5yMewtOTDeAxLy3iQLvIxTD4AAACywzscyZTu7u6YM2dO9PX1nV3X2toau3fvrqqbLx83NDQUCxYsiM7OzrPrcrlcvP3229Hc3JxgZZSbfIwkH39S7e9wlI+RksyH8RjJ8Yoz5GMk+QAAAEi/6rxiJbOefvrpgpsvEyZMiA0bNlTtzZeI4b/83rBhQ0yYMOHsur6+vnjqqacSrIokyMdI8sEZ8jFSkvkwHiM5XnGGfIwkHwAAAOlXvVetZM7g4GBs3769YF1bW1vMmTMnoYrS4/rrr4+2traCdb/85S9jcHAwoYooN/kYnXwgH6NLIh/GY3SOV8jH6OQDAAAg3TQcyYzXXnstjh07VrDu3JsO1WzlypUFy0ePHo09e/YkVA3lJh8XJh/VTT4urNz5MB4X5nhV3eTjwuQDAAAgvTQcyYyOjo6C5VtuuSVmzZqVUDXp09zcHDfffHPBunP3GZVLPi5MPqqbfFxYufNhPC7M8aq6yceFyQcAAEB6aTiSGTt27ChYXrp0aUKVpNe5++TcfUblko+Lk4/qJR8XV858GI+Lc7yqXvJxcfIBAACQThqOZEJfX18cPny4YN2dd96ZUDXpdddddxUsHz58OPr6+hKqhnKRj+LIR3WSj+KUKx/GoziOV9VJPoojHwAAAOmk4UgmvPvuu5HP5wvWfe5zn0uomvRqaWkpWB4aGor33nsvoWooF/kojnxUJ/koTrnyYTyK43hVneSjOPIBAACQThqOZEJXV1fBcmNjY1x++eUJVZNeU6dOjRkzZhSsO3ffUXnkozjyUZ3kozjlyofxKI7jVXWSj+LIBwAAQDppOJIJ3d3dBcuzZ89OqJL0O/evvt2AqXzyUTz5qD7yUbxy5MN4FM/xqvrIR/HkAwAAIH00HMmEDz/8sGD5mmuuSaiS9Lv66qsLlj/66KOEKqFc5KN48lF95KN45ciH8Sie41X1kY/iyQcAAED6aDiSCadPny5YbmhoSKiS9Dt335y776g88lE8+ag+8lG8cuTDeBTP8ar6yEfx5AMAACB9NBzJhL6+voLlyy67LKFK0i+XyxUsuwFT+eSjePJRfeSjeOXIh/EonuNV9ZGP4skHAABA+mg4kkm1tX51R2Pf4HdgdPYNfgdGl8S+MR6js2/wOzA6+wYAACB9XKkBAAAAAAAAJdNwBAAAAAAAAEqm4QgAAAAAAACUrC7pAgDGysDAQPz+97+PiIjLL7886uvrE64I0mNgYOC8/w6QNuZzAAAAyB7vcAQy7Y033oiHHnoobr311pgyZUpMmzYtpk2bFlOmTIlbb701HnrooThw4EDSZUIiPp6PxsbGs+sbGxvlA0gV8zkAAABkm4YjkEkHDx6M1tbWuOmmm2L9+vWxd+/e6O/vP/vz/v7+2Lt3b6xfvz5uvPHGaG1tjYMHDyZYMZSPfABZ4XgFAAAAlUHDEciUfD4f7e3tMW/evOjs7Cz6dZ2dnTFv3rxob2+PfD4/jhVCcuQDyArHKwAAAKgsGo5AZuTz+Whra4u1a9eW9B10AwMDsXbt2mhra3OTkoojH0BWOF4BAABA5anohuP//X//3/Hss8/GwoUL45/+038al112WVx11VWxZMmS+D/+j/8j6fLIgEOHDkVNTU3Bo76+Pj772c/GvffeG3v37o2IiGeffTZqampi2bJlo27r1Vdfjdra2rj11ltjcHCwXP8LFWXdunWxYcOGS97Ohg0bYt26dWNQUXWTj3SRj3SRj3QxHunieJUu8gEAAMBYqEu6gPG0fv36WLduXTQ3N8fChQtj+vTp0dXVFb/61a/iV7/6Vfz93/99/MVf/EXSZZIBzc3N8bWvfS0iIk6dOhX79u2Ljo6O+NWvfhW7du2Khx9+OF5++eXYunVrLF68OL761a8WvP7kyZOxbNmyyOVy8eKLL0ZdXUVHb1wcPHgwHnvssTHb3mOPPRZf/vKXY+7cuWO2zWolH8mTj/SSj3QxHslzvEov+QAAAOBSVPRV4G233Ravvvpq3HHHHQXrOzs748///M/jW9/6Vvzzf/7PI5fLJVQhWTF79uz4wQ9+ULCuvb091q5dG9///vfjtddei61bt8bcuXNj+fLl8fbbb8e0adPOPvc73/lOHDp0KJ555pn4/Oc/X+bqK8PKlStL+ti10QwMDMTKlStjz549Y7bNaiUfyZOP9JKPdDEeyXO8Si/5AAAA4FJU9EeqLl68eESzMSJi/vz58aUvfSn+5//8n/Hmm28mUBmV4Otf/3pEROzbty8iImbOnBnPPvtsHDlyJL71rW+dfd6OHTvi+eefjy996Uvx8MMPJ1Jr1r3xxhvR2dk55tvt7OyMAwcOjPl2kY9yko/skY90MR7l43iVPfIBAABAsSq64Xgh9fX1ERE+6odL9vHfoWXLlsXdd98dHR0d8Ytf/CJ+97vfxTe+8Y2YOnVq/PznP4+ampoEK82uLVu2ZHLbyEc5yEd2yUe6GI/x53iVXfIBAADAxVRlt+1//I//Ebt27Yp/8k/+SVx//fVJl0NGvfDCCxER8cUvfrFg/fPPPx+//e1v48EHH4zW1tb44IMPYsuWLTFz5swkyqwIr7/+eia3Xc3ko3zkI3vkI12MR/k4XmWPfAAAAFCsqms4DgwMxL/+1/86+vr6Yt26dTFhwoSkS/pE8vl89Pb2Jl1G2Y3ld/2Uoru7++x32pw6dSr27dsXu3fvjsbGxnjyyScLntvY2BibNm2KJUuWxMsvvxx33313LFu2LIGqhw0MDMSpU6cS++9fqoGBgTh48OC4bf/gwYNx/PjxTL/bWT5KJx8XJh+XTj5GbjNJxiM5jlcXJx+ly3o+AACAkRoaGnyCStbkq8gf//jH/L/6V/8qHxH55cuXJ11OSU6ePJmPiKp/PPDAA2XZ3++9996oNVx11VX5rq6uUV9722235SMi/84775Sl1jMeeOCBxMfHI9mHfIxOPjzkY3RJ5MN4jM7xykM+RicfHh4eHh4eHh4eHpX/OHnyZFmvM7h0VfMdjkNDQ3HffffF3//938fXvva12LhxY9IlkSGLFi2KfD4f+Xw+jh49Gk8++WQcPXo07r777jh58uR5XzNp0qSCf0Klkg8YnXyki/GA0ckHAAAAlyK7nzn0CQwNDcWyZcvixRdfjH/5L/9lbN26NWprs9lrbWhoGPWCv5I98sgjsXnz5qTLiIiI6dOnx6pVq+L48ePx4x//OL73ve/Fs88+m3RZo1q+fHk888wzSZdRsoGBgWhsbIz+/v5x2X4ul4sjR45k+iPY5KN08nFh8jG25MN4XArHqwtzvBpb8gEAACStoaEh6RL4hLJ7RV6kjzcb/+Iv/iL+43/8j5n73saPq6mpicmTJyddRtnV19cnXcII3/3ud2PLli3xs5/9LL797W9HU1NT0iWdV319feZ/Z+bOnRt79+4dt21fccUV47LtcpGP0snHxbctH2OvmvNhPErneHXxbTtejT35AAAAoFjZfJtfkc58jOqLL74YS5cujb/7u7/LdLORdJk0aVKsXr06BgYG4kc/+lHS5VS022+/PZPbrmbyUT7ykT3ykS7Go3wcr7JHPgAAAChWRTccH3/88fjbv/3bmDJlSnzuc5+LH//4x/GDH/yg4PHGG28kXSYZdv/998dnPvOZePHFF6OnpyfpcirWfffdl8ltVzv5KA/5yCb5SBfjUR6OV9kkHwAAABSjohuOhw4dioiIkydPxl//9V/HD3/4wxEPDUcuxcSJE2Pt2rUxODgYP/zhD5Mup2LdeOONMX/+/DHf7vz58+OGG24Y8+0yTD7KQz6yST7SxXiUh+NVNskHAAAAxajo73DcunVrbN26NekyyLCmpqbI5/MXfM7KlStj5cqVI9a/+uqr41RVdXruuedi3rx5MTAwMCbbq6+vjw0bNozJtqqVfKSHfKSPfKSL8UgPx6v0kQ8AAADGQkW/wxGoHHPnzo3HH398zLb3+OOPx/XXXz9m24MkyQeQFY5XAAAAUJk0HIHMWL16dTz44IOXvJ2VK1fG6tWrx6AiSA/5ALLC8QoAAAAqj4YjkBk1NTWxfv36eOKJJ6K+vv4Tv76+vj6eeOKJ+OlPfxo1NTXjUCEkRz6ArHC8AgAAgMqj4QhkSk1NTaxZsyb27t0b8+fPL/p18+fPj3379sWaNWvcnKRiyQeQFY5XAAAAUFnqki4AoBRz586NPXv2xIEDB2LLli3x+uuvx4EDB6K/vz8iInK5XMydOzduv/32uO++++KGG25IuGIoH/kAssLxCgAAACqDhiOQaTfccEP85Cc/iYiI48ePx6c+9amIiDhy5EhcccUVCVYGyft4PgYHB+PEiRMRETF16tSoq3MKAKSH+RwAAACyzd1GoGJ8vIGimQKF6urq4tOf/nTSZQBclPkcAAAAssd3OAIAAAAAAAAl03AEAAAAAAAASqbhCAAAAAAAAJRMw5FMGhoaSrqE1LJv8DswOvsGvwOjS2LfGI/R2Tf4HRidfQMAAJA+Go5kQi6XK1ju7+9PqJL06+vrK1ieOHFiQpVQLvJRPPmoPvJRvHLkw3gUz/Gq+shH8eQDAAAgfTQcyYRzbyL09vYmVEn6nbtv3ICpfPJRPPmoPvJRvHLkw3gUz/Gq+shH8eQDAAAgfTQcyYQrr7yyYPn9999PqJL0++CDDwqWp02bllAllIt8FE8+qo98FK8c+TAexXO8qj7yUTz5AAAASB8NRzJh9uzZBcvd3d0JVZJ+XV1dBcstLS0JVUK5yEfx5KP6yEfxypEP41E8x6vqIx/Fkw8AAID00XAkE869iXDkyJE4ceJEQtWk14kTJ+Lo0aMF69yAqXzyURz5qE7yUZxy5cN4FMfxqjrJR3HkAwAAIJ00HMmEWbNmRU1NTcG6c/+ymZH7pLa2Nq699tqEqqFc5KM48lGd5KM45cqH8SiO41V1ko/iyAcAAEA6aTiSCblcLmbOnFmwbteuXQlVk16vvPJKwfLMmTMjl8slVA3lIh/FkY/qJB/FKVc+jEdxHK+qk3wURz4AAADSScORzFi0aFHBckdHR0KVpNe5++TcfUblko+Lk4/qJR8XV858GI+Lc7yqXvJxcfIBAACQThqOZMbSpUsLlvft2xfvvvtuQtWkT09PT+zfv79g3bn7jMolHxcmH9VNPi6s3PkwHhfmeFXd5OPC5AMAACC9NBzJjDvuuCOmT59esG79+vUJVZM+zz33XMHyjBkzorW1NaFqKDf5uDD5qG7ycWHlzofxuDDHq+omHxcmHwAAAOml4Uhm1NXVxZIlSwrWrV+/Pt56662EKkqPN998c8TNqMWLF0ddXV1CFVFu8jE6+UA+RpdEPozH6ByvkI/RyQcAAEC61eTz+XzSRUCxenp64gtf+EL09fWdXdfa2hq7d++O2trq7J8PDQ3FggULorOz8+y6XC4Xb7/9djQ3NydYWfmdOnUqpkyZEhERJ0+ejMmTJydcUXnJx0jywRnyMVKS+TAeIzle/Yn5XD7OJR8AAADpV51XrGRWc3NzPProowXr9uzZEytWrIihoaGEqkrO0NBQrFixouDmS0TE6tWr3XypQvJRSD74OPkolHQ+jEehpMeDdJGPQvIBAACQDd7hSOb09vbGddddF4cPHy5Yv3z58ti4cWPV/OX3mZsvmzdvLljf1NQU77zzTkyaNCmhypJT7e+IiJCPM+SD85GPYWnJh/EYlpbxSBPzuXycIR8AAADZUR1XqlSUhoaGeP7550d8X8vmzZtjwYIF8eabbyZUWfm8+eabsWDBghE3X+rq6mLTpk1uvlQx+ZAPRicf6cqH8UjXeJAu8iEfAAAAWaPhSCYtXLgwtm3bNuImTGdnZ9x0003xyCOPRE9PT0LVjZ+enp545JFH4qabbhrxsVJ1dXWxbdu2WLhwYULVkRbyIR+MTj7SlQ/jka7xIF3kQz4AAACyxEeqkmkvvfRS3HvvvTE4OHjen998882xdOnSuOuuu6KlpSWmTp1a5govzYkTJ6KrqyteeeWV6OjoiP3795/3eWduvtxzzz1lrjBdfARbIfkYJh+cj3wMS0s+jMewtIxH0sznheRjmHwAAACkm4Yjmbdz58745je/GYcOHbroc2fMmBEtLS1x9dVXR0NDQ+RyudR8B87Q0FD09fVFb29vfPDBB9HV1RVHjx696Ouamppi06ZN/tI73KA8H/mQD0YnH+nKh/FI13gkyXw+knzIBwAAQNppOFIR/vCHP0R7e3usW7cu+vr6ki6nLHK5XKxevTrWrFnjO2z+f25Qnp98yAejk4905cN4pGs8kmI+Pz/5kA8AAIA003CkovT09MRTTz0V27dvj2PHjiVdzriYMWNGLF68OFatWhXNzc1Jl5MqblBemHzA6OQjXYxHdTOfX5h8AAAAkEYajlSkwcHB2LNnT3R0dMSOHTvi0KFDkdVf9ZqammhqaopFixbF0qVLo7W1Nerq6pIuK5XcoCyOfMDo5CNdjEd1Mp8XRz4AAABIEw1HqkJfX1+899570dXVFV1dXfHRRx/F6dOn4/Tp00mXVmDixIkxceLEmDZtWrS0tERLS0tce+21kcvlki4tE9ygLI18wOjkI12MR3Uwn5dGPgAAAEiShiNQMdygBIDsM58DAABA9tQmXQAAAAAAAACQXRqOAAAAAAAAQMk0HAEAAAAAAICSaTgCAAAAAAAAJdNwBAAAAAAAAEqm4QgAAAAAAACUTMMRAAAAAAAAKJmGIwAAAAAAAFAyDUcAAAAAAACgZBqOAAAAAAAAQMk0HAEAAAAAAICSaTgCAAAAAAAAJdNwBAAAAAAAAEqm4QgAAAAAAACUTMMRAAAAAAAAKJmGIwAAAAAAAFAyDUcAAAAAAACgZBqOAAAAAAAAQMk0HAEAAAAAAICS1SVdAJRDX19fvPvuu9HV1RXd3d3x4YcfxunTp6Ovry/p0grkcrmYOHFiXHnllTF79uxoaWmJWbNmRS6XS7o0Kph8pIvxAKAU5g8YnXwAAMD403CkIg0ODsZrr70WHR0dsWPHjjh8+HDk8/mkyypJTU1NzJw5MxYtWhRLly6NO+64I+rqRJfSyUe6GA8ASmH+gNHJBwAAlF9NPqtn3XAe3d3d8fTTT8f27dvj2LFjSZczLqZPnx5LliyJVatWRXNzc9LlpMqpU6diypQpERFx8uTJmDx5csIVpYt8pIvxADg/8/mFmT9gdPIBAADJ0XCkIvT29kZ7e3usW7cu+vv7ky6nLHK5XDz66KOxZs2aaGhoSLqcVHCD8vzkI135MB7pGg8gfczn52f+MH8wOvmQDwAAkqfhSObt3Lkz7r///jh8+PBFn9vY2BizZ8+Oa665JhoaGuKyyy6L2traMlR5cUNDQ9Hf3x+9vb3x/vvvR3d3dxw5cuSir2tqaopNmzbFwoULy1BlurlBOZJ8pCsfxiNd4wGkk/l8JPOH+YPRyYd8AACQDhqOZNpLL70U9957bwwODp7357fcckssXbo07rzzzmhpaYmpU6eWucJLc+LEiejq6opdu3bFtm3bYv/+/ed9Xl1dXWzbti3uueeeMleYLm5QFpKPYWnJh/EYlpbxANLLfF7I/DHM/MH5yMcw+QAAIA00HMms0S4uJ0yYEG1tbdHW1hazZs1KqLrx0dPTE88991ysX78+/vjHPxb8zEWmG5QfJx/pyofxSNd4AOlmPv8T84f5g9HJh3wAAJAuGo5k0s6dO+MrX/nKiIvL1tbW2LBhQ8yZMyehysrjrbfeigcffDD27NlTsL6uri5+/etfV+3H6bhBOUw+0pUP45Gu8QDSz3w+zPxh/mB08iEfAACkj4YjmdPb2xvXXXfdiO/oWL58eWzcuDE138Ex3oaGhmLFihWxefPmgvVNTU3xzjvvxKRJkxKqLDluUMrHGWnJh/EYlpbxALLBfG7+OMP8wfnIxzD5AAAgbarjTJyK0t7eXvUXlxERtbW1sXHjxli+fHnB+kOHDkV7e3tCVZE0+RiWlnwYj2FpGQ+ArDB/DDN/cD7yMUw+AABIG+9wJFO6u7tjzpw50dfXd3Zda2tr7N69u6ouLj9uaGgoFixYEJ2dnWfX5XK5ePvtt6O5uTnBysqv2t8RIR8jJZkP4zGS4xVQDPO5+eNc5g/OkI+R5AMAgLSozjNyMuvpp58uuLicMGFCbNiwoWovLiOG/7J1w4YNMWHChLPr+vr64qmnnkqwKpIgHyMlmQ/jMZLjFcDFmT9GMn9whnyMJB8AAKRF9Z6VkzmDg4Oxffv2gnVtbW0xZ86chCpKj+uvvz7a2toK1v3yl7+MwcHBhCqi3ORjdEnkw3iMzvEKYHTmj9GZP5CP0ckHAABpoOFIZrz22mtx7NixgnXnXlRVs5UrVxYsHz16NPbs2ZNQNZSbfFxYufNhPC7M8Qrg/MwfF2b+qG7ycWHyAQBA0jQcyYyOjo6C5VtuuSVmzZqVUDXp09zcHDfffHPBunP3GZVLPi6s3PkwHhfmeAVwfuaPCzN/VDf5uDD5AAAgaRqOZMaOHTsKlpcuXZpQJel17j45d59RueTj4sqZD+NxcY5XACOZPy7O/FG95OPi5AMAgCRpOJIJfX19cfjw4YJ1d955Z0LVpNddd91VsHz48OHo6+tLqBrKRT6KU658GI/iOF4BFDJ/FMf8UZ3kozjyAQBAkjQcyYR333038vl8wbrPfe5zCVWTXi0tLQXLQ0ND8d577yVUDeUiH8UpVz6MR3EcrwAKmT+KY/6oTvJRHPkAACBJGo5kQldXV8FyY2NjXH755QlVk15Tp06NGTNmFKw7d99ReeSjOOXKh/EojuMVQCHzR3HMH9VJPoojHwAAJEnDkUzo7u4uWJ49e3ZClaTfuX/V6gKz8slH8cqRD+NRPMcrgD8xfxTP/FF95KN48gEAQFI0HMmEDz/8sGD5mmuuSaiS9Lv66qsLlj/66KOEKqFc5KN45ciH8Sie4xXAn5g/imf+qD7yUTz5AAAgKRqOZMLp06cLlhsaGhKqJP3O3Tfn7jsqj3wUrxz5MB7Fc7wC+BPzR/HMH9VHPoonHwAAJEXDkUzo6+srWL7ssssSqiT9crlcwbILzMonH8UrRz6MR/EcrwD+xPxRPPNH9ZGP4skHAABJ0XAkk2pr/eqOxr7B78Doktg3xmN09g3A6BwjR2ff4HdgdPYNAABJcSYKAAAAAAAAlEzDEQAAAAAAACiZhiMAAAAAAABQsrqkCwAYKwMDA+f9dwAgO8znMLqBgYH4/e9/HxERl19+edTX1ydcEQAAwDDvcAQy7Y033oiHHnoobr311mhsbDy7vrGxMW699dZ46KGH4sCBAwlWCABcjPkcRvfxfEyZMiWmTZsW06ZNiylTpsgHAACQGhqOQCYdPHgwWltb46abbor169fH3r17o7+//+zP+/v7Y+/evbF+/fq48cYbo7W1NQ4ePJhgxQDAucznMDr5AAAAskTDEciUfD4f7e3tMW/evOjs7Cz6dZ2dnTFv3rxob2+PfD4/jhUCABdjPofRyQcAAJBFGo5AZuTz+Whra4u1a9eW9J1OAwMDsXbt2mhra3MTBgASYj6H0ckHAACQVRXdcDx9+nT8u3/376K1tTU+85nPxMSJE+Oqq66KP/uzP4uf//znJV3AUV0OHToUNTU1BY/6+vr47Gc/G/fee2/s3bs3IiKeffbZqKmpiWXLlo26rVdffTVqa2vj1ltvjcHBwXL9L1SUdevWxYYNGy55Oxs2bIh169aNQUXVTT7SxXgAWWE+TxfzR7rIR7rIBwAAFK8u6QLG08mTJ+M//If/ELfddlt85StfienTp8f//J//M37zm9/EfffdF//pP/2n+M1vfhO1tRXdd2UMNDc3x9e+9rWIiDh16lTs27cvOjo64le/+lXs2rUrHn744Xj55Zdj69atsXjx4vjqV79a8PqTJ0/GsmXLIpfLxYsvvhh1dRUdvXFx8ODBeOyxx8Zse4899lh8+ctfjrlz547ZNquVfKSL8QDSzHyeXuaP5MlHeskHAABcXEWf5X7605+O48ePx2WXXVawfnBwMO66667YuXNn/OY3v4mvfOUrCVVIVsyePTt+8IMfFKxrb2+PtWvXxve///147bXXYuvWrTF37txYvnx5vP322zFt2rSzz/3Od74Thw4dimeeeSY+//nPl7n6yrBy5coxfVfywMBArFy5Mvbs2TNm26xW8pEuxgNIM/N5epk/kicf6SUfAABwcRX91r7a2toRzcaIiLq6urjnnnsiIqK7u7vcZVEhvv71r0dExL59+yIiYubMmfHss8/GkSNH4lvf+tbZ5+3YsSOef/75+NKXvhQPP/xwIrVm3RtvvBGdnZ1jvt3Ozs44cODAmG8X+Ugb4wGkgfk8e8wf5SMf2SMfAABQqKIbjqMZGhqK//Jf/ktERMyZMyfhasi6j38czrJly+Luu++Ojo6O+MUvfhG/+93v4hvf+EZMnTo1fv7zn0dNTU2ClWbXli1bMrlt5CNtjAeQJPN5dpk/xp98ZJd8AADAsIr+SNUz+vv742/+5m8in8/HRx99FP/b//a/xX//7/89li1bFn/+53+edHlk1AsvvBAREV/84hcL1j///PPx29/+Nh588MFobW2NDz74ILZs2RIzZ85MosyK8Prrr2dy29VMPtLFeABpYD7PHvNH+chH9sgHAAAUqpqG4w9/+MOzyzU1NbFq1ap44oknEqyqNPl8Pnp7e5Muo+zG8rtMStHd3X32OztOnToV+/bti927d0djY2M8+eSTBc9tbGyMTZs2xZIlS+Lll1+Ou+++O5YtW5ZA1cMGBgbi1KlTif33L9XAwEAcPHhw3LZ/8ODBOH78eMFfJmeNfJRuPPJhPEqX9eMVMDrz+cWZP0qX9flDPi5OPkqX9XwAANWroaHBJ0RkTb6K/PGPf8y///77+Z/97Gf5T33qU/k/+7M/yx8/fjzpsj6RkydP5iOi6h8PPPBAWfb3e++9N2oNV111Vb6rq2vU19522235iMi/8847Zan1jAceeCDx8fFI9iEfo0siH8ZjdI5XHh4eHqM/zB+jM394yMfo5MPDw8PDw8OjUh4nT54s63kUl66qvsOxtrY2rr766vjWt74Vzz//fPzX//pf46//+q+TLosMWLRoUeTz+cjn83H06NF48skn4+jRo3H33XfHyZMnz/uaSZMmFfwTKpV8pIvxAKAU5g8YnXwAAMDFZfczVS7RwoULIyLi1VdfTbaQT6ihoWHUC5pK9sgjj8TmzZuTLiMiIqZPnx6rVq2K48ePx49//OP43ve+F88++2zSZY1q+fLl8cwzzyRdRskGBgaisbEx+vv7x2X7uVwujhw5kumPmJKP0o1HPoxH6bJ+vAJGZz6/OPNH6bI+f8jHxclH6bKeDwCgejU0NCRdAp9Qdq84LtH/8//8PxERUV9fn3Aln0xNTU1Mnjw56TLKLo3j9N3vfje2bNkSP/vZz+Lb3/52NDU1JV3SedXX12f+d2bu3Lmxd+/ecdv2FVdcMS7bLhf5KN145MN4lK4SjlfA6MznF2b+KF0lzB/ycWHyUbpKyAcAANlQ0R+p+s4770Rvb++I9b29vfHv/t2/i4iIL3/5y+UuiwoxadKkWL16dQwMDMSPfvSjpMupaLfffnsmt13N5CNdjAeQBubz7DF/lI98ZI98AABAoYpuOG7bti2uuuqq+PKXvxwPPPBArFmzJv71v/7X8U//6T+N//Jf/kvMnz8/HnnkkaTLJMPuv//++MxnPhMvvvhi9PT0JF1Oxbrvvvsyue1qJx/pYjyApJnPs8n8UR7ykU3yAQAAf1LRDcd/9s/+WfzlX/5l/I//8T/iF7/4RTz99NPxm9/8JubOnRubNm2Kf/iHf/AF7lySiRMnxtq1a2NwcDB++MMfJl1Oxbrxxhtj/vz5Y77d+fPnxw033DDm22WYfKSL8QCSZj7PJvNHechHNskHAAD8SUV/h+O8efNi3rx5SZdBhjU1NUU+n7/gc1auXBkrV64csf7VV18dp6qq03PPPRfz5s2LgYGBMdlefX19bNiwYUy2Va3kI12MB5AF5vP0MX+kh3ykj3wAAEDxKvodjkDlmDt3bjz++ONjtr3HH388rr/++jHbHgBwceZzGJ18AAAAWabhCGTG6tWr48EHH7zk7axcuTJWr149BhUBAJ+U+RxGJx8AAEBWaTgCmVFTUxPr16+PJ554Iurr6z/x6+vr6+OJJ56In/70p1FTUzMOFQIAF2M+h9HJBwAAkFUajkCm1NTUxJo1a2Lv3r0xf/78ol83f/782LdvX6xZs8bNFwBImPkcRicfAABAFtUlXQBAKebOnRt79uyJAwcOxJYtW+L111+PAwcORH9/f0RE5HK5mDt3btx+++1x3333xQ033JBwxQDAucznMDr5AAAAskTDEci0G264IX7yk59ERMTg4GCcOHEiIiKmTp0adXUOcQCQBeZzGN3H83H8+PH41Kc+FRERR44ciSuuuCLBygAAAP7E1TtQMerq6uLTn/500mUAAJfAfA6j+3gDXjMeAABIE9/hCAAAAAAAAJRMwxEAAAAAAAAomYYjAAAAAAAAUDINRzJpaGgo6RJSy77B78Doktg3xmN09g3A6BwjR2ff4HdgdPYNAABJ0XAkE3K5XMFyf39/QpWkX19fX8HyxIkTE6qEcpGP4pUjH8ajeI5XAH9i/iie+aP6yEfx5AMAgKRoOJIJ514k9fb2JlRJ+p27b1xgVj75KF458mE8iud4BfAn5o/imT+qj3wUTz4AAEiKhiOZcOWVVxYsv//++wlVkn4ffPBBwfK0adMSqoRykY/ilSMfxqN4jlcAf2L+KJ75o/rIR/HkAwCApGg4kgmzZ88uWO7u7k6okvTr6uoqWG5paUmoEspFPopXjnwYj+I5XgH8ifmjeOaP6iMfxZMPAACSouFIJpx7kXTkyJE4ceJEQtWk14kTJ+Lo0aMF61xgVj75KE658mE8iuN4BVDI/FEc80d1ko/iyAcAAEnScCQTZs2aFTU1NQXrzv3LTUbuk9ra2rj22msTqoZykY/ilCsfxqM4jlcAhcwfxTF/VCf5KI58AACQJA1HMiGXy8XMmTML1u3atSuhatLrlVdeKVieOXNm5HK5hKqhXOSjOOXKh/EojuMVQCHzR3HMH9VJPoojHwAAJEnDkcxYtGhRwXJHR0dClaTXufvk3H1G5ZKPiytnPozHxTleAYxk/rg480f1ko+Lkw8AAJKk4UhmLF26tGB537598e677yZUTfr09PTE/v37C9adu8+oXPJxYeXOh/G4MMcrgPMzf1yY+aO6yceFyQcAAEnTcCQz7rjjjpg+fXrBuvXr1ydUTfo899xzBcszZsyI1tbWhKqh3OTjwsqdD+NxYY5XAOdn/rgw80d1k48Lkw8AAJKm4Uhm1NXVxZIlSwrWrV+/Pt56662EKkqPN998c8TF9uLFi6Ouri6hiig3+RhdEvkwHqNzvAIYnfljdOYP5GN08gEAQBrU5PP5fNJFQLF6enriC1/4QvT19Z1d19raGrt3747a2ursnw8NDcWCBQuis7Pz7LpcLhdvv/12NDc3J1gZ5SYfIyWZD+MxkuMVwMWZP0Yyf/zJqVOnYsqUKRERcfLkyZg8eXLCFZWXfIwkHwAApEV1npGTWc3NzfHoo48WrNuzZ0+sWLEihoaGEqoqOUNDQ7FixYqCi8uIiNWrV7u4rELyUSjpfBiPQkmPB0BWmD8KmT/4OPkoJB8AAKSJdziSOb29vXHdddfF4cOHC9YvX748Nm7cWDV/2Xrm4nLz5s0F65uamuKdd96JSZMmJVQZSZKPYWnJh/EYlpbxAMgK88cw88dI1f4Oxwj5OEM+AABIm+o4E6eiNDQ0xPPPPz/i+yg2b94cCxYsiDfffDOhysrnzTffjAULFoy4uKyrq4tNmza5uKxi8pGufBiPdI0HQFaYP8wfjE4+5AMAgHTScCSTFi5cGNu2bRtxkdnZ2Rk33XRTPPLII9HT05NQdeOnp6cnHnnkkbjppptGfGxOXV1dbNu2LRYuXJhQdaSFfKQrH8YjXeMBkBXmD/MHo5MP+QAAIH18pCqZ9tJLL8W9994bg4OD5/35zTffHEuXLo277rorWlpaYurUqWWu8NKcOHEiurq64pVXXomOjo7Yv3//eZ935uLynnvuKXOFpJl8DEtLPozHsLSMB0BWmD+GmT+G+UjVQvIxTD4AAEgDDUcyb+fOnfHNb34zDh06dNHnzpgxI1paWuLqq6+OhoaGyOVyqfmOj6Ghoejr64ve3t744IMPoqurK44ePXrR1zU1NcWmTZv8JSvnJR/pyofxSNd4AGSF+cP8cYaG40jyIR8AAKSDhiMV4Q9/+EO0t7fHunXroq+vL+lyyiKXy8Xq1atjzZo1vqODC5KPdOXDeKRrPACywvxh/ojQcByNfMgHAADJ03CkovT09MRTTz0V27dvj2PHjiVdzriYMWNGLF68OFatWhXNzc1Jl0OGyEe6GA8ASmH+qG4ajhcmHwAAkBwNRyrS4OBg7NmzJzo6OmLHjh1x6NChyOqvek1NTTQ1NcWiRYti6dKl0draGnV1dUmXRYbJR7oYDwBKYf6oThqOxZEPAAAoPw1HqkJfX1+899570dXVFV1dXfHRRx/F6dOn4/Tp00mXVmDixIkxceLEmDZtWrS0tERLS0tce+21kcvlki6NCiYf6WI8ACiF+aM6aDiWRj4AAGD8aTgCAABABmg4AgAAaVWbdAEAAAAAAABAdmk4AgAAAAAAACXTcAQAAAAAAABKpuEIAAAAAAAAlEzDEQAAAAAAACiZhiMAAAAAAABQMg1HAAAAAAAAoGQajgAAAAAAAEDJNBwBAAAAAACAkmk4AgAAAAAAACXTcAQAAAAAAABKpuEIAAAAAAAAlEzDEQAAAAAAACiZhiMAAAAAAABQMg1HAAAAAAAAoGQajgAAAAAAAEDJNBwBAAAAAACAkmk4AgAAAAAAACXTcAQAAAAAAABKVpd0AVAOfX198e6770ZXV1d0d3fHhx9+GKdPn46+vr6kSyuQy+Vi4sSJceWVV8bs2bOjpaUlZs2aFblcLunSqGDyAQBAJXO+my7GA0YnHwBkmYYjFWlwcDBee+216OjoiB07dsThw4cjn88nXVZJampqYubMmbFo0aJYunRp3HHHHVFXJ7qUTj4AAKhkznfTxXjA6OQDgEpSk8/qLAbn0d3dHU8//XRs3749jh07lnQ542L69OmxZMmSWLVqVTQ3NyddDhkiHwAA2Xbq1KmYMmVKREScPHkyJk+enHBF6eJ8N12MB4xOPgCoRBqOVITe3t5ob2+PdevWRX9/f9LllEUul4tHH3001qxZEw0NDUmXQ4rJh3wAAJVBw/H8nO+m63zXeKRrPEgX+ZAPgEqm4Ujm7dy5M+6///44fPjwRZ/b2NgYs2fPjmuuuSYaGhrisssui9ra2jJUeXFDQ0PR398fvb298f7770d3d3ccOXLkoq9ramqKTZs2xcKFC8tQJVkjH/IBAFQODceRnO+m63zXeKRrPEgX+ZAPgEqn4UimvfTSS3HvvffG4ODgeX9+yy23xNKlS+POO++MlpaWmDp1apkrvDQnTpyIrq6u2LVrV2zbti32799/3ufV1dXFtm3b4p577ilzhaSZfAyTDwCgUmg4FnK+Oywt57vGY1haxoN0kY9h8gFQ2TQcyazRTtYmTJgQbW1t0dbWFrNmzUqouvHR09MTzz33XKxfvz7++Mc/FvzMSRsfJx/yAQBUHg3HP3G+m67zXeORrvEgXeRDPgCqhYYjmbRz5874yle+MuJkrbW1NTZs2BBz5sxJqLLyeOutt+LBBx+MPXv2FKyvq6uLX//61z6eosrJh3wAAJVJw3GY8910ne8aj3SNB+kiH/IBUE00HMmc3t7euO6660Z85v3y5ctj48aNqflM+/E2NDQUK1asiM2bNxesb2pqinfeeScmTZqUUGUkST6GyQcAUIk0HJ3vnpGW813jMSwt40G6yMcw+QCoHtUxs1FR2tvbq/5kLSKitrY2Nm7cGMuXLy9Yf+jQoWhvb0+oKpImH8PkAwCgMjnfHZaW813jMSwt40G6yMcw+QCoHt7hSKZ0d3fHnDlzoq+v7+y61tbW2L17d1WdrH3c0NBQLFiwIDo7O8+uy+Vy8fbbb0dzc3OClVFu8jGSfAAAlaTa3+HofHekJM93jcdIrj84Qz5Gkg+AyledMxyZ9fTTTxecrE2YMCE2bNhQtSdrEcN/KbZhw4aYMGHC2XV9fX3x1FNPJVgVSZCPkeQDAKByON8dKcnzXeMxkusPzpCPkeQDoPJV7yxH5gwODsb27dsL1rW1tVX8F2wX4/rrr4+2traCdb/85S9HfCk5lUs+RicfAADZ53x3dEmc7xqP0bn+QD5GJx8AlU3Dkcx47bXX4tixYwXrzj1JqWYrV64sWD569Gjs2bMnoWooN/m4MPkAAMg257sXVu7zXeNxYa4/qpt8XJh8AFQuDUcyo6Ojo2D5lltuiVmzZiVUTfo0NzfHzTffXLDu3H1G5ZKPC5MPAIBsc757YeU+3zUeF+b6o7rJx4XJB0Dl0nAkM3bs2FGwvHTp0oQqSa9z98m5+4zKJR8XJx8AANnlfPfiynm+azwuzvVH9ZKPi5MPgMqk4Ugm9PX1xeHDhwvW3XnnnQlVk1533XVXwfLhw4cLvqScyiQfxZEPAIBscr5bnHKd7xqP4rj+qE7yURz5AKhMGo5kwrvvvhv5fL5g3ec+97mEqkmvlpaWguWhoaF47733EqqGcpGP4sgHAEA2Od8tTrnOd41HcVx/VCf5KI58AFQmDUcyoaurq2C5sbExLr/88oSqSa+pU6fGjBkzCtadu++oPPJRHPkAAMgm57vFKdf5rvEojuuP6iQfxZEPgMqk4UgmdHd3FyzPnj07oUrS79y/EnPCVvnko3jyAQCQPc53i1eO813jUTzXH9VHPoonHwCVR8ORTPjwww8Llq+55pqEKkm/q6++umD5o48+SqgSykU+iicfAADZ43y3eOU43zUexXP9UX3ko3jyAVB5NBzJhNOnTxcsNzQ0JFRJ+p27b87dd1Qe+SiefAAAZI/z3eKV43zXeBTP9Uf1kY/iyQdA5dFwJBP6+voKli+77LKEKkm/XC5XsOyErfLJR/HkAwAge5zvFq8c57vGo3iuP6qPfBRPPgAqj4YjmVRb61d3NPYNfgdGZ98AAGSfc7rRJbFvjMfo7Bv8DozOvgGoPI7sAAAAAAAAQMk0HAEAAAAAAICSaTgCAAAAAAAAJatLugCAsTIwMBC///3vIyLi8ssvj/r6+oQrAgCAsTMwMHDefwdIG9fnAFB9vMMRyLQ33ngjHnroobj11ltjypQpMW3atJg2bVpMmTIlbr311njooYfiwIEDSZcJAAAl+fj5bmNj49n1jY2NzneBVHF9DgDVTcMRyKSDBw9Ga2tr3HTTTbF+/frYu3dv9Pf3n/15f39/7N27N9avXx833nhjtLa2xsGDBxOsGAAAiud8F8gKxysAIELDEciYfD4f7e3tMW/evOjs7Cz6dZ2dnTFv3rxob2+PfD4/jhUCAEDpnO8CWeF4BQB8nIYjkBn5fD7a2tpi7dq1JX1nzcDAQKxduzba2tpc1AAAkDrOd4GscLwCAM5VlQ3HdevWRU1NTdTU1MT//r//70mXQ4odOnTo7O/KmUd9fX189rOfjXvvvTf27t0bERHPPvts1NTUxLJly0bd1quvvhq1tbVx6623xuDgYLn+FyrKunXrYsOGDZe8nQ0bNsS6devGoKLqJh8AAGPL+W66ON9NF+ORLo5X6SIfAKRBXdIFlNtbb70V//7f//uYPHlynDp1KulyyIjm5ub42te+FhERp06din379kVHR0f86le/il27dsXDDz8cL7/8cmzdujUWL14cX/3qVwtef/LkyVi2bFnkcrl48cUXo66u6qJ3yQ4ePBiPPfbYmG3vscceiy9/+csxd+7cMdtmtZIPAIBL53w3vZzvpovxSJ7jVXrJBwBJqqpZY2BgIP7qr/4qbrzxxmhpaYm/+7u/S7okMmL27Nnxgx/8oGBde3t7rF27Nr7//e/Ha6+9Flu3bo25c+fG8uXL4+23345p06adfe53vvOdOHToUDzzzDPx+c9/vszVV4aVK1eW9DEtoxkYGIiVK1fGnj17xmyb1Uo+AAAunfPd9HK+my7GI3mOV+klHwAkqao+UvWv//qv4+23344tW7bEhAkTki6HjPv6178eERH79u2LiIiZM2fGs88+G0eOHIlvfetbZ5+3Y8eOeP755+NLX/pSPPzww4nUmnVvvPHGJ/oC+mJ1dnbGgQMHxny7yAcAwCfhfDd7nO+mi/EoH8er7JEPAMqlahqO+/fvj7/+67+Of//v/31cd911SZdDBfn4x0ssW7Ys7r777ujo6Ihf/OIX8bvf/S6+8Y1vxNSpU+PnP/951NTUJFhpdm3ZsiWT20Y+AACK4Xw3u5zvpovxGH+OV9klHwCMt6r4SNW+vr74N//m38SNN94Yjz76aNLlUCFeeOGFiIj44he/WLD++eefj9/+9rfx4IMPRmtra3zwwQexZcuWmDlzZhJlVoTXX389k9uuZvIBAFA857vZ43w3XYxH+TheZY98AFAuVdFwfOyxx6Krqyv27duX+Y9Szefz0dvbm3QZZTeW3w1Qiu7u7rOfgX/mS7d3794djY2N8eSTTxY8t7GxMTZt2hRLliyJl19+Oe6+++5YtmxZAlUPGxgYiFOnTiX2379UAwMDcfDgwXHb/sGDB+P48eOZ/iJ0+Shd1vMBAGSf892Lc75buvE43zUepcv69Yfj1cXJR+myng9g7DU0NHjHddbkK9xvf/vbfG1tbf7xxx8vWP9Xf/VX+YjIv/766wlVVpqTJ0/mI6LqHw888EBZ9vd77703ag1XXXVVvqura9TX3nbbbfmIyL/zzjtlqfWMBx54IPHx8Uj2IR+jkw8PDw8PDw8Pj+w/nO+OLonzXeMxOtcfHvIxOvnw8PC42OPkyZNlPS5x6Sr6OxwHBwfjr/7qr2Lu3LmxZs2apMshwxYtWhT5fD7y+XwcPXo0nnzyyTh69GjcfffdcfLkyfO+ZtKkSQX/hEolHwAAVDLnu+liPGB08gFAkrL7GQVFOHnyZHR1dUVExGWXXXbe59x+++0REfHSSy/FP//n/7xcpZWsoaFh1BOESvbII4/E5s2bky4jIiKmT58eq1atiuPHj8ePf/zj+N73vhfPPvts0mWNavny5fHMM88kXUbJBgYGorGxMfr7+8dl+7lcLo4cOZLpj2yRj9JlPR8AQPY5370457ulG4/zXeNRuqxffzheXZx8lC7r+QDGXkNDQ9Il8AlldwYvQi6Xi69//evn/dmePXuiq6sr7r777pg+fXo0NTWVt7gS1dTUxOTJk5Muo+zq6+uTLmGE7373u7Fly5b42c9+Ft/+9rdT+ztUX1+f+d+ZuXPnxt69e8dt21dcccW4bLtc5KN0lZAPACD7nO9emPPd0o3H+a7xKF0lXH84Xl2YfJSuEvIBUO0q+iNVJ02aFC+88MJ5H//r//q/RkTE2rVr44UXXogbb7wx2WLJnEmTJsXq1atjYGAgfvSjHyVdTkU7807krG27mskHAEDxnO9mj/PddDEe5eN4lT3yAUC5VHTDEcbb/fffH5/5zGfixRdfjJ6enqTLqVj33XdfJrdd7eQDAKA4znezyfluuhiP8nC8yib5AKAcNBzhEkycODHWrl0bg4OD8cMf/jDpcirWjTfeGPPnzx/z7c6fPz9uuOGGMd8uw+QDAKA4znezyfluuhiP8nC8yib5AKAcKvo7HC9k69atsXXr1qTLIOWampoin89f8DkrV66MlStXjlj/6quvjlNV1em5556LefPmxcDAwJhsr76+PjZs2DAm26pW8gEAMHac76aP8910MR7p4XiVPvIBQBp4hyOQCXPnzo3HH398zLb3+OOPx/XXXz9m2wMAgEvhfBfICscrAOB8NByBzFi9enU8+OCDl7ydlStXxurVq8egIgAAGDvOd4GscLwCAM6l4QhkRk1NTaxfvz6eeOKJqK+v/8Svr6+vjyeeeCJ++tOfRk1NzThUCAAApXO+C2SF4xUAcC4NRyBTampqYs2aNbF3795P9EX18+fPj3379sWaNWtczAAAkFrOd4GscLwCAD6uLukCAEoxd+7c2LNnTxw4cCC2bNkSr7/+ehw4cCD6+/sjIiKXy8XcuXPj9ttvj/vuuy9uuOGGhCsGAIDiOd8FssLxCgCI0HAEMu6GG26In/zkJxERcfz48fjUpz4VERFHjhyJK664IsHKAADg0n38fHdwcDBOnDgRERFTp06NujqX9EB6uD4HgOrm6gSoGB+/4eLmCwAAlaauri4+/elPJ10GwEW5PgeA6uM7HAEAAAAAAICSaTgCAAAAAAAAJdNwBAAAAAAAAEqm4UgmDQ0NJV1Catk3+B0YnX0DAJB9zulGl8S+MR6js2/wOzA6+wag8mg4kgm5XK5gub+/P6FK0q+vr69geeLEiQlVQrnIR/HkAwAge5zvFq8c57vGo3iuP6qPfBRPPgAqj4YjmXDuSUdvb29ClaTfufvGCVvlk4/iyQcAQPY43y1eOc53jUfxXH9UH/konnwAVB4NRzLhyiuvLFh+//33E6ok/T744IOC5WnTpiVUCeUiH8WTDwCA7HG+W7xynO8aj+K5/qg+8lE8+QCoPBqOZMLs2bMLlru7uxOqJP26uroKlltaWhKqhHKRj+LJBwBA9jjfLV45zneNR/Fcf1Qf+SiefABUHg1HMuHck44jR47EiRMnEqomvU6cOBFHjx4tWOeErfLJR3HkAwAgm5zvFqdc57vGoziuP6qTfBRHPgAqk4YjmTBr1qyoqakpWHfuX0Ixcp/U1tbGtddem1A1lIt8FEc+AACyyfluccp1vms8iuP6ozrJR3HkA6AyaTiSCblcLmbOnFmwbteuXQlVk16vvPJKwfLMmTMjl8slVA3lIh/FkQ8AgGxyvluccp3vGo/iuP6oTvJRHPkAqEwajmTGokWLCpY7OjoSqiS9zt0n5+4zKpd8XJx8AABkl/Pdiyvn+a7xuDjXH9VLPi5OPgAqk4YjmbF06dKC5X379sW7776bUDXp09PTE/v37y9Yd+4+o3LJx4XJBwBAtjnfvbByn+8ajwtz/VHd5OPC5AOgcmk4khl33HFHTJ8+vWDd+vXrE6omfZ577rmC5RkzZkRra2tC1VBu8nFh8gEAkG3Ody+s3Oe7xuPCXH9UN/m4MPkAqFwajmRGXV1dLFmypGDd+vXr46233kqoovR48803R5y8Ll68OOrq6hKqiHKTj9HJBwBA9jnfHV0S57vGY3SuP5CP0ckHQGWryefz+aSLgGL19PTEF77whejr6zu7rrW1NXbv3h21tdXZPx8aGooFCxZEZ2fn2XW5XC7efvvtaG5uTrCy8jt16lRMmTIlIiJOnjwZkydPTrii8pKPkeQDAKByON8dKcnzXeMxkuuPP3F9Lh/nkg+AyledMxyZ1dzcHI8++mjBuj179sSKFStiaGgooaqSMzQ0FCtWrCg4WYuIWL16tZO1KiQfheQDAKCyON8tlPT5rvEolPR4kC7yUUg+AKqDdziSOb29vXHdddfF4cOHC9YvX748Nm7cWDV/KXbmZG3z5s0F65uamuKdd96JSZMmJVRZcqr9Lygj5OMM+QAAqEzOd4el5XzXeAxLy3ikietz+ThDPgCqR3XMbFSUhoaGeP7550d8vvvmzZtjwYIF8eabbyZUWfm8+eabsWDBghEna3V1dbFp0yYna1VMPuQDAKCSOd9N1/mu8UjXeJAu8iEfANVGw5FMWrhwYWzbtm3ESVtnZ2fcdNNN8cgjj0RPT09C1Y2fnp6eeOSRR+Kmm24a8TEUdXV1sW3btli4cGFC1ZEW8iEfAACVzPluus53jUe6xoN0kQ/5AKgmPlKVTHvppZfi3nvvjcHBwfP+/Oabb46lS5fGXXfdFS0tLTF16tQyV3hpTpw4EV1dXfHKK69ER0dH7N+//7zPO3Oyds8995S5wnTxkS2F5GOYfAAAVCbnu8PScr5rPIalZTyS5vq8kHwMkw+AyqbhSObt3LkzvvnNb8ahQ4cu+twZM2ZES0tLXH311dHQ0BC5XC41n5k/NDQUfX190dvbGx988EF0dXXF0aNHL/q6pqam2LRpk78MCxc05yMf8gEAUMmc76brfNd4pGs8kuT6fCT5kA+ASqfhSEX4wx/+EO3t7bFu3bro6+tLupyyyOVysXr16lizZo3PvP//uaA5P/mQDwCASuZ8N13nu8YjXeORFNfn5ycf8gFQyTQcqSg9PT3x1FNPxfbt2+PYsWNJlzMuZsyYEYsXL45Vq1ZFc3Nz0uWkiguaC5MPAAAqmfPddDEe1c31+YXJBwCVSMORijQ4OBh79uyJjo6O2LFjRxw6dCiy+qteU1MTTU1NsWjRoli6dGm0traO+LJxhrmgKY58AABQyZzvpovxqE6uz4sjHwBUEg1HqkJfX1+899570dXVFV1dXfHRRx/F6dOn4/Tp00mXVmDixIkxceLEmDZtWrS0tERLS0tce+21kcvlki4tE1zQlEY+AACoZM5308V4VAfX56WRDwCyTMMRqBguaAAAACB5rs8BoPrUJl0AAAAAAAAAkF0ajgAAAAAAAEDJNBwBAAAAAACAkmk4AgAAAAAAACXTcAQAAAAAAABKpuEIAAAAAAAAlEzDEQAAAAAAACiZhiMAAAAAAABQMg1HAAAAAAAAoGQajgAAAAAAAEDJNBwBAAAAAACAkmk4AgAAAAAAACXTcAQAAAAAAABKpuEIAAAAAAAAlEzDEQAAAAAAACiZhiMAAAAAAABQMg1HAAAAAAAAoGQajgAAAAAAAEDJNBwBAAAAAACAktUlXQCUQ19fX7z77rvR1dUV3d3d8eGHH8bp06ejr68v6dIK5HK5mDhxYlx55ZUxe/bsaGlpiVmzZkUul0u6NCqYfKSL8QAAAKhOrgdhdPIB6afhSEUaHByM1157LTo6OmLHjh1x+PDhyOfzSZdVkpqampg5c2YsWrQoli5dGnfccUfU1YkupZOPdDEeAAAA1cn1IIxOPiB7avJZTSmcR3d3dzz99NOxffv2OHbsWNLljIvp06fHkiVLYtWqVdHc3Jx0Oaly6tSpmDJlSkREnDx5MiZPnpxwRekiH+liPAAAgErl+vzCXA/C6OQDskvDkYrQ29sb7e3tsW7duujv70+6nLLI5XLx6KOPxpo1a6KhoSHpclLBBc35yUe68mE80jUeAADA2HN9fn6uB10PMjr5kA+yT8ORzNu5c2fcf//9cfjw4Ys+t7GxMWbPnh3XXHNNNDQ0xGWXXRa1tbVlqPLihoaGor+/P3p7e+P999+P7u7uOHLkyEVf19TUFJs2bYqFCxeWocp0c0EzknykKx/GI13jAQAAjA/X5yO5HnQ9yOjkQz6oDBqOZNpLL70U9957bwwODp7357fcckssXbo07rzzzmhpaYmpU6eWucJLc+LEiejq6opdu3bFtm3bYv/+/ed9Xl1dXWzbti3uueeeMleYLi5oCsnHsLTkw3gMS8t4AAAA48f1eSHXg8NcD3I+8jFMPqgEGo5k1miT0YQJE6KtrS3a2tpi1qxZCVU3Pnp6euK5556L9evXxx//+MeCn5mUXNB8nHykKx/GI13jAQAAjC/X53/ietD1IKOTD/mgsmg4kkk7d+6Mr3zlKyMmo9bW1tiwYUPMmTMnocrK46233ooHH3ww9uzZU7C+rq4ufv3rX1ft2+9d0AyTj3Tlw3ikazwAAIDx5/p8mOtB14OMTj7kg8qj4Ujm9Pb2xnXXXTfiM72XL18eGzduTM1ndo+3oaGhWLFiRWzevLlgfVNTU7zzzjsxadKkhCpLjgsa+TgjLfkwHsPSMh4AAEB5uD53PXiG60HORz6GyQeVpjqSS0Vpb2+v+skoIqK2tjY2btwYy5cvL1h/6NChaG9vT6gqkiYfw9KSD+MxLC3jAQAAUC6uB4e5HuR85GOYfFBpvMORTOnu7o45c+ZEX1/f2XWtra2xe/fuqpqMPm5oaCgWLFgQnZ2dZ9flcrl4++23o7m5OcHKyq/a/4JSPkZKMh/GYyTHKwAAqA6uz10Pnsv1IGfIx0jyQaWozgSTWU8//XTBZDRhwoTYsGFD1U5GEcN/CbNhw4aYMGHC2XV9fX3x1FNPJVgVSZCPkZLMh/EYyfEKAACoBq4HR3I9yBnyMZJ8UCmqN8VkzuDgYGzfvr1gXVtbW8V/gXAxrr/++mhraytY98tf/nLEly5TueRjdEnkw3iMzvEK4P9r7+6DpKzvBIF/B2Zo3sRsUMZK5BgZJmeM4cVAdrVkxI1CXsmqhZXkvN1ggjEKqKUlEBMvmtQCq8YXJCXgomtylzuIMd5eaoNypTKVYDzweBHNZWYUorkNoFlFGJkZnL4/OInNMNA0M/300/35VHXp8+vu33znefr7NL/vd/ppAKCcWQ/2zHoQ+dEz+UE50HAkNZ555pnYvXt3ztjhJ+FKNnv27JztXbt2xbp16xKKhmKTH0dX7PxwPI7O+QoAAChX1oNHZz1Y2eTH0ckP0k7DkdRYvXp1zvYnPvGJGD16dELRlJ76+vo455xzcsYO32eUL/lxdMXOD8fj6JyvAACAcmU9eHTWg5VNfhyd/CDtNBxJjTVr1uRsz5gxI6FIStfh++TwfUb5kh/HVsz8cDyOzfkKAAAoR9aDx2Y9WLnkx7HJD9JMw5FUaG9vjx07duSMXXTRRQlFU7ouvvjinO0dO3bkfAkz5Ul+5KdY+eF45Mf5CgAAKDfWg/mxHqxM8iM/8oM003AkFV5++eXIZrM5Yx/5yEcSiqZ0NTQ05Gx3dXXFK6+8klA0FIv8yE+x8sPxyI/zFQAAUG6sB/NjPViZ5Ed+5AdppuFIKjQ3N+ds19bWxkknnZRQNKVr2LBhMWLEiJyxw/cd5Ud+5KdY+eF45Mf5CgAAKDfWg/mxHqxM8iM/8oM003AkFVpaWnK2x4wZk1Akpe/wv4LxhlT+5Ef+ipEfjkf+nK8AAIByYj2YP+vByiM/8ic/SCsNR1Lh9ddfz9keOXJkQpGUvtNPPz1n+4033kgoEopFfuSvGPnheOTP+QoAACgn1oP5sx6sPPIjf/KDtNJwJBX279+fsz148OCEIil9h++bw/cd5Ud+5K8Y+eF45M/5CgAAKCfWg/mzHqw88iN/8oO00nAkFdrb23O2BwwYkFAkpS+TyeRse0Mqf/Ijf8XID8cjf85XAABAObEezJ/1YOWRH/mTH6SVhiOp1K+fl25P7Bu8BnqWxL5xPHpm3wAAAOXMmqdn9g1eAz2zb0grr1wAAAAAAACgYBqOAAAAAAAAQME0HAEAAAAAAICCVScdAEBv6ezsPOL/AwAAAMVjfQ496+zsjLfffjsiIk466aSoqalJOCKA3uETjkCqbdq0KebOnRuTJk2K2traQ+O1tbUxadKkmDt3bmzevDnBCAEAAKD8WZ9Dz96fH0OHDo3hw4fH8OHDY+jQofIDKBsajkAqbdmyJRobG2PChAmxZMmS2LBhQ3R0dBy6v6OjIzZs2BBLliyJ8ePHR2NjY2zZsiXBiAEAAKD8WJ9Dz+QHUEk0HIFUyWazsWjRopg4cWI0NTXl/bympqaYOHFiLFq0KLLZbB9GCAAAAOXP+hx6Jj+ASqThCKRGNpuNOXPmxIIFCwr6DojOzs5YsGBBzJkzxz/aAAAAoEDW59Az+QFUqrJvONbV1UVVVdURb1OmTEk6PErc9u3bu71uampq4sMf/nBcfvnlsWHDhoiIuOeee6KqqipmzpzZ41xPP/109OvXLyZNmhQHDhwo1q9QVhYvXhxLly494XmWLl0aixcv7oWIKpv8KC2OBwAAUCzW56XFerC0yI/SIj+geKqTDqAYTj755Lj++uu7jdfV1RU9FtKpvr4+rrjiioiI2LdvX2zcuDFWr14dP//5z2Pt2rVx3XXXxeOPPx4PP/xwXHrppfGFL3wh5/l79+6NmTNnRiaTiUceeSSqqysi9XrVli1b4tZbb+21+W699db47Gc/G2PHju21OSuV/CgtjgcAANCXrM9Ll/Vg8uRH6ZIf0PcqIis+8IEPxHe/+92kwyDFxowZ0+01tGjRoliwYEF85zvfiWeeeSYefvjhGDt2bMyaNSu2bdsWw4cPP/TYG2+8MbZv3x533313fPSjHy1y9OVh9uzZBV2GoiednZ0xe/bsWLduXa/NWankR2lxPAAAgL5kfV66rAeTJz9Kl/yAvlf2l1SFvvK1r30tIiI2btwYERGjRo2Ke+65J3bu3Bnf/OY3Dz1uzZo1sXz58rjwwgvjuuuuSyTWtNu0adNxfcF2vpqammLz5s29Pi/yo9Q4HgAAQG+wPk8f68HikR/pIz+gd1VEw7G9vT0efvjh+Pu///u4//774ze/+U3SIVFG3v/x+ZkzZ8b06dNj9erV8ZOf/CTefPPN+PrXvx7Dhg2Lhx56KKqqqhKMNL1WrlyZyrmRH6XG8QAAAE6E9Xl6WQ/2PfmRXvIDekdFXFL1j3/8Y7cve500aVL85Cc/ifr6+oSiIu0efPDBiIg4//zzc8aXL18ev/71r+Paa6+NxsbGeO2112LlypUxatSoJMIsC+vXr0/l3JVMfpQWxwMAAOgN1ufpYz1YPPIjfeQH9K6ybzjOnDkzJk+eHGeffXYMHTo0fve738UPfvCD+NGPfhSf+tSnYuvWrXHSSSclHWbestlstLW1JR1G0fXmtc8L0dLScuga3+99qfBTTz0VtbW1cccdd+Q8tra2NpYtWxaXXXZZPP744zF9+vRuDe9i6uzsjH379iX2809UZ2dnbNmypc/m37JlS7z11lup/qJn+VG4vsgPx6NwaT9fAQBAObM+PzbrwcKlfT0oP45NfhQu7flRqMGDB/tEadpkK9R//I//MRsR2bvuuivpUI7L3r17sxFR8bdrrrmmKPv7lVde6TGG0047Ldvc3Nzjcz/5yU9mIyL74osvFiXW91xzzTWJHx+3ZG/yo2dJ5Ifj0TPnKzc3Nzc3Nzc3Nze3cr5ZD/bMetBNfvRMfhy87d27t6j7nRNXEd/heCTf+MY3IiLiV7/6VcKRkAbTpk2LbDYb2Ww2du3aFXfccUfs2rUrpk+fHnv37j3icwYNGpTzXyhX8qO0OB4AAACVyXoQeiY/oO+l9zPYJ+iUU06JiEjdR5EHDx7c4wmwnN1www2xYsWKpMOIiIhTTz01brrppnjrrbfi+9//fnz729+Oe+65J+mwejRr1qy4++67kw6jYJ2dnVFbWxsdHR19Mn8mk4mdO3em+pIU8qNwfZEfjkfh0n6+AgCAcmZ9fmzWg4VL+3pQfhyb/Chc2vOjUIMHD046BI5Tes9QJ+g3v/lNRETU1dUlG8hxqqqqiiFDhiQdRtHV1NQkHUI33/rWt2LlypXxwx/+MK6//vqSfS3V1NSk/jUzduzY2LBhQ5/NffLJJ/fJ3MUiPwrXF/nheBSuHM5XAABQzqzPj856sHDlsB6UH0cnPwpXDvlBZSjrS6r+9re/jba2tiOOz5s3LyIivvKVrxQ7LMrEoEGDYt68edHZ2Rnf+973kg6nrJ177rmpnLuSyY/S4ngAAAC9wfo8fawHi0d+pI/8gN5V1g3H//pf/2ucdtpp8fnPfz6uvfbauPnmm+Nv/uZvYuzYsfHHP/4xFixYEI2NjUmHSYpdddVV8aEPfSgeeeSRaG1tTTqcsnXllVemcu5KJz9Ki+MBAACcKOvzdLIeLA75kU7yA3pPWTccL7zwwvjMZz4Tv/vd7+LHP/5x3H333fGb3/wmPvvZz8aaNWvi7//+75MOkZQbOHBgLFiwIA4cOBC33XZb0uGUrfHjx8fkyZN7fd7JkyfHuHHjen1eDpIfpcXxAAAATpT1eTpZDxaH/Egn+QG9p6y/w/GCCy6ICy64IOkwSLG6urrIZrNHfczs2bNj9uzZ3caffvrpPoqqMt1///0xceLE6Ozs7JX5ampqYunSpb0yV6WSH6XF8QAAAIrB+rz0WA+WDvlReuQHFE9Zf8IRKB9jx46N22+/vdfmu/322+PjH/94r80HAAAAlcD6HHomP4BKpuEIpMa8efPi2muvPeF5Zs+eHfPmzeuFiAAAAKDyWJ9Dz+QHUKk0HIHUqKqqiiVLlsTChQujpqbmuJ9fU1MTCxcujPvuuy+qqqr6IEIAAAAof9bn0DP5AVQqDUcgVaqqqmL+/PmxYcOG4/oi7smTJ8fGjRtj/vz5/rEGAAAAJ8j6HHomP4BKVJ10AACFGDt2bKxbty42b94cK1eujPXr18fmzZujo6MjIiIymUyMHTs2zj333Ljyyitj3LhxCUcMAAAA5cf6HHomP4BKouEIpNq4cePi3nvvjYiIAwcOxJ49eyIiYtiwYVFd7RQHAAAAxWB9Dj17f3689dZb8YEPfCAiInbu3Bknn3xygpEB9B7v9kDZqK6ujg9+8INJhwEAAAAVzfocevb+BrxmPFBOfIcjAAAAAAAAUDANRwAAAAAAAKBgGo4AAAAAAABAwTQcSaWurq6kQyhZ9g1eAz1LYt84Hj2zbwAAgHJmzdMz+wavgZ7ZN6SVhiOpkMlkcrY7OjoSiqT0tbe352wPHDgwoUgoFvmRv2Lkh+ORP+crAACgnFgP5s96sPLIj/zJD9JKw5FUOPyk2tbWllAkpe/wfeMNqfzJj/wVIz8cj/w5XwEAAOXEejB/1oOVR37kT36QVhqOpMIpp5ySs/3qq68mFEnpe+2113K2hw8fnlAkFIv8yF8x8sPxyJ/zFQAAUE6sB/NnPVh55Ef+5AdppeFIKowZMyZnu6WlJaFISl9zc3POdkNDQ0KRUCzyI3/FyA/HI3/OVwAAQDmxHsyf9WDlkR/5kx+klYYjqXD4SXXnzp2xZ8+ehKIpXXv27Ildu3bljHlDKn/yIz/Fyg/HIz/OVwAAQLmxHsyP9WBlkh/5kR+kmYYjqTB69OioqqrKGTv8Lz3ovk/69esXZ5xxRkLRUCzyIz/Fyg/HIz/OVwAAQLmxHsyP9WBlkh/5kR+kmYYjqZDJZGLUqFE5Y2vXrk0omtL15JNP5myPGjUqMplMQtFQLPIjP8XKD8cjP85XAABAubEezI/1YGWSH/mRH6SZhiOpMW3atJzt1atXJxRJ6Tp8nxy+zyhf8uPYipkfjsexOV8BAADlyHrw2KwHK5f8ODb5QZppOJIaM2bMyNneuHFjvPzyywlFU3paW1vj+eefzxk7fJ9RvuTH0RU7PxyPo3O+AgAAypX14NFZD1Y2+XF08oO003AkNS644II49dRTc8aWLFmSUDSl5/7778/ZHjFiRDQ2NiYUDcUmP46u2PnheByd8xUAAFCurAePznqwssmPo5MfpJ2GI6lRXV0dl112Wc7YkiVL4oUXXkgootKxdevWbm/Ol156aVRXVycUEcUmP3qWRH44Hj1zvgIAAMqZ9WDPrAeRHz2TH5SDqmw2m006CMhXa2trfOxjH4v29vZDY42NjfHUU09Fv36V2T/v6uqKKVOmRFNT06GxTCYT27Zti/r6+gQjo9jkR3dJ5ofj0Z3zFQAAUAmsB7uzHvyzffv2xdChQyMiYu/evTFkyJCEIyou+dGd/KBcVGYGk1r19fVx880354ytW7curr766ujq6kooquR0dXXF1VdfnfNmFBExb948b0YVSH7kSjo/HI9cSR8PAACAYrEezGU9yPvJj1zyg3LiE46kTltbW5x11lmxY8eOnPFZs2bFAw88UDF/CfPem9GKFStyxuvq6uLFF1+MQYMGJRQZSZIfB5VKfjgeB5XK8QAAACgW68GDrAe7q/RPOEbIj/fID8pNZWQuZWXw4MGxfPnybtevXrFiRUyZMiW2bt2aUGTFs3Xr1pgyZUq3N6Pq6upYtmyZN6MKJj9KKz8cj9I6HgAAAMViPWg9SM/kh/ygPGk4kkpTp06NVatWdXtTampqigkTJsQNN9wQra2tCUXXd1pbW+OGG26ICRMmdPuYfXV1daxatSqmTp2aUHSUCvlRWvnheJTW8QAAACgW60HrQXomP+QH5cclVUm1xx57LC6//PI4cODAEe8/55xzYsaMGXHxxRdHQ0NDDBs2rMgRnpg9e/ZEc3NzPPnkk7F69ep4/vnnj/i4996MLrnkkiJHSCmTHweVSn44HgeVyvEAAAAoFuvBg6wHD3JJ1Vzy4yD5QTnQcCT1nnjiifjGN74R27dvP+ZjR4wYEQ0NDXH66afH4MGDI5PJlMw1wbu6uqK9vT3a2tritddei+bm5ti1a9cxn1dXVxfLli3zly8ckfworfxwPErreAAAABSL9aD14Hs0HLuTH/KD8qDhSFl45513YtGiRbF48eJob29POpyiyGQyMW/evJg/f75renNU8qO08sPxKK3jAQAAUCzWg9aDERqOPZEf8oP003CkrLS2tsadd94Zjz76aOzevTvpcPrEiBEj4tJLL42bbrop6uvrkw6HFJEfpcXxAAAAqEzWg5VNw/Ho5Aekl4YjZenAgQOxbt26WL16daxZsya2b98eaX2pV1VVRV1dXUybNi1mzJgRjY2N3b5MGY6H/CgtjgcAAEBlsh6sTBqO+ZEfkD4ajlSE9vb2eOWVV6K5uTmam5vjjTfeiP3798f+/fuTDi3HwIEDY+DAgTF8+PBoaGiIhoaGOOOMMyKTySQdGmVMfpQWxwMAAKAyWQ9WBg3HwsgPKH0ajgAAAAAAUAQajkC56pd0AAAAAAAAAEB6aTgCAAAAAAAABdNwBAAAAAAAAAqm4QgAAAAAAAAUTMMRAAAAAAAAKJiGIwAAAAAAAFAwDUcAAAAAAACgYBqOAAAAAAAAQME0HAEAAAAAAICCaTgCAAAAAAAABdNwBAAAAAAAAAqm4QgAAAAAAAAUTMMRAAAAAAAAKJiGIwAAAAAAAFAwDUcAAAAAAACgYBqOAAAAAAAAQME0HAEAAAAAAICCaTgCAAAAAAAABdNwBAAAAAAAAApWnXQAUAzt7e3x8ssvR3Nzc7S0tMTrr78e+/fvj/b29qRDy5HJZGLgwIFxyimnxJgxY6KhoSFGjx4dmUwm6dAoY/IDAAAAgFKmfgWlT8ORsnTgwIF45plnYvXq1bFmzZrYsWNHZLPZpMMqSFVVVYwaNSqmTZsWM2bMiAsuuCCqq6UuhZMfAAAAAJQy9StIn6psWrMUjqClpSXuuuuuePTRR2P37t1Jh9MnTj311Ljsssvipptuivr6+qTDIUXkBwAAAECy9u3bF0OHDo2IiL1798aQIUMSjqi0qF9Bemk4Uhba2tpi0aJFsXjx4ujo6Eg6nKLIZDJx8803x/z582Pw4MFJh0MJkx/yAwAAACgNGo5Hpn6lfkX6aTiSek888URcddVVsWPHjmM+tra2NsaMGRMjR46MwYMHx4ABA6Jfv35FiPLYurq6oqOjI9ra2uLVV1+NlpaW2Llz5zGfV1dXF8uWLYupU6cWIUrSRn7IDwAAAKB0aDh2p36lfkV50HAk1R577LG4/PLL48CBA0e8/xOf+ETMmDEjLrroomhoaIhhw4YVOcITs2fPnmhubo61a9fGqlWr4vnnnz/i46qrq2PVqlVxySWXFDlCSpn8OEh+AAAAAKVCwzGX+tVB6leUAw1HUqunN6P+/fvHnDlzYs6cOTF69OiEousbra2tcf/998eSJUvi3XffzbnPmxLvJz/kBwAAAFB6NBz/TP1K/YryouFIKj3xxBPxuc99rtubUWNjYyxdujTOPvvshCIrjhdeeCGuvfbaWLduXc54dXV1/OIXv/Dx+wonP+QHAAAAUJo0HA9Sv1K/ovxoOJI6bW1tcdZZZ3W7pvesWbPigQceKJlrdve1rq6uuPrqq2PFihU543V1dfHiiy/GoEGDEoqMJMmPg+QHAAAAUIo0HNWv3qN+RbmpjMylrCxatKji34wiIvr16xcPPPBAzJo1K2d8+/btsWjRooSiImny4yD5AQAAAFCa1K8OUr+i3PiEI6nS0tISZ599drS3tx8aa2xsjKeeeqqi3ozer6urK6ZMmRJNTU2HxjKZTGzbti3q6+sTjIxikx/dyQ8AAACglFT6JxzVr7pTv6JcVGYGk1p33XVXzptR//79Y+nSpRX7ZhRx8C9hli5dGv379z801t7eHnfeeWeCUZEE+dGd/AAAAAAoHepX3alfUS4qN4tJnQMHDsSjjz6aMzZnzpyy/wLhfHz84x+POXPm5Iz97Gc/6/aly5Qv+dEz+QEAAACQPPWrnqlfUQ40HEmNZ555Jnbv3p0zdvhJuJLNnj07Z3vXrl2xbt26hKKh2OTH0ckPAAAAgGSpXx2d+hVpp+FIaqxevTpn+xOf+ESMHj06oWhKT319fZxzzjk5Y4fvM8qX/Dg6+QEAAACQLPWro1O/Iu00HEmNNWvW5GzPmDEjoUhK1+H75PB9RvmSH8cmPwAAAACSo351bOpXpJmGI6nQ3t4eO3bsyBm76KKLEoqmdF188cU52zt27Mj5EmbKk/zIj/wAAAAASIb6VX7Ur0gzDUdS4eWXX45sNpsz9pGPfCShaEpXQ0NDznZXV1e88sorCUVDsciP/MgPAAAAgGSoX+VH/Yo003AkFZqbm3O2a2tr46STTkoomtI1bNiwGDFiRM7Y4fuO8iM/8iM/AAAAAJKhfpUf9SvSTMORVGhpacnZHjNmTEKRlL7D/wrGG1L5kx/5kx8AAAAAxad+lT/1K9JKw5FUeP3113O2R44cmVAkpe/000/P2X7jjTcSioRikR/5kx8AAAAAxad+lT/1K9JKw5FU2L9/f8724MGDE4qk9B2+bw7fd5Qf+ZE/+QEAAABQfOpX+VO/Iq00HEmF9vb2nO0BAwYkFEnpy2QyOdvekMqf/Mif/AAAAAAoPvWr/KlfkVYajqRSv35euj2xb/Aa6Jl9AwAAAJA8NZqe2TeklVcuAAAAAAAAUDANRwAAAAAAAKBgGo4AAAAAAABAwaqTDgCgt3R2dsbbb78dEREnnXRS1NTUJBwRAAAAAPxZZ2fnEf8fIO18whFItU2bNsXcuXNj0qRJMXTo0Bg+fHgMHz48hg4dGpMmTYq5c+fG5s2bkw4TAAAAgAr1/vpVbW3tofHa2lr1K6BsaDgCqbRly5ZobGyMCRMmxJIlS2LDhg3R0dFx6P6Ojo7YsGFDLFmyJMaPHx+NjY2xZcuWBCMGAAAAoJKoXwGVRMMRSJVsNhuLFi2KiRMnRlNTU97Pa2pqiokTJ8aiRYsim832YYQAAAAAVDL1K6ASaTgCqZHNZmPOnDmxYMGCgq5x39nZGQsWLIg5c+b4RxsAAAAAvU79CqhUFdNwfOyxx+Liiy+O4cOHx8CBA+OMM86IL3/5y/Hqq68mHRolbPv27VFVVZVzq6mpiQ9/+MNx+eWXx4YNGyIi4p577omqqqqYOXNmj3M9/fTT0a9fv5g0aVIcOHCgWL9CWVm8eHEsXbr0hOdZunRpLF68uBciqmzyAwAAACCX+lVpUb+C4qlOOoC+ls1m4+qrr47ly5dHfX19fOlLX4qTTjop/u///b/xzDPPxI4dO2LkyJFJh0mJq6+vjyuuuCIiIvbt2xcbN26M1atXx89//vNYu3ZtXHfddfH444/Hww8/HJdeeml84QtfyHn+3r17Y+bMmZHJZOKRRx6J6uqyT71et2XLlrj11lt7bb5bb701PvvZz8bYsWN7bc5KJT8AAAAA1K9KmfoV9L2yz4r77rsvli9fHtdcc03cd9990b9//5z7/SUC+RgzZkx897vfzRlbtGhRLFiwIL7zne/EM888Ew8//HCMHTs2Zs2aFdu2bYvhw4cfeuyNN94Y27dvj7vvvjs++tGPFjn68jB79uyCLkPRk87Ozpg9e3asW7eu1+asVPIDAAAAQP2qlKlfQd8r60uqvvPOO3HbbbfF6NGj49577+3WbIwIf4lAwb72ta9FRMTGjRsjImLUqFFxzz33xM6dO+Ob3/zmocetWbMmli9fHhdeeGFcd911icSadps2bTquL9jOV1NTU2zevLnX50V+AAAAAJVF/Sp91K+gd5V1w/GJJ56If/u3f4u/+Zu/iXfffTd+9rOfxaJFi+KBBx6IlpaWpMOjTLy/aT1z5syYPn16rF69On7yk5/Em2++GV//+tdj2LBh8dBDD0VVVVWCkabXypUrUzk38gMAAACoDOpX6aV+Bb2jrD/e995fJvTv3z/Gjh0bv/vd7w7d169fv7jhhhvizjvvTCo8Uu7BBx+MiIjzzz8/Z3z58uXx61//Oq699tpobGyM1157LVauXBmjRo1KIsyysH79+lTOXcnkBwAAAFBJ1K/SR/0KeldZNxx37doVERE/+MEP4pxzzonnnnsuPvrRj8b//t//O6666qq46667or6+Pufj0aUum81GW1tb0mEUXW9e+7wQLS0th67x/d6XCj/11FNRW1sbd9xxR85ja2trY9myZXHZZZfF448/HtOnT4+ZM2cmEPVBnZ2dsW/fvsR+/onq7OyMLVu29Nn8W7ZsibfeeivVl1eWH4VLe34AAAAAyVO/Ojb1q8JVav1q8ODBPlGaNtkyNmvWrGxEZAcNGpT9wx/+kHPf1q1bs/369cvW19cnFF1h9u7dm42Iir9dc801Rdnfr7zySo8xnHbaadnm5uYen/vJT34yGxHZF198sSixvueaa65J/Pi4JXuTHz2TH25ubm5ubm5ubm5ubm5ubm7J39SveqZ+dfC2d+/eou53TlxZf4fjySefHBEREydOjA996EM595199tkxevToaG1tjTfffDOB6EiTadOmRTabjWw2G7t27Yo77rgjdu3aFdOnT4+9e/ce8TmDBg3K+S+UK/kBAAAAQClTv4K+l97PYOfh3//7fx8RER/4wAeOeP974++8806Pjyk1gwcP7vEEWM5uuOGGWLFiRdJhRETEqaeeGjfddFO89dZb8f3vfz++/e1vxz333JN0WD2aNWtW3H333UmHUbDOzs6ora2Njo6OPpk/k8nEzp07U31JCvlRuLTnBwAAAJA89atjU78qXKXWrwYPHpx0CByn9J6h8nDhhRdGRMRLL73U7b7Ozs5oaWmJIUOGxKmnnlrs0ApWVVUVQ4YMSTqMoqupqUk6hG6+9a1vxcqVK+OHP/xhXH/99VFXV5d0SEdUU1OT+tfM2LFjY8OGDX0293ufhk4r+VG4csgPAAAAIHnqV0enflU49SvSoqwvqVpfXx9Tp06NlpaWePDBB3PuW7RoUbz55ptxySWXpPovQ0jOoEGDYt68edHZ2Rnf+973kg6nrJ177rmpnLuSyQ8AAACgkqhfpY/6FfSusm44RkT88Ic/jBEjRsSsWbPi85//fNx0003xqU99Km699dYYNWpU3HHHHUmHSIpdddVV8aEPfSgeeeSRaG1tTTqcsnXllVemcu5KJz8AAACASqF+lU7qV9B7yr7hWF9fHxs2bIivfvWrsXHjxrjvvvuiubk5rr322njuuefitNNOSzpEUmzgwIGxYMGCOHDgQNx2221Jh1O2xo8fH5MnT+71eSdPnhzjxo3r9Xk5SH4AAAAAlUL9Kp3Ur6D3VMS1REeOHBkPPfRQ0mGQQnV1dZHNZo/6mNmzZ8fs2bO7jT/99NN9FFVluv/++2PixInR2dnZK/PV1NTE0qVLe2WuSiU/AAAAAP5M/ar0qF9B8ZT9JxyB8jB27Ni4/fbbe22+22+/PT7+8Y/32nwAAAAAVDb1K6CSaTgCqTFv3ry49tprT3ie2bNnx7x583ohIgAAAAD4M/UroFJpOAKpUVVVFUuWLImFCxdGTU3NcT+/pqYmFi5cGPfdd19UVVX1QYQAAAAAVDL1K6BSaTgCqVJVVRXz58+PDRs2HNcXcU+ePDk2btwY8+fP9481AAAAAPqM+hVQiaqTDgCgEGPHjo1169bF5s2bY+XKlbF+/frYvHlzdHR0REREJpOJsWPHxrnnnhtXXnlljBs3LuGIAQAAAKgk6ldAJdFwBFJt3Lhxce+990ZExFtvvRUf+MAHIiJi586dcfLJJycYGQAAAADk1q8OHDgQe/bsiYiIYcOGRXW1Ej1QHpzNgLLx/n+g+ccaAAAAAKWmuro6PvjBDyYdBkCv8x2OAAAAAAAAQME0HAEAAAAAAICCaTgCAAAAAAAABdNwJJW6urqSDqFk2Td4DfTMvgEAAABInhpNz+wb0krDkVTIZDI52x0dHQlFUvra29tztgcOHJhQJBSL/Mif/AAAAAAoPvWr/KlfkVYajqTC4SfVtra2hCIpfYfvG29I5U9+5E9+AAAAABSf+lX+1K9IKw1HUuGUU07J2X711VcTiqT0vfbaaznbw4cPTygSikV+5E9+AAAAABSf+lX+1K9IKw1HUmHMmDE52y0tLQlFUvqam5tzthsaGhKKhGKRH/mTHwAAAADFp36VP/Ur0krDkVQ4/KS6c+fO2LNnT0LRlK49e/bErl27csa8IZU/+ZEf+QEAAACQDPWr/KhfkWYajqTC6NGjo6qqKmfs8L/0oPs+6devX5xxxhkJRUOxyI/8yA8AAACAZKhf5Uf9ijTTcCQVMplMjBo1Kmds7dq1CUVTup588smc7VGjRkUmk0koGopFfuRHfgAAAAAkQ/0qP+pXpJmGI6kxbdq0nO3Vq1cnFEnpOnyfHL7PKF/y49jkBwAAAEBy1K+OTf2KNNNwJDVmzJiRs71x48Z4+eWXE4qm9LS2tsbzzz+fM3b4PqN8yY+jkx8AAAAAyVK/Ojr1K9JOw5HUuOCCC+LUU0/NGVuyZElC0ZSe+++/P2d7xIgR0djYmFA0FJv8ODr5AQAAAJAs9aujU78i7TQcSY3q6uq47LLLcsaWLFkSL7zwQkIRlY6tW7d2e3O+9NJLo7q6OqGIKDb50TP5AQAAAJA89aueqV9RDqqy2Ww26SAgX62trfGxj30s2tvbD401NjbGU089Ff36VWb/vKurK6ZMmRJNTU2HxjKZTGzbti3q6+sTjKz49u3bF0OHDo2IiL1798aQIUMSjqi45Ed38gMAAACgdKhfdad+RbmozAwmterr6+Pmm2/OGVu3bl1cffXV0dXVlVBUyenq6oqrr746580oImLevHnejCqQ/MglPwAAAABKi/pVLvUryolPOJI6bW1tcdZZZ8WOHTtyxmfNmhUPPPBAxfwlzHtvRitWrMgZr6urixdffDEGDRqUUGTJqfRPOEbIj/fIDwAAAIDSpH51kPoV5aYyMpeyMnjw4Fi+fHm361evWLEipkyZElu3bk0osuLZunVrTJkypdubUXV1dSxbtsybUQWTH/IDAAAAoJSpX6lfUZ40HEmlqVOnxqpVq7q9KTU1NcWECRPihhtuiNbW1oSi6zutra1xww03xIQJE7p9zL66ujpWrVoVU6dOTSg6SoX8kB8AAAAApUz9Sv2K8uOSqqTaY489FpdffnkcOHDgiPefc845MWPGjLj44oujoaEhhg0bVuQIT8yePXuiubk5nnzyyVi9enU8//zzR3zce29Gl1xySZEjLC0uqZpLfhwkPwAAAABKk/rVQepXlAMNR1LviSeeiG984xuxffv2Yz52xIgR0dDQEKeffnoMHjw4MplMyVwTvKurK9rb26OtrS1ee+21aG5ujl27dh3zeXV1dbFs2TJ/+RIajkciP+QHAAAAQClTv1K/ojxoOFIW3nnnnVi0aFEsXrw42tvbkw6nKDKZTMybNy/mz5/vmt7/n4bjkckP+QEAAABQytSv1K9IPw1Hykpra2vceeed8eijj8bu3buTDqdPjBgxIi699NK46aabor6+PulwSoqG49HJDwAAAABKmfoVpJeGI2XpwIEDsW7duli9enWsWbMmtm/fHml9qVdVVUVdXV1MmzYtZsyYEY2Njd2+TJmDNBzzIz8AAAAAKGXqV5A+Go5UhPb29njllVeiubk5mpub44033oj9+/fH/v37kw4tx8CBA2PgwIExfPjwaGhoiIaGhjjjjDMik8kkHVoqaDgWRn4AAAAAUMrUr6D0aTgCZUPDEQAAAAAAiq9f0gEAAAAAAAAA6aXhCAAAAAAAABRMwxEAAAAAAAAomIYjAAAAAAAAUDANRwAAAAAAAKBgGo4AAAAAAABAwTQcAQAAAAAAgIJpOAIAAAAAAAAF03AEAAAAAAAACqbhCAAAAAAAABRMwxEAAAAAAAAomIYjAAAAAAAAUDANRwAAAAAAAKBgGo4AAAAAAABAwTQcAQAAAAAAgIJpOAIAAAAAAAAF03AEAAAAAAAACqbhCAAAAAAAABRMwxEAAAAAAAAoWHXSAUAxtLe3x8svvxzNzc3R0tISr7/+euzfvz/a29uTDi1HJpOJgQMHximnnBJjxoyJhoaGGD16dGQymaRDo4zJDwAAAAAgX+qJHImGI2XpwIED8cwzz8Tq1atjzZo1sWPHjshms0mHVZCqqqoYNWpUTJs2LWbMmBEXXHBBVFdLXQonPwAAAACAfKknko+qbFpfFXAELS0tcdddd8Wjjz4au3fvTjqcPnHqqafGZZddFjfddFPU19cnHU5J2bdvXwwdOjQiIvbu3RtDhgxJOKLSIj8AAAAAgHypJ3I8NBwpC21tbbFo0aJYvHhxdHR0JB1OUWQymbj55ptj/vz5MXjw4KTDKQkajkcmP+QHAAAAAORLPVE9sRAajqTeE088EVdddVXs2LHjmI+tra2NMWPGxMiRI2Pw4MExYMCA6NevXxGiPLaurq7o6OiItra2ePXVV6OlpSV27tx5zOfV1dXFsmXLYurUqUWIsrRpOHYnP+QHAAAAAOSr3OqJW7dujX/913+Nzs5O9cQ+puFIqj322GNx+eWXx4EDB454/yc+8YmYMWNGXHTRRdHQ0BDDhg0rcoQnZs+ePdHc3Bxr166NVatWxfPPP3/Ex1VXV8eqVavikksuKXKEpUXDMZf8OEh+AAAAAMCxlVM9saurK771rW/F4sWL42c/+1lccskl6ol9TMOR1Orp5Ne/f/+YM2dOzJkzJ0aPHp1QdH2jtbU17r///liyZEm8++67Ofc5CWo4vp/8kB8AAAAAkK9yqie+88478bd/+7fx05/+NCIi/vVf/zVOO+20bo9TT+xdGo6k0hNPPBGf+9znup38GhsbY+nSpXH22WcnFFlxvPDCC3HttdfGunXrcsarq6vjF7/4RcV+3FvD8SD5IT8AAAAAIF/lVE/cuXNnTJ8+PZ577rmIOHiJ1FdeeeWoz1FP7B0ajqROW1tbnHXWWd2uIT1r1qx44IEHSuYa0X2tq6srrr766lixYkXOeF1dXbz44osxaNCghCJLjoaj/HiP/AAAAACAYyuneuK2bdvic5/7XM7v8uUvfzn+y3/5L8d8rnriiUvPKwX+v0WLFpXFye9E9evXLx544IGYNWtWzvj27dtj0aJFCUVF0uTHQfIDAAAAAI6tXOqJa9eujfPOO6/b73Luuefm9Xz1xBPnE46kSktLS5x99tnR3t5+aKyxsTGeeuqpVJ38elNXV1dMmTIlmpqaDo1lMpnYtm1b1NfXJxhZ8VX6JxzlR3fyAwAAAACOrFzqiQ8++GB885vf7HZJ2IiI//W//ldMnDgx77nUEwuXnlcMRMRdd92Vc/Lr379/LF26NFUnv97Wr1+/WLp0afTv3//QWHt7e9x5550JRkUS5Ed38gMAAAAAjizt9cSurq6YN29ezJo164jNxkGDBsW4ceOOa071xMKl41UDEXHgwIF49NFHc8bmzJmTqi+s7Ssf//jHY86cOTljP/vZz454kqU8yY+eyQ8AAAAAyJX2euI777wTl19+efzDP/xDj4+ZOHFi1NTUHPfc6omF0XAkNZ555pnYvXt3ztjhSV/JZs+enbO9a9euWLduXULRUGzy4+jkBwAAAAD8WZrriTt37owpU6Z0a5geLt/vbzwS9cTjp+FIaqxevTpn+xOf+ESMHj06oWhKT319fZxzzjk5Y4fvM8qX/Dg6+QEAAAAAf5bWeuK2bdviL//yL+O5557LGT/SZWBPpOGonnj8NBxJjTVr1uRsz5gxI6FIStfh++TwfUb5kh/HJj8AAAAA4KA01hOffPLJOO+882LHjh054yeffPIRv2Pxr/7qr07o56knHh8NR1Khvb2920nkoosuSiia0nXxxRfnbO/YsSPnS38pT/IjP/IDAAAAANJZT1yxYkV85jOfiT179uSM19XVxa9//esYPHhwt/HTTjvthH6meuLx0XAkFV5++eXIZrM5Yx/5yEcSiqZ0NTQ05Gx3dXXFK6+8klA0FIv8yI/8AAAAAIB01RO7urpi3rx5cdVVV8W7776bc99f/uVfxrPPPhtnnXVWrF+/Pue+E7mc6nvUE4+PhiOp0NzcnLNdW1sbJ510UkLRlK5hw4bFiBEjcsYO33eUH/mRH/kBAAAAAOmpJ7a1tcXll18e//AP/3DE+3/0ox9FbW1tRESfNBzVE4+PhiOp0NLSkrM9ZsyYhCIpfYf/1YUTYPmTH/mTHwAAAABUurTUE//0pz/FO++80+P9H/nIR+Izn/lMvP766/G73/0u577eaDhGqCceDw1HUuH111/P2R45cmRCkZS+008/PWf7jTfeSCgSikV+5E9+AAAAAFDp0lJPPP300+N//I//EY8//njU1dUd8TG//OUv49RTT80ZGzRoUIwbN67XYng/9cSeaTiSCvv378/ZPvwLYPmzw/fN4fuO8iM/8ic/AAAAAKh0pVxPfPfdd3O+q7GqqiqmT58eL774Ytx66615zTFx4sSoqanplXjUE/NXnXQAkI/29vac7QEDBiQUSenLZDI5206A5U9+5E9+AAAAAFDpkq4ndnR0xObNm3Nu27Zti7fffjs6OzsjIqKmpiZOOumk+NjHPhbjxo2LcePGxb/7d/8ur/l763KqEeqJx0PDkVTq18+Hc3ti3+A10DP7BgAAAAByFatmtmnTpli5cmX85//8n+NPf/rTUR/b2dkZf/rTn6KpqSmampqO6+f0ZsNRPTF/Go4AAAAAAAD0ugMHDsQ//uM/xgMPPBCbNm3q9fk/97nPxdq1a3M+tflXf/VXvf5zODYNRwAAAAAAAHrV+vXr45vf/GZs3ry5z37GL37xizjzzDPjL/7iL2L9+vVRV1cXp512Wp/9PHqm4QgAAAAAAECveOONN2L+/Pnx4IMPHvVxH/nIRw59P+O4cePiwx/+8KHvTGxvb48//OEPsXnz5vje977X7Xsn3++3v/1tRERcfPHFcfbZZ/feL8Jx0XAEysZ7Xyh8+P8DAAAAAND3Nm3aFJ///OfjD3/4wxHvHzlyZHz1q1+Nv/u7v4v6+vqjzjVhwoQYPnx4fPvb387rZz/55JPx4osvxt/+7d/G+PHjjzd0TpBvuwRSbdOmTTF37tyYNGlS1NbWHhqvra2NSZMmxdy5c/v0I/sAAAAAAET88pe/jPPPP/+Izcazzz47/uVf/iVeeeWVuP3224/ZbIyIyGazcd5553Ubv/vuu+Nf/uVfjvhpxj/84Q9x/vnnxy9/+cvCfgkKpuEIpNKWLVuisbExJkyYEEuWLIkNGzZER0fHofs7Ojpiw4YNsWTJkhg/fnw0NjbGli1bEowYAAAAAKA8/fM//3NMnz499u3blzM+ZMiQuPPOO+P555+PT3/609G/f/+857zllluOOH799dfHpz/96Xj++efjzjvvjCFDhuTcv2/fvvjiF78Y//zP/3z8vwgF03AEUiWbzcaiRYti4sSJ0dTUlPfzmpqaYuLEibFo0aLIZrN9GCEAAAAAQOX41a9+FZdddlm3r7maPHlyvPTSS3HjjTdGTU3Ncc359ttvx8KFC7uNv/TSS4f+v6amJm688cZ46aWX4vzzz895XEdHR1x22WXxq1/96rh+LoXTcARSI5vNxpw5c2LBggUFfUdjZ2dnLFiwIObMmaPpCAAAAABwgv7t3/4tvvKVr3Sr1375y1+OJ598MkaOHFnQvEe65OqECRPizDPP7DY+cuTIWLt2bXz5y1/OGe/s7IyvfOUr8eabbxYUA8enrBuODz/8cFRVVR319qlPfSrpMClh27dv7/aaqampiQ9/+MNx+eWXx4YNGyIi4p577omqqqqYOXNmj3M9/fTT0a9fv5g0aVIcOHCgWL9CWVm8eHEsXbr0hOdZunRpLF68uBciqmzyAwAAAAAqVzabjVmzZsXvf//7nPErr7wyfvSjH0Umkylo3vXr18fu3bu7jT/77LM9PieTycSPfvSjuPLKK3PGf//738esWbN8AKUIqpMOoC+NHz8+/tN/+k9HvO+nP/1pbNu2LaZNm1bkqEij+vr6uOKKKyLi4PWfN27cGKtXr46f//znsXbt2rjuuuvi8ccfj4cffjguvfTS+MIXvpDz/L1798bMmTMjk8nEI488EtXVZZ16fWLLli1x66239tp8t956a3z2s5+NsWPH9tqclUp+AAAAAEDlWbFiRTz66KM5Y1OmTInly5cf13c1vl82m43zzjuv2/i9994bAwYMOOpz+/fvH8uXL4/W1tZ45plnDo3/9Kc/jQcffDBmzZpVUEzkp6yruuPHj4/x48d3G+/o6Ij7778/qqur4+/+7u+KHxipM2bMmPjud7+bM7Zo0aJYsGBBfOc734lnnnkmHn744Rg7dmzMmjUrtm3bFsOHDz/02BtvvDG2b98ed999d3z0ox8tcvTlYfbs2QVdRrUnnZ2dMXv27Fi3bl2vzVmp5AcAAAAAVJa2trZYsGBBztgHP/jB+PGPf1xwszEi4pZbbjni+Ny5c/N6fv/+/ePHP/5xjBs3Lv70pz8dGl+wYEH8h//wH2Lw4MEFx8bRlfUlVXvy85//PN544434/Oc/H7W1tUmHQ0p97Wtfi4iIjRs3RkTEqFGj4p577omdO3fGN7/5zUOPW7NmTSxfvjwuvPDCuO666xKJNe02bdoUTU1NvT5vU1NTbN68udfnRX4AAAAAQDl7+OGHcxp6EREPPfRQfPjDHy54zrfffjsWLlzYbfyll146rnlOP/30WLlyZc7YG2+8Ef/0T/9UcGwcW0U2HB988MGIiPj617+ecCSUg/df/nHmzJkxffr0WL16dfzkJz+JN998M77+9a/HsGHD4qGHHoqqqqoEI02vw98c0jI38gMAAAAAys27774bP/jBD3LGPvOZz8T06dNPaN76+vpuYxMmTIgzzzzzuOf64he/GJ/5zGdyxn7wgx/Eu+++W3B8HF3FNRx37NgR//N//s84/fTT49Of/nTS4ZBi7zWuzz///Jzx5cuXxymnnBLXXnttfPWrX43XXnst7rnnnhg1alQSYZaF9evXp3LuSiY/AAAAAKA8Pf7449Ha2pozdtNNN53QnOvXr4/du3d3G3/22WcLnvPGG2/M2W5paYn//t//e8HzcXRl/R2OR/LQQw9FV1dXfPWrXz2h6wgnJZvNRltbW9JhFF1vfndfIVpaWg59R92+ffti48aN8dRTT0VtbW3ccccdOY+tra2NZcuWxWWXXRaPP/54TJ8+PWbOnJlA1Ad1dnbGvn37Evv5J6qzszO2bNnSZ/Nv2bIl3nrrrZxP4qWN/Chc2vMDAAAAAI7XidYTV61albM9YcKEuPDCCwueL5vNxnnnnddt/N57740BAwYUPO9f//Vfx/jx42PTpk2Hxv7bf/tvcckllxQ8Jz1Lb4W9AF1dXYcu23fllVcmHU5B2traYujQoUmHUXFaW1vjtttuyxk77bTToqmpKcaMGdPt8Zdeeml88pOfjOeeey4WLVpUrDCPaMWKFbFixYpEYyhl7e3t8YEPfCDpMFJNfgAAAABA5Tj8U4dXXXXVCX1d0i233HLE8blz5xY8Z0REVVVVXHXVVXHNNdccGvvNb35zQnPSs4q6pOratWvj97//ffz1X/91nHHGGUmHQ4pMmzYtstlsZLPZ2LVrV9xxxx2xa9eumD59euzdu/eIzxk0aFDOf6FcyQ8AAAAAqAx//OMfY8eOHTljh3+t0vF4++23Y+HChd3GX3rppYLnfL/DY9u+fXvs3LmzV+YmV0V9wvG97xT7+te/nnAkhRs8eHCPBfxydsMNN5TMp5BOPfXUuOmmm+Ktt96K73//+/Htb3877rnnnqTD6tGsWbPi7rvvTjqMgnV2dkZtbW10dHT0yfyZTCZ27tyZ6kuqyo/CpT0/AAAAAOB4nUg98fBPCJ500knx0Y9+tOBY6uvru41NmDAhzjzzzILnfL+zzjorhg4dmtNX+c1vfhPTp0/vlfn5s/RW2I/TG2+8EY8//nh88IMfTPX1eauqqmLIkCFJh1F0NTU1SYfQzbe+9a1YuXJl/PCHP4zrr78+6urqkg7piGpqalL/mhk7dmxs2LChz+Y++eST+2TuYpEfhSuH/AAAAACA43Ei9cTNmzfnbE+aNCn69+9f0Fzr16+P3bt3dxs//JKtJ6J///4xadKkeOqppw6Nbdq0ScOxD1TMJVV/9KMfRUdHR1xxxRWRyWSSDocyMGjQoJg3b150dnbG9773vaTDKWvnnntuKueuZPIDAAAAAMrP22+/nbM9cuTIgubJZrNx3nnndRu/9957Y8CAAQXN2ZPDY6zEq0gWQ8U0HP/xH/8xItJ9OVVKz1VXXRUf+tCH4pFHHonW1takwylbV155ZSrnrnTyAwAAAADKy7hx4+JLX/pSfPGLX4ypU6fGxz/+8YLmueWWW444Pnfu3BMJ74jGjh0bU6dOjS9+8YvxpS99KcaNG9frP4MKuaTqc889Fy+88EJ88pOfLPjFD0cycODAWLBgQcyZMyduu+22eOSRR5IOqSyNHz8+Jk+eHE1NTb067+TJk7259CH5AQAAAADl5YorrogrrrjihOZ4++23Y+HChd3GX3rppROatyc33nhj3HjjjX0yN39WEQ3HT37yk5HNZpMOgxSqq6s75mtn9uzZMXv27G7jTz/9dB9FVZnuv//+mDhxYnR2dvbKfDU1NbF06dJematSyQ8AAAAA4HjV19d3G5swYUKceeaZCURDb6mYS6oC6TZ27Ni4/fbbe22+22+/3SeeAQAAAACKaP369bF79+5u488++2wC0dCbNByB1Jg3b15ce+21JzzP7NmzY968eb0QEQAAAAAA+chms3Heeed1G7/33ntjwIABCUREb9JwBFKjqqoqlixZEgsXLoyamprjfn5NTU0sXLgw7rvvvqiqquqDCAEAAAAAOJJbbrnliONz584tciT0BQ1HIFWqqqpi/vz5sWHDhpg8eXLez5s8eXJs3Lgx5s+fr9kIAAAAAFBEb7/9dixcuLDb+EsvvZRANPSF6qQDACjE2LFjY926dbF58+ZYuXJlrF+/PjZv3hwdHR0REZHJZGLs2LFx7rnnxpVXXhnjxo1LOGIAAAAAgMpUX1/fbWzChAlx5plnJhANfUHDEUi1cePGxb333hsREQcOHIg9e/ZERMSwYcOiutopDgAAAAAgSevXr4/du3d3G3/22WcTiIa+ohoPlI3q6ur44Ac/mHQYAAAAAABERDabjfPOO6/b+L333hsDBgxIICL6iu9wBAAAAAAAoNfdcsstRxyfO3dukSOhr2k4AgAAAAAA0KvefvvtWLhwYbfxl156KYFo6GsajgAAAAAAAPSq+vr6bmMTJkyIM888M4Fo6GsajqRSV1dX0iGULPsGr4Ge2TcAAAAAkKsvama//e1vY/fu3d3Gn3322V7/WX1JPTF/Go6kQiaTydnu6OhIKJLS197enrM9cODAhCKhWORH/uQHAAAAAJWur+uJ2Ww2rr/++m7j9957bwwYMKBXf1ZfU0/Mn4YjqXB4Ere1tSUUSek7fN84AZY/+ZE/+QEAAABApevreuKuXbvi//yf/5Mz9hd/8Rcxd+7cXv05xaCemD8NR1LhlFNOydl+9dVXE4qk9L322ms528OHD08oEopFfuRPfgAAAABQ6fq6nlhbWxsvvvhi3HrrrZHJZGLIkCGxZcuWXv0ZxaKemD8NR1JhzJgxOdstLS0JRVL6mpubc7YbGhoSioRikR/5kx8AAAAAVLpi1BMHDRoUt912W2zbti0eeeSROP3003v9ZxSDemL+qpMOAPJxeBLv3Lkz9uzZE8OGDUsootK0Z8+e2LVrV86YE2D5kx/5kR8AAAAAUNx6Yn19fdTX1/f6vMWgnnh8fMKRVBg9enRUVVXljB3+lwV03yf9+vWLM844I6FoKBb5kR/5AQAAAADqiflSTzw+Go6kQiaTiVGjRuWMrV27NqFoSteTTz6Zsz1q1KjIZDIJRUOxyI/8yA8AAAAAUE/Ml3ri8dFwJDWmTZuWs7169eqEIildh++Tw/cZ5Ut+HJv8AAAAAICD1BOPTT3x+Gg4khozZszI2d64cWO8/PLLCUVTelpbW+P555/PGTt8n1G+5MfRyQ8AAAAA+DP1xKNTTzx+Go6kxgUXXBCnnnpqztiSJUsSiqb03H///TnbI0aMiMbGxoSiodjkx9HJDwAAAAD4M/XEo1NPPH4ajqRGdXV1XHbZZTljS5YsiRdeeCGhiErH1q1bu70ZXHrppVFdXZ1QRBSb/OiZ/AAAAACAXOqJPVNPLExVNpvNJh0E5Ku1tTU+9rGPRXt7+6GxxsbGeOqpp6Jfv8rsn3d1dcWUKVOiqanp0Fgmk4lt27ZFfX19gpFRbPKjO/kBAAAAAEemntidemLhKvMVQ2rV19fHzTffnDO2bt26uPrqq6OrqyuhqJLT1dUVV199dc7JLyJi3rx5Tn4VSH7kkh8AAAAA0DP1xFzqiSfGJxxJnba2tjjrrLNix44dOeOzZs2KBx54oGL+8uK9k9+KFStyxuvq6uLFF1+MQYMGJRQZSZIfB8kPAAAAADg29cSD1BNPXGW8UigrgwcPjuXLl3e7XvKKFStiypQpsXXr1oQiK56tW7fGlClTup38qqurY9myZU5+FUx+yA8AAAAAyJd6onpib9FwJJWmTp0aq1at6nYSbGpqigkTJsQNN9wQra2tCUXXd1pbW+OGG26ICRMmdPtYd3V1daxatSqmTp2aUHSUCvkhPwAAAAAgX+qJ6om9wSVVSbXHHnssLr/88jhw4MAR7z/nnHNixowZcfHFF0dDQ0MMGzasyBGemD179kRzc3M8+eSTsXr16nj++eeP+Lj3Tn6XXHJJkSOklMmPg+QHAAAAABybeuJB6omF0XAk9Z544on4xje+Edu3bz/mY0eMGBENDQ1x+umnx+DBgyOTyZTMNai7urqivb092tra4rXXXovm5ubYtWvXMZ9XV1cXy5Yt85cWHJH8kB8AAAAAkC/1RPXEQmk4UhbeeeedWLRoUSxevDja29uTDqcoMplMzJs3L+bPn+8a0hyV/JAfAAAAAJAv9UT1xEJoOFJWWltb484774xHH300du/enXQ4fWLEiBFx6aWXxk033RT19fVJh0OKyA8AAAAAIF/qiRwPDUfK0oEDB2LdunWxevXqWLNmTWzfvj3S+lKvqqqKurq6mDZtWsyYMSMaGxu7fXkvHA/5AQAAAADkSz2RfGg4UhHa29vjlVdeiebm5mhubo433ngj9u/fH/v37086tBwDBw6MgQMHxvDhw6OhoSEaGhrijDPOiEwmk3RolDH5AQAAAADkSz2RI9FwBAAAAAAAAArWL+kAAAAAAAAAgPTScAQAAAAAAAAKpuEIAAAAAAAAFEzDEQAAAAAAACiYhiMAAAAAAABQMA1HAAAAAAAAoGAajgAAAAAAAEDBNBwBAAAAAACAgmk4AgAAAAAAAAXTcAQAAAAAAAAKpuEIAAAAAAAAFEzDEQAAAAAAACiYhiMAAAAAAABQMA1HAAAAAAAAoGAajgAAAAAAAEDBNBwBAAAAAACAgmk4AgAAAAAAAAXTcAQAAAAAAAAKpuEIAAAAAAAAFEzDEQAAAAAAACiYhiMAAAAAAABQMA1HAAAAAAAAoGAajgAAAAAAAEDBNBwBAAAAAACAgmk4AgAAAAAAAAXTcAQAAAAAAAAKpuEIAAAAAAAAFEzDEQAAAAAAACiYhiMAAAAAAABQMA1HAAAAAAAAoGAajgAAAAAAAEDBNBwBAAAAAACAgmk4AgAAAAAAAAXTcAQAAAAAAAAKpuEIAAAAAAAAFEzDEQAAAAAAACiYhiMAAAAAAABQMA1HAAAAAAAAoGAajgAAAAAAAEDBNBwBAAAAAACAgmk4AgAAAAAAAAXTcAQAAAAAAAAKpuEIAAAAAAAAFEzDEQAAAAAAACiYhiMAAAAAAABQMA1HAAAAAAAAoGAajgAAAAAAAEDBNBwBAAAAAACAgmk4AgAAAAAAAAXTcAQAAAAAAAAKpuEIAAAAAAAAFEzDEQAAAAAAACiYhiMAAAAAAABQMA1HAAAAAAAAoGAajgAAAAAAAEDBNBwBAAAAAACAgmk4AgAAAAAAAAXTcAQAAAAAAAAKpuEIAAAAAAAAFEzDEQAAAAAAACiYhiMAAAAAAABQMA1HAAAAAAAAoGAajgAAAAAAAEDBNBwBAAAAAACAgmk4AgAAAAAAAAXTcAQAAAAAAAAKpuEIAAAAAAAAFEzDEQAAAAAAACiYhiMAAAAAAABQsP8HZbgSoewmiJEAAAAASUVORK5CYII=\n"
+          },
+          "metadata": {}
+        }
+      ],
+      "source": [
+        "dev = qml.device(\"default.qubit\", wires=8)\n",
+        "\n",
+        "\n",
+        "@qml.qnode(dev, interface=\"autograd\")\n",
+        "def circuit(template_weights):\n",
+        "    qml.MPS(\n",
+        "        wires=range(8),\n",
+        "        n_block_wires=4,\n",
+        "        block=wide_block,\n",
+        "        n_params_block=2,\n",
+        "        template_weights=template_weights,\n",
+        "    )\n",
+        "    return qml.expval(qml.PauliZ(wires=7))\n",
+        "\n",
+        "\n",
+        "shapes = qml.SimplifiedTwoDesign.shape(n_layers=1, n_wires=4)\n",
+        "weights = [np.random.random(size=shape) for shape in shapes]\n",
+        "template_weights = [weights] * 3\n",
+        "fig, ax = qml.draw_mpl(circuit, expansion_strategy=\"device\")(template_weights)"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "nu25mRjnqtzJ"
+      },
+      "source": [
+        "We can also broadcast a block to the tree tensor network architecture by\n",
+        "using the `~pennylane.TTN`{.interpreted-text role=\"class\"} template.\n"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": 99,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 436
+        },
+        "id": "jxr_y7MVqtzJ",
+        "outputId": "4371bde2-0138-4b6f-92a8-f7eb40e1dd52"
+      },
+      "outputs": [
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "<Figure size 400x400 with 1 Axes>"
+            ],
+            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaMAAAGjCAYAAACBlXr0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB5sklEQVR4nO3deVgT1/4/8HeQIAQQwQWKrdqCoFYtqHWXStVirVIrgm3dqxeXar+tUhWlIm7Ir9a1WrVqjXp7r6LXva4V664V1160gHWrG7ayhT3J5/eHD7kMCZJlMkH8vJ5nnsfMTM7nzDHkk5k5c46MiAiMMcaYDdnZugKMMcYYJyPGGGM2x8mIMcaYzXEyYowxZnOcjBhjjNkcJyPGGGM2x8mIMcaYzXEyYowxZnOcjBhjjNkcJyPGGGM2x8mIMcaYzXEyYowxZnOcjBhjjNkcJyPGGGM2x8mIMcaYzXEyYowxZnOcjBhjjNkcJyPGGGM2x8mIMcaYzXEyYowxZnOcjBhjjNkcJyPGGGM2x8mIMcaYzXEyYowxZnOcjBhjjNkcJyPGGGM2x8mIMcaYzXEyYowxZnOcjBhjjNkcJyPGGGM2x8mIMcaYzXEyYowxZnOcjBhjjNmcva0rUN09fPgQd+/eRWZmJgoLCy0qy8XFBe7u7vDx8UGtWrVEqiFjjNkeJyMruHv3LrZu3YrExEScPn1a9PIdHBzwzjvvICIiAqGhoXBzcxM9BmOMSUlGRGTrSlQXRUVFGDJkCBITEyWL6eDggJiYGHz11VeSxWSMMbFxMhJJUVERBgwYgD179tgkfmxsLGbOnGmT2IwxZim+TCeCyhKRXC6Hh4cHnJ2dIZPJzIqh1WqRm5uLJ0+eQKvV6m2Pi4sDAE5IjLHnEp8ZiWD+/PmIjo4WrFMoFIiIiEB4eDh69OgBBwcHUWJlZ2dj165dSExMxO7du/W2Hz16FG+99ZYosRhjTCqcjEQQGBiIS5cu6V67urpi//796NSpk1Xjrl69GqNHjxasGzduHJYvX27VuIwxJjZORhZKS0uDn5+fYN2uXbvQt29fSeJPmzYN8fHxuteenp64d+8eatSoIUl8xhgTAz/0aqHyPec8PT3Ru3dvyeKPGDFC8PrRo0c4fvy4ZPEZY0wMnIwsdOzYMcHr/v37S3pW0qRJE7zxxhuCdb/88otk8RljTAycjCz05MkTwes2bdpIXofyMcvXiTHGqjpORhbKysoSvK5du7bkdXB3dxe8Ll8nxhir6mySjH799Vf07t0btWvXhrOzMzp06IAtW7bYoioWK//Mj1wu1/371q1bkMlkgkUul6NBgwaIiIjA+fPnBe/Nzc1F48aN4ejoiJSUFIPxEhISIJPJMGrUKIMxAUCj0Vh6WJUqKCjA33//DbVabfVYjLHqT/JklJSUhM6dO+PEiROIiIjAmDFj8PDhQwwcOBDffPON1NWRhI+PD2JjYxEbG4vPP/8c/v7+SExMRKdOnQT3nFxdXbFu3ToUFxdj2LBhel/0V69exYwZM9CoUSMsWrRI6sNAfn4+1q5dizZt2kChUKBu3bpwcnJCREQEjh49Cu6YyRgzG0mopKSEfHx8qGbNmnTx4kXd+qysLPLz8yMHBwe6deuWlFWymI+PDwHQLTt37tRtu3nzJgGgkJAQvffFx8cTAAoKCtLbNn78eAJAcXFxunXFxcUUEBBAMpmMjhw5Ith/6tSpgjoMGjRIxCN86t69e/TGG28I4pRfJkyYQBqNRvTYjLHqT9IzoyNHjuDGjRv4+OOPERAQoFvv5uaGadOmobi4GEqlUsoq2czIkSMBAMnJyXrbEhIS4Ovrizlz5ugepp01axYuXbqECRMmIDg4WMqqIicnByEhIbh8+fIz91u2bBmmTp0qUa0YY9WJpMno6NGjAIB33nlHb1tISAiAF69bsr29/vCACoUC69evh0ajwdChQ3HixAnEx8fD398f8+fPl7yOq1evxm+//WbUvgsWLMCtW7esWyHGWLUj6UCpaWlpAJ4+G1Oel5cXXFxcdPuYi4iQn59vURmmxjPHmjVrAABdunQxuL1z586YOHEiFixYgB49egAAlEolnJycKi1brVYjLy/PrHqVp9VqsWLFCqP3JyJ8++23uoFbGWPWoVAozB54uUqS8ppgz549CQClpaUZ3O7t7U21atWyKIZKpXrmfQ1rL4buGfn4+FBsbCzFxsZSVFQUBQcHEwDy9PSklJSUCo8lJyeHnJycCACNHz++wv3K3zPihRdeqv+iUqks+q6sangKCQncuHFD70zBy8sLx48fh6+vb4XvW7BgAQoKCgAA+/fvR35+PhQKhVXryhhjtiBpMiqdHjs7O9vg9pycHL0HOE2lUCigUqksKsMUrVq1wh9//PHMfUJCQrB//34AwOPHj6FUKjFlyhSEhobi3LlzcHFx0XtPcnIy5s2bB39/f/Tt2xcLFixAdHQ0lixZUmmdBg4ciLVr15p3QOXcvn0br7/+uknvadOmzQt3748xqVW3H6aSJqPSe0VpaWl6Q9g8fPgQKpUK7dq1syiGTCaDs7OzRWWYGs8U9erVQ1RUFLKzszFnzhzExMRg8eLFgn2KioowdOhQEBGUSiVat26NgwcPYtmyZQgLC0NQUNAzY9jb24vWBs2aNUOLFi2M7sAAAP369ZP0/4Ax9vyTtDdd6aRvBw8e1Nt24MABwT7V3bRp0+Dt7Y0VK1bo9T6LiYlBSkoKJk+ejPbt20Mul0OpVMLe3h6ffPKJpB00ZDIZxo0bZ/T+9vb2gtEhGGPMGJImo+7du+O1117Djz/+KJiMLjs7G/PmzYODgwOGDh0qZZVsxsnJCVOmTEFJSQlmz56tW3/y5EksXLgQLVu2FEwhHhAQgOnTp+PGjRuYMmWKpHX95JNPKj0bK5WQkAAvLy8r14gxVt1Imozs7e2xZs0aaLVaBAUFITIyEpMmTcIbb7yB1NRUzJs3D40bN5aySjYVGRkJb29vbNiwATdu3EBeXh6GDx+OGjVqQKlU6k1VPn36dAQGBmL58uWS3pOpWbMmdu3apetiXpGEhAR88cUXEtWKMVadSD42XXBwME6cOIHOnTtj8+bN+O677+Dp6Yl///vfmDRpktTVsSlHR0dER0dDrVYjLi4OkydPRnp6OmJiYhAYGKi3v729PZRKJeRyOUaMGCHas0TGcHNzw4EDB3DgwAG89957uvUvv/wyJk6ciNTUVEyePLl6PffAGJMMTztuIV9fX9y4cUP3eufOnQgNDZW0DtHR0YKRGQYNGoRNmzZZLV5eXp6uB6BKpeLOCowxi/F8RhYqP6trcXGx5HUoKioSvDY0xBBjjFVlnIwsVH4yPVvMspqZmSl4bemzWowxJjVORhaqW7eu4PXp06cljU9EOHXqlGBd+ToxxlhVx8nIQj179hS83rFjh6SX6q5evYrU1FTBusp6vTHGWFXDychCAwYMELzOysrCv/71L0liE5HeiNoNGza0eBQLxhiTGicjC7388svo2LGjYN0//vEP7Ny506pxiQgzZ87EqlWrBOvDw8O5ezVj7LnDyUgEH3/8seB1SUkJ+vfvj+7du2PVqlW4e/euKJfuCgoKcO3aNcybNw+BgYGYNWuW3j4ffvihxXEYY0xq/JyRCLRaLSIjIysdKVsul5t91qLVaqFWq5+5z6pVqxAZGWlW+abg54wYY2LjB1JEYGdnh9WrVwPAMxNSSUmJ1eogVSJijDFr4Mt0IilNSF988YWk84zUr18fa9eu5UTEGHuu8WU6K8jPz8e+ffuwZcsW7NmzR/QpHzw9PREWFobw8HB07dpVbxQIa+PLdIwxsXEysrKSkhI8efIEmZmZFiclV1dXeHh4wN3dHXZ2tjup5WTEGBMbJyNmMk5GjDGx8T0jxhhjNsfJiDHGmM1xMmKMMWZznIwYY4zZHCcjxhhjNscjMFhJfn4+fvrpJ+zYsQO3b99GZmYmCgsLLSrTxcUF7u7uaN68OQYMGICgoCDJnzGqSrKzs7Fr1y7s2rUL9+/fR2ZmpkVjAMpkMri6usLd3R0BAQGIiIhAu3bteOBZxiTAXbtFduzYMSxfvtwqD7uW5+npif79+2PixInw9fW1aqyybN21e/fu3Vi9ejUOHjxo9bmjGjZsiAEDBiAqKgovvfSSVWMx9iLjZCSiXbt2YcCAAVYdg84QLy8vJCUloWnTppLEs2UyWr16NUaPHi1ZvFJ+fn5ISkqCt7e35LEZexHwPSOR2CoRAcDDhw8RHByM69evSx5bSrZKRACQmpqK4OBg3L9/3ybxGavu+MxIBMeOHUOPHj30EpGdnR2Cg4PRu3dveHl5wdnZ2aIpJHJzc3Hz5k1s374dly5d0tvHy8sLFy9ehJeXl1kxKqPRaPD777/j5MmTuoFZ582bh5YtW6JNmzZWvYy1ZcsWDBw4UG+9g4MDQkJC0LNnT9SrVw9OTk5mt7FGo0FOTg5SU1Oxbds2/P7773r7+Pn54eLFi5IOhsvYC4GYxSIiIgiAYBk+fDhlZGRYLWZqaiq1b99eL+7ixYtFjaPVauns2bM0bNgwcnZ21otXdmnUqBHNmjWL7t+/L2odiIg6duyoF2/KlCmUlZUleiyip8d98eJF8vPz04u7detWq8Rk7EXGychCeXl5pFAo9BKRRqOxeuysrCxq27atIHanTp1EK//69evUtWtXQfkKhUKQGMLCwuj1118nOzs73Tp7e3v6/PPPKS8vT5R63LlzRy8hTJ8+XZSyK3Pv3j3y8fERxI6IiJAkNmMvEk5GFkpMTBR8UdWoUcOqZ0Tl7dmzR++L+u7duxaVqdVqaeHCheTo6EgAqGbNmjR06FA6efIkqdVqUqlUulgqlYqIiHJzc2nTpk3UqVMn3TZfX186deqUxce4cOFCwfHVrl2bioqKLC7XWCtXrtRLyGIlWsbYU5yMLDRo0CDBF1X37t0ljV9UVERubm6COnz77bdml6fRaGjs2LG6skJCQuj27duCfQwlo7L27dtHL7/8MgEgR0dH2rNnj9n1ISIKCgoSHN+wYcMsKs9UGRkZgjM/ALRjxw5J68BYdce96Sx0+/ZtwevevXtLGt/BwQE9e/YUrLtz547Z5UVFReG7776DTCbD0qVLsW/fPjRs2NCkMnr16oXffvsNffv2RWFhIfr374+kpCSz62TrNq5Xrx7atWsnWGdJGzPG9HEyslBmZqbgtbV6sj2Lp6en4HX5Ohlr9+7dWLRoEQBg/fr1mDBhgtk909zc3LBt2zb069cPxcXF+Pjjj/HkyROzyqpObcwYM0zyZLRp0yaMHj0abdu2Rc2aNSGTybB+/XqpqyGa8kP8lH0A9NatW5DJZIJFLpejQYMGiIiIwPnz5wXvzc3NRePGjeHo6IiUlBSD8RISEiCTyTBq1CjdutIHUEuZM/LDkydPdN21v/zySwwdOtTkMsqTy+X48ccf4e/vj4cPH+Lzzz83q5yq0MblH+wtKCgw61gYY4ZJPjZdTEwMbt++jbp16+Kll17SuwTzvDN0JuHj44PBgwcDeDp6QXJyMhITE7Fjxw4cPnwYQUFBAJ5OK75u3Tr06NEDw4YNw+nTp2Fv/7//oqtXr2LGjBlo1KiR7gymopimSkhIwMOHD9G0aVPMmjXL4vJKOTk5Yf369ejcuTM2btyIzz77DG3btrWozOe1jY2Vm5uLH3/8EcnJySguLoaXlxcGDRqEli1bSlYHxiQn9U2qQ4cO0a1bt4iIKD4+ngDQDz/8IHU1RFO+2+/OnTt1227evKnrBFBe6bEHBQXpbRs/fjwBoLi4ON264uJiCggIIJlMRkeOHBHsP3XqVEEdBg0aZNIxFBQUUJ06dYy+MV9ZBwZDPv74YwJAn3zyiUl1IyJycHAQHF9ycrJum1RtXL6jytSpU00+jspotVqaPXs2ubq6GnyO66233qKbN2+KHpexqkDyy3Q9evRAo0aNpA5b5YwcORIAkJycrLctISEBvr6+mDNnjm6khVmzZuHSpUuYMGECgoODRa3Ltm3b8Pfff6Nhw4bo06ePqGWX+vTTTwEAP/74I7Kzs60So7yq1MaVISKMHTsWX331FXJzcw3u88svv6Bjx474448/JK0bY1LgDgw2VvYSUSmFQoH169dDo9Fg6NChOHHiBOLj4+Hv74/58+eLXofSnm4fffSR1aak6NixI1577TUUFhbi7NmzVolRkarQxpX55z//iVWrVlW638OHDzFgwAAQj+LFqhlORjayZs0aAECXLl0Mbu/cuTMmTpyIq1evokePHgAApVIJJycn0etSeuZQvvuymGQyGd58801BPGurSm1cmSVLlhi978WLF3Hy5Ekr1oYx6VW7yfWIyOrzCJWPV5n09HTMnDkTwP9uriclJcHT0xNff/11he+bMWMGli9fjoKCAowfPx7t27c3qk5qtRp5eXlG7avVanH16lUAgL+/v1HvK7uPsXEA4PXXXwcAnD9/HiqVStROAVK3cUlJiUnH/iwpKSl6vf4q8/333yMwMFCU+Oz5pFAoqtfEj7a8YWWNDgxlb67bYjHUgcHQ4uXlRWlpac88lhkzZgiG1qloCJryHRiq+2KoA4O127h8BwZeeLH1YmznoecFX6aTQEhICOjp0EvIyMjA119/jYyMDISGhkKlUhl8T3JyMubNmwd/f39ERUUhPT0d0dHREtf8+cFtzNjzrdpdplMoFBV++VhDq1atTOrdVK9ePURFRSE7Oxtz5sxBTEwMFi9eLNinqKgIQ4cOBRFBqVSidevWOHjwIJYtW4awsDDdMzMVGThwINauXWtUfbRaLby8vJCfn49ff/0VzZo1q/Q9eXl5uhEJHj16ZPRMr3PnzkV8fDw+/PBDfP/990ZfYvDw8DBpenEp2njSpEmIi4szuk7PcvfuXTRv3tykTgkTJkxAfHy8KPHZ86nazallw7OyF/o5o/z8fPL29ia5XK737EhUVBQBoOjoaN26ixcvklwuJx8fH71LSZY+Z9S5c2cCQBs2bDBqf3OeMyIi6tOnDwGgpUuXmlQ/c58zErONrf2c0XvvvWfSJZrr16+LGp8xW+PLdDbi5OSEKVOmoKSkBLNnz9atP3nyJBYuXIiWLVvqbsgDQEBAAKZPn44bN25gypQpotalTZs2AIATJ06IWm5ZarVa16W7NJ61VaU2rszkyZNhZ2fcn2NYWBj8/f2tXCPGJCZ19vv+++9p2LBhNGzYMGrdujUBoM6dO+vWff/991JXySLmnhkRPR35wNvbm+zt7Sk9PZ1UKhX5+vqSXC6nCxcu6O1fUlJCgYGBJJPJ6OjRo7r1lp4ZHThwgABQrVq1KDc3t9L9zTkz2rZtGwGgevXqUWFhoUn1M/fMiEi8NpZiBIY1a9boTVVRfunUqZNR/0eMPW8kPzM6ceIElEollEolLly4AODpL9XSddb8dV7VODo6Ijo6Gmq1GnFxcZg8eTLS09MRExNjsNuuvb09lEol5HI5RowYIVrX4h49esDX1xc5OTnYsGGDKGWWRURYunQpAGDUqFGoWbOm6DEqUlXa2BgjR47ETz/9hM6dO+ttq1OnDqZMmYLDhw/rDYzLWLVg62z4vHvWmZFULD0zIiJasmQJASAPDw968ODBM/c19cxo06ZNBIDkcrluXEJTPOvMSCpSnBmVdebMGV2sf//731RQUGDVeIzZGt8zEplWq30uY44dOxatW7fWTSUh1nH8+eefmDBhAgDoRsO21PPaxqZo0aKF7t99+vSBo6OjpPEZkxonIwuVv2RS0SCX1pSTkyN47erqanIZcrkc69evh1wux+7du/HZZ59ZPP5ZRkYGQkJCkJmZidatW5vdKaC6tDFjrGKcjCzk7u4ueH3z5k3J63Dr1i3Baw8PD7PKadmyJdatWwcAWL58OQYPHmz2CNuXLl1C165dkZKSAm9vb2zbtg1yudyssqpCG5efd6t8nRhjluFkZKHmzZsLXm/fvl3S+FlZWThy5IhgnTEPrlZk8ODBWL9+Pezs7PDjjz+iRYsW2Llzp9GXqXJzczFjxgy8+eabSE1NRcOGDZGUlITGjRubXSdbt3FaWhp+++03wTpL2pgxZoCtb1o9744cOaLX/TY1NVWy+EqlUhDbwcGBsrKyLC73+PHj5Ovrqyu3SZMmtGDBArpw4QJlZmYKOjBkZmbSzz//TOPGjSMXFxfdtrCwMHr06JFVjjEzM9Pico01d+5cQXxPT09Sq9VWjWnug8WMPa84GVlIrVZT/fr1BV9W7du3FyUhVObatWvk6ekpiN23b1/Rys/Ly6PJkydTrVq19JJB6b9ffvllvWTs5+dHmzdvFq0emZmZJJfLBTH69Olj8vNK5jh58qTezKtjx461elxORuxFw8lIBGPHjtX7Qm7bti3t2bOHioqKRI+XmZlJSqVSLxEBoI0bN4oeLzc3l1atWkVvv/02ubm5GXwYs3HjxvTRRx/R4cOHSavVil6H0qGEyi49e/akI0eOWOUsJSMjg1asWGFwCvCkpCTR45XHyYi9aGREPGWkpdLT09G1a1c8fPhQb1vt2rXRo0cPeHp6wsXFxez5R7RaLXJycnDr1i0cOXLE4MChHTp0wOHDh40euNQcRIQbN27g5s2bKC4uhoeHB/z8/FCnTh2rxQSAc+fOoUePHgZ70tWvXx/du3dH3bp1LZrjRaPRIDs7G2lpafjll18M3ifr06cPduzYYbUZcUvl5eXpehGqVCqr/p8yVhVwMhLJ9evXERwcbDAhSaFDhw7Yv38/3NzcbBJfCqdOnUKvXr1s0rUbeJqItm7dKskIEpyM2IuGe9OJpGnTpkhKSoKXl5fksV+ERAQAnTp1wv79+23yjI+UiYixFxEnIxE1bdoUFy9exOLFi9GpUyerxnJwcEDfvn2xceNGHD58uNonolKdOnXClStXMG/ePKtPu61QKDBw4EBs3boV27Zt40TEmBXxZTor+vPPP7Fz507cuXMHmZmZyM/Pt6g8V1dXeHh4oFmzZujbt+8Lk4CeJT09Hbt378b9+/fx5MkTFBUVmV2WTCZDrVq14OHhgYCAALz77rs2m8CML9OxFw0nI8aqIE5G7EXDl+kYY4zZHCcjxhhjNsfJiDHGmM1xMmKMMWZznIwYY4zZnL2tK1CdEREuXryI27dvIzMzEwUFBRaV5+Liouva7evrK1ItGWPM9jgZiYyIcO7cOWzZsgVbt27FnTt3rBInICAAERERCA8P58TEGHvu8XNGIsrOzkbv3r1x6tQpSeNGRkbiu+++g50dX3WtLvg5I/ai4TMjkWRnZyMkJARnz56VPPbq1auh1WqxatUqTkiMsecSJyMRVJaIGjRoAC8vLzg7O1s0hURubi7u3LmDJ0+e6G1fs2YNAHBCYow9lzgZiWDBggV6iahevXoYPXo0wsPD0bJlS7OTUHkajQbHjh1DYmIi1qxZg5KSEt22NWvW4IMPPkDv3r1FicUYY1Lhe0YWIiI0bdoUqampunWenp44evQomjZtatXYO3fuRHh4uCAhDR8+HD/88INV4zLr43tG7EXD13MsdPXqVUEiAoDExESrJyIAeP/99zF79mzBuh07dhicBZYxxqoyTkYWSkxMFLxu2LAhunTpIln8jz/+WPA6KysLhw8fliw+Y4yJgZORhc6cOSN4PWDAANHuDxnjlVdeQceOHZ9ZJ8YYq+o4GVkoMzNT8LpFixaS1+H1118XvC5fJ8YYq+o4GVkoOztb8NoWs6/Wrl1b8Lp8nRhjrKqTNBndu3cPixcvxjvvvIOGDRvCwcEBXl5eCAsLs8nDomIo3xnR3v5/veVv3boFmUwmWORyORo0aICIiAicP39e8N7c3Fw0btwYjo6OSElJMRgvISEBMpkMo0aNMhgTePpMkjWVlJQgNTUVly9fxp9//mnVWIyxF4OkyWjZsmX44osv8Mcff+Cdd97BpEmT0KVLF+zcuROdOnXC5s2bpayOZHx8fBAbG4vY2Fh8/vnn8Pf3R2JiIjp16oRjx47p9nN1dcW6detQXFyMYcOGQa1WC8q5evUqZsyYgUaNGmHRokVSHwYeP36MmTNnolGjRvD390dAQIDuntXGjRuh0WgkrxNjrJogCW3bto2OHj2qt/7YsWMkl8vJ3d2dCgsLpaySxXx8fAiAbtm5c6du282bNwkAhYSE6L0vPj6eAFBQUJDetvHjxxMAiouL060rLi6mgIAAkslkdOTIEcH+U6dOFdRh0KBBIh7hU9euXaOGDRsK4pRf+vfvT0VFRaLHfhGpVCpdu6pUKltXhzGrk/TMqH///njrrbf01nft2hXBwcHIzMzE1atXpaySzYwcORIAkJycrLctISEBvr6+mDNnDi5dugQAmDVrFi5duoQJEyYgODhYyqri8ePHCAkJqXQE8v/85z+IjIyUqFaMseqkynRgkMvlAPTvf1R3ho5XoVBg/fr10Gg0GDp0KE6cOIH4+Hj4+/tj/vz5ktdx+fLlRk+FoVQqK7zfxRhjFakS3/x37tzB4cOH8dJLL6Fly5YWlUVEyM/PF6lmxsUzR+nAphU9INu5c2dMnDgRCxYsQI8ePQA8/aJ3cnKqtGy1Wo28vDyz6lVeSUkJVq1aZdJ7lixZgoULF4oS/0VV9v9PrP9LVr0oFApJn2m0OltfJywuLqagoCACQBs2bLC4vLLX2m2xGLpn5OPjQ7GxsRQbG0tRUVEUHBxMAMjT05NSUlIqPJacnBxycnIiADR+/PgK9yt/z4gXXnip/kt1u5do0zMjrVaL4cOH49ixY/jHP/6BIUOG2LI6VnPjxg3ExcUJ1nl5eeH48ePPnKV1wYIFuqnK9+/fj/z8fCgUCqvWlTHGbMFmyUir1eKTTz7Bjz/+iMGDB2PlypWilKtQKKBSqUQpyxitWrXCH3/88cx9QkJCsH//fgBPOwMolUpMmTIFoaGhOHfunG505rKSk5Mxb948+Pv7o2/fvliwYAGio6OxZMmSSus0cOBArF271rwDKufevXvw9/c36T3t27fHzz//LEr8F1VeXh48PT0BAI8ePeJRu5me6vbD1CbJSKvVYsSIEdiwYQM++ugjrF+/XrQJ4WQymaR/uKZes61Xrx6ioqKQnZ2NOXPmICYmBosXLxbsU1RUhKFDh4KIoFQq0bp1axw8eBDLli1DWFgYgoKCnhnD3t5etDbw8/NDhw4dTBrv7sMPP+QvTxE5Oztze7JqT/LedGUT0cCBA7Fx40bUqFFD6mrY3LRp0+Dt7Y0VK1bg1q1bgm0xMTFISUnB5MmT0b59e8jlciiVStjb2+OTTz6RtIMGAIwbN87ofZ2cnDBs2DAr1oYxVh1JmoxKL81t2LAB4eHh2LRp0wuZiICnX9pTpkxBSUmJYE6ikydPYuHChWjZsiVmzpypWx8QEIDp06fjxo0bmDJliqR1/fjjj9G/f3+j9l2zZg3c3d2tXCPGWHUj6WW6WbNmQalUwsXFBX5+fpgzZ47ePv369UNAQICU1bKZyMhIJCQkYMOGDZg2bRq8vLwwfPhw1KhRA0qlEg4ODoL9p0+fjp07d2L58uUYMGCAwQeIraFGjRr48ccfMXr0aCiVSoP7ODk5Yc2aNXrzKzHGmDEkTUall6NUKhXmzp1rcJ/GjRu/MMnI0dER0dHRmDBhAuLi4uDq6or09HTExcUhMDBQb397e3solUq0bdsWI0aMwNWrVyW7l1CzZk2sX78eX375JZYuXYrVq1cDeNpZ4cMPP8SwYcP4jIgxZjYZkZlPbTIAgK+vL27cuKF7vXPnToSGhkpah+joaMHIDIMGDcKmTZusFi8vL0/XA1ClUvHNdSvgNmYvmiozHNDzqnQYo1KFhYWS16H0WaRS5S/vMcZYVcfJyELlJ7b7+++/Ja/DkydPBK/5chlj7HnDychCpQ8mljp69Kik8YlIL2b9+vUlrQNjjFmKk5GF3n33XcHrPXv2SPoc0NmzZ3H37l3But69e0sWnzHGxMDJyEIffPCBYPSI/Px80YY2qoxWq9UbHdvf3x8tWrSQJD5jjImFk5GF6tevrzfZ3aRJk7Bq1Sqzp5cwhkajQWRkJBITEwXrIyIiqtew8oyxFwJ37RbBpk2bDI447ufnh4iICPTu3Ruenp5wcXExO1FotVrk5OTg1q1b2L59O7Zt24aMjAzBPnK5HJcvX0azZs3MimEs7nZsfdzG7EXDyUgkM2fO1JsmQkpyuRxbt26V5Bkn/qK0Pm5j9qLhy3QimTlzJmJjY20SW8pExBhj1sDJSEQzZ87EwoUL0bBhQ8liBgYGYseOHZyIGGPPNb5MZwVEhHPnziExMRHbt2/HnTt3oFarRSnb0dERzZo1Q3h4OMLDw585U6y18CUk6+M2Zi8aTkYSICLk5eXpDdtjKldXVzg6OopUK/PxF6X1cRuzF43Nph1/kchkMri4uBicXpwxxhjfM2KMMVYFcDJijDFmc5yMGGOM2RwnI8YYYzbHyYgxxpjNcW86K7l79y62bt2KHTt24Pbt28jMzLR4FlgXFxe4u7ujefPmGDBgAEJDQ/Um93uRpKWlITExEbt27cL9+/eRmZmJ4uJis8uTyWRwdXWFu7s7AgICdOMKKhQKEWv9/CAiXLlyBYmJidi3bx8ePXqErKwslJSUmF2mTCaDm5sb3N3d0aFDB4SHh6Nnz548OzEDiIlq8+bN1LFjRwJg9cXBwYH69OlDZ8+elfQYVSqVrg4qlUrS2FqtllasWEFvvPGGJG2sUCgoPDycrl27Julx2rKNNRoNzZs3j/z8/CRpYzc3Nxo2bBjdu3dP0uNkVQsnIxGtWrVKkj/e8ourqyudPHlSsuO01RelVqulGTNm2KSNPT09JU1ItmpjjUZDI0eOtEkb+/n5cUJ6gXEyEomtEpEtElJubq4ubm5uriQxbZmIbJGQbNHGtkxEnJAYDwckgt27dxscqNTNzQ39+vVD79694eXlBWdnZ4vmM8rNzcXNmzexfft2HDx4UO/+iKurK65cuYLGjRubFaMyf//9N5KTk3H06FHEx8cDACIjIxEQEIC2bduiZcuWVhuu6LvvvsO4ceP01tevXx9hYWHo2bMn6tWrBycnJ7PbWKPRICcnB6mpqdi2bRuSkpKg1WoF+3h6euL333+Hm5ubWTEq8+DBAyQnJ+PYsWP4+uuvAQBjxoxB27Zt0aZNG7z++uuQy+VWiT19+nTMmzdPb33Dhg0xYMAAdOvWDXXq1LHo/1itViM7Oxu//fYbEhMTcfr0ab19mjZtit9++w01atQwOw57Dtk6G1YHffr00fuFN336dCoqKrJazMzMTHrvvff04s6bN0/UOCUlJbRt2zbq3r17pb9qFQoFRUZG0qVLl0StAxEZvEe0bNkyUqvVoscq9eDBA2rfvr1e3A0bNogap6CggJRKpcFY5Rd3d3eaOHEipaamiloHtVpN9evXF8SSy+W0efNm0mq1osYqKz09nZo0aaJ3nElJSVaLyaomTkYWysrKIgcHB8Ef0pQpUySJXVhYSD179hTEDgwMFK3848eP631R+Pr60oABA3SvP/vsMwoJCaE6deoI9hswYAA9evRIlHqkpqYaTERSyMrKooCAAEHsvn37ilb+rl276KWXXtKVbWdnR82bN6cPP/xQt+7TTz+l4OBgcnNzE9QjMjKScnJyRKnHkSNH9Np4x44dopRdmXv37lGjRo0EsceNGydJbFZ1cDKy0IYNGwR/RA4ODpSVlSVZfENfImlpaRaVWVJSQhMnTiSZTEYAqF69ejRt2jS6desWERm+ua7Vauno0aM0cOBAqlGjBgGgunXr0s6dOy0+xrlz5wqOr379+lY9IyrPGv/HeXl5NGTIEF2Zr7zyCs2bN48ePnxIRIbbWK1W0549ewRnxA0bNqTjx49bfIxjx4612o8aY5T/P/b09JT0/5jZHicjC5U9SxD7V7MxDF1eWbhwodnlFRUVUb9+/XRljRw5Uu+Lt7KeXhcvXtRdVrOzs6O1a9eaXR8i0rt8NXbsWIvKM5Whs98tW7aYXV5OTg517txZ1z6TJ0+mgoICwT6VtXFSUhK9+uqrBIBq1qxJe/fuNbs+REQNGjSw6uXeyhg6+z19+rSkdWC2xSMwWOj+/fuC1z179pQ0fo0aNdC9e3fBuvJ1MhYRYfjw4dixYwdq1qyJ//znP1izZo3JN+sDAgJw7tw5REZGQqvVYtSoUdi2bZtZdQJs38Zubm5o3769YJ25bVxSUoL3338fJ0+eRO3atZGUlISEhASTOwV069YNV65cwfvvv4+ioiL0798fJ06cMKtOWq0WDx48EKyTuo2bNGmi1/HG3DZmzydORhbKzMwUvK5Xr57kdahbt67g9ZMnT8wqR6lU4l//+hfkcjl27NiBDz74wOw6OTg4YOXKlRgzZgyICCNHjsS9e/fMKqsqtnH5Ohlr/vz5SEpKgqurKw4dOoSgoCCz6+Ti4oKtW7fqEtLgwYORm5trcjm5ubl6vQarQhub+zlmzyfJk1FhYSEmTpyIoKAgeHt7w9HREV5eXujcuTN++OEHi4YasYXy3audnJx0/7516xZkMplgkcvlaNCgASIiInD+/HnBe3Nzc9G4cWM4OjoiJSXFYLyEhATIZDKMGjVKt678cDVFRUUmH8e9e/fw+eefAwBmz56NXr16mVxGeTKZDMuWLcObb76J7OxsREZGgsx4kqAqtHHZmIB5bXzlyhXMnj0bALBy5Uq0bdvW5DLKs7e3x6ZNm/Dqq6/i9u3b+PLLL00uw9AQSs/r55g9x6S+Lvj48WNydHSkoKAgGjVqFEVHR9OYMWN0vWneeecd0mg0UlfLbD4+PoLr3GVv2N+8eZMAkI+PD8XGxlJsbCxFRUVRcHCwruvsL7/8Iijv559/JplMRm3btqWSkhLBtitXrpCDgwM1atRI0Itq6tSpgjoMGjTI5OMYN24cAaB27drpxS3P1NEB/vvf/+ruuRw9etTkupW/X5OcnKzbJlUbDxo0SFCHqVOnmnwcffv2JQD0/vvvV9pd2tQ2TkpKMrsDS0ZGht79moyMDN12qdr4rbfeEtTh22+/Nek4THH9+nWaOHEihYSEUI8ePeiTTz6hY8eOWbUbO3s2yZORRqMx+PxNSUkJdevWjQDQnj17pK6W2YxJRiEhIXrvi4+PJwAUFBSkt238+PEEgOLi4nTriouLKSAggGQyGR05ckSwv6XJKCcnh1xcXAgAHT58uNL9zRmqJjIykgBQRESESXUjMi4ZWbuNLU1Gt27d0vVOvH79eqX7m9PGvXv3JgA0adIkk+pmbDKydhtLkYxycnIoLCxM73hLl8DAQLpx44bocVnlqlRvuiVLlhAAWrx4sa2rYjRzk1HpF4Czs7Petry8PPL19SW5XE4XL14kIqKYmBgCnj7XU56lyWj16tUEgPz9/Y36ZWjOF+XFixcJANnb29Pjx49Nqp+5yUjMNrY0GZUOZdS9e3ej9jenjXfv3k3A0wdji4uLja6bJclIzDa2djLKz8+nTp06VZiIShcvLy+6efOmqLFZ5apMBwatVov9+/cDAFq0aGHj2kjH3l5/Fg+FQoH169dDo9Fg6NChOHHiBOLj4+Hv74/58+eLXofjx48DAAYOHGj2UDqVCQgIQLNmzaBWq3H27FmrxKhIVWrjDz/8UPSyS7377ruoVasWMjMzK7xXYy1VoY0rExcXh1OnTlW638OHDzF8+HDrV4gJ2CwZFRcXY+bMmYiNjcX48ePx+uuvY9++fRgxYoReV+XqaM2aNQCALl26GNzeuXNnTJw4EVevXkWPHj0APO3tVv5GuhiSk5MBAG+++aboZZdVesO+NJ61VZU2JiJcuHABAETptFCRGjVqoHXr1gBevDauTEFBAb7//nuj9//ll19w9epVK9aIlWezyfWKi4sRFxeney2TyRAVFaUbgNNcRIT8/HxLq2dSvMqkp6dj5syZAIC8vDwkJycjKSkJnp6eusEwDZkxYwaWL1+OgoICjB8/Xu9Zl4qo1Wrk5eUZta9Go8G1a9cAPH3Ww5j3ld3H2DjA0wEwAeDChQtQqVSinoVJ3cYlJSVGH/u9e/eQnZ0NOzs7NG7c2Kpt3Lx5cxw9ehTnz59HRESEUW1sbPlSt3FRUZFJx/4se/bsMbmr+Pr16zFr1ixR4luDQqGw2pUMm7DxZULSaDR09+5dWrFiBdWuXZs6d+5M2dnZZpdX9lq7LRZD94wMLV5eXpX2eio7ZYKvry/l5eUZ3K/8PaPqvhi6Z2TtNi5/z6i6L4buGVm7jcvfM+Ll2YvUky5am82TUVlbtmwhADR58mSzy6iKyajsjd+MjAz6+uuvyc7Ojpo1a1bhXDXnz58ne3t78vf3p6ioKAIM3/Ql4mQkRRtzMrJ+G3MyMm3hZGRFWVlZBDx91sVcWq2WVCqVZMtrr70m+IAY25uutFfR//3f/+ltKywspObNm1ONGjXozJkzVFxcTK1atSKZTKb3PAeRfjIaOHCg0fXPycmhWrVqEQA6deqUUe959OiRLtajR4+MjjVp0iQCnvb2y83NNfp95vamE7ONyyejSZMmGV3/e/fu6d53+/Ztq7Zx6WjfX375pdFtbOjMx9jedGK2cflk9M0334j2d3r69GmTv+yXLFki6XeJqUt1eyaqSiWjlJQUAkCdO3e2dVWMZm7X7vz8fPL29ia5XK7XjbT0F2R0dLRu3cWLF0kul5OPj4/eZQ5Lu3aXPry4Zs0ao/ZXqcybEvudd94hAPTdd9+ZVD9zk5GYbWxp1+7SqTgOHDhg1P7mtnGzZs0IMO1ZPUu6dovZxtbu2m1Mt+7SpVatWpLNsMuekrw3XUpKisEOBvn5+Zg4cSIAoHfv3lJXS3JOTk6YMmUKSkpKdEPEAMDJkyexcOFCtGzZUnezGHjaNXr69Om4ceMGpkyZImpd2rRpA+BpDyJrKSws1HXpLo1nbS9aGz969AjXr18XxLO2qtTGlZkxY4bRN/wnT54MFxcXK9eICUid/WJjY8nV1ZXeffddGjt2LE2ZMoUGDx6sm5yta9eulJ+fL3W1zGbumRHR0xk+vb29yd7entLT00mlUukeErxw4YLe/iUlJRQYGEgymUwwrI6lZ0YnT54kAOTo6Eh///13pfub86tdqVQS8HT+HVPnqTH3zIhIvDa29Mxo8+bNBIBeeuklox5INaeNS+cE6tChg0l1s+TMiEi8NpZiBIY1a9aQnZ3dM8+KxowZU+0ugT0PJD8z6tOnDz788EPcuXMH//rXv/DNN99g3759aNWqFVatWoUjR45I/gyCrTg6OiI6OhpqtRpxcXGYPHky0tPTERMTg8DAQL397e3toVQqIZfLMWLECNG6vXbs2BFvvPEGCgsLsXr1alHKLEur1WLp0qUAgNGjR6NGjRqix6hIVWnjfv36wdPTEw8ePMCWLVtEKbOswsJCrFy5EgAwbtw40ct/lqrSxsYYOXIkkpKS0KdPH72zpDfffBMbN27EihUrqleX6eeFrbPh8+5ZZ0ZSEWOg1B9++IEAkEKhoPT09Gfua+qv9tJhnpydnXUzmZriWWdGUhFjoNRZs2YR8HSm2sqGRDK1jb/88kvdmVf5ifoqU9mZkVSkHCiViOjatWu6WOfOnbNqLFa5KjMc0POq/C8ojUYjeR3KxzTnV93QoUMRHByM/Px8DB8+3OC0AuZISUnB1KlTAQBff/01PD09TS6jurTx5MmT0bx5c2RkZGDMmDF6cwiZ69ixY/jmm28AAKtWrTJ5oj5Dx/K8trEpXnnlFd2/mzdvbtVYrHKcjCzk6uoqeJ2TkyN5HbKzswWva9WqZXIZdnZ2WLt2LVxcXHDixAl8/PHHFiek9PR0hISEoKCgAMHBwRg9erRZ5VSXNq5ZsybWr1+PGjVqYNu2bfjss88sTkjnz59HaGgotFothgwZgr59+5pcRvn2BZ7fNmbPL05GFnJ3dxe8Tk1NlbwOaWlpgtceHh5mlfPqq69i27ZtkMvl2LZtG3r16oU7d+6YVda+ffvQpUsX/Pnnn2jWrBm2bNkCOzvzPm62bmMiQnp6umBd+ToZ680338S6desAAMuXL0dERAT++usvs+r0z3/+E2+//Tays7PRpUsX3T0jU9WsWVPvPq3UbVxcXIzbt28L1pn7OWbPKVtfJ3zeTZw4UXCd29hpGMTy6NEjvd5BW7dutajM/fv3k5OTEwEgV1dX+vbbbwXPhDzrfsbt27dpxIgRuu1vvPGGWfeJygoPDxccn7HTMIjl8uXLevdUzpw5Y1GZSqWSatSoobuHtHHjRkEvu2e18bVr1+j999/XbQ8ODhZMUmeOjh07Co5v+PDhFpVnqj179ui18d27d60a09xnuZh1cDKy0JkzZ/T+iErnbpHCihUrBLEVCkWFY3+Z4vr164IvKHd3d/r8889p165dlJaWplufnZ1Nv/32GymVSgoNDdUlRplMRp9//rkodUlMTBQco52dncUJzhTTpk0TxG/YsKEoPzjOnTtHzZs315Xr5eVF06ZNo/3799OtW7d06588eUIXLlyg1atX09tvv61bL5fLafbs2SbNXVSRRYsWCY6xdu3aJneEsMSQIUME8Tt16mT1mJyMqhZORhbSarXUsGFDwR+Sn58f3bt3z+qxT548Sa6uroLYAwcOFK18tVpNS5cupcaNG1f4TEbpr/vyZy7Hjx8XrR55eXmkUCgEMTp06EBZWVmixajIzp07SS6XC2KbOpPqsxQWFtLs2bPJy8urwjYuf+ZrZ2dHoaGhdPnyZdHqcffuXb24ffr0ocLCQtFiVGTVqlV6saWYYJOTUdXCyUgE5S/VASAfHx9auXKlVbrIpqam0ty5c/USkRiX6AxRq9W0d+9eGjZsGLVo0UI3fXbp4uzsTF27dqXJkyfTtWvXRI9PpH+pDgAFBATQhg0bRE9KWq2WLl++TNOmTdNLRGJcojOkuLiYtmzZQh999BH5+fnpxaxduza9/fbbFBsbS7dv3xY9PpH+pTrg6XTiiYmJopzhlqXVaunMmTO6qcmlvkRHxMmoqpERGTEhD3umBw8eoFu3bgZv+trZ2aFdu3bw9PSEs7Oz2d1VtVotcnJycPv2bfz2228G9+nTpw+2bdsGBwcHs2IYS6VS4c6dOygpKYGHhwe8vb2t/iDr9evX0a1bNzx69Ehvm4ODA9q3b4+6devCycnJ7DbWaDTIzs5Genq6XqeQUiNHjsT3339v9W7H2dnZ+PPPP6FWq1G3bl14e3tbPebp06cREhKC3NxcvW0KhQLt27eHh4eHyV3Hy1Kr1cjOzkZKSkqFnWNiY2MFQwhZS15enm7IH5VKBWdnZ6vHZM9g62xYXdy7d8/gL1qpFqkuqdjStWvXyNPT02ZtPHLkSNJoNLZuBqsydOlXyiU2NlayY+Uzo6qFk5GIbJWQXoREVMpWCelFSESlbJWQpExERJyMqhq+TCey/Px87Nu3D1u2bMGePXusNgV6/fr1ERYWhoiICHTt2lXS8d5sLTs7G7t27UJiYiIOHDgg2mgR5TVs2BDh4eEIDw9Hu3btXqjxyh4/fozt27djy5YtSEpKEm20iPL8/f11bdyqVSurxKgIX6arWjgZWVF+fj4OHTqEO3fuIDMzEwUFBRaV5+rqCnd3dzRr1uyFS0AVyc7OxsGDB3H//n1kZmaiqKjI7LJkMhlq1aoFd3d3BAQEvHAJqCIZGRk4dOgQMjIykJmZiZKSErPLsrOzg5ubG9zd3dG+fXu0bNnSZm3Myahq4WTEGHshcTKqWng4IMYYYzbHyYgxxpjNcTJijDFmc5yMGGOM2RwnI8YYYzZnb+sKVGelXbtv376NzMxMFBYWWlSei4sL3N3d0bx5c+7azRirVjgZiSw/Px8//fQTtmzZgr1791r9odfw8HAEBQVxYmKMPdf4OSMR3b9/H8HBwZLPktmnTx9s3boVNWvWlDQuY88zfs6oauF7RiKxVSICgD179mDAgAEWjT7AGGO2xGdGIjBmCgkvLy8oFAqLppDIzc3FrVu3bD6FBGPVAZ8ZVS18z0gECxYs0EtEPj4+mDx5Mj744APUq1dP1Hjp6elITExEfHy8YO6ZPXv2YPfu3QgLCxM1HmOMWRufGVmIiNC4cWPBRGF+fn5ISkqCt7e3VWOfOnUKvXr1EiSkgQMH4t///rdV4zJWHfCZUdXC94wsdO7cOb0ZKzdv3mz1RAQAnTp1QkJCgmDd7t27rdaDjzHGrIWTkYW2bNkieO3v74833nhDsvhhYWGws/vff2PpfEqMMfY84WRkoUuXLgleh4WFSTo/S/369fHWW289s06MMVbVcTKyUGZmpuC1n5+f5HVo0qSJ4PWTJ08krwNjjFmCk5GFynYeAIBatWpJXgc3NzfB65ycHMnrwBhjlqgSySghIQEymQwymQxnzpyxdXVMUr4zYtlheW7duqU7rtJFLpejQYMGiIiIwPnz5wXvzc3NRePGjeHo6IiUlBSD8UrbatSoUQZjGqqT2DIzM3HkyBHs3bsXZ86cgUajsWo8xlj1Z/PnjH777TfExsbC2dkZeXl5tq6OVfj4+GDw4MEAnnYnTU5ORmJiInbs2IHDhw8jKCgIAODq6op169ahR48eGDZsGE6fPg17+//9F129ehUzZsxAo0aNsGjRIsmPIz09HfPnz8ePP/6IgoIC3fpGjRph9OjR+OKLL+Do6Ch5vRhj1QDZUHFxMbVu3Zrat29PgwcPJgB0+vRpW1bJZD4+PgRAt+zcuVO37ebNmwSAQkJC9N4XHx9PACgoKEhv2/jx4wkAxcXF6dYVFxdTQEAAyWQyOnLkiGD/qVOnCuowaNAgEY/wqVOnTpG7u7sgTvmlc+fOlJ2dLXpsxqxBpVLpPrsqlcrW1Xnh2fQy3dy5c/Hf//4X69ate+FGnR45ciQAIDk5WW9bQkICfH19MWfOHF3PuFmzZuHSpUuYMGECgoODpawq7ty5gz59+uh11ijv5MmT+PjjjyWqFWOsOrFZMrpw4QLmzp2L2NhYNG/e3FbVsLmyl+FKKRQKrF+/HhqNBkOHDsWJEycQHx8Pf39/zJ8/X/I6Ll261Ogeenv37sWvv/5q5Roxxqobm9wzKioqwtChQxEQEIDJkyeLWjYRSToCAZnZWWDNmjUAgC5duhjc3rlzZ0ycOBELFixAjx49AABKpRJOTk6Vlq1Wq0W7/1ZYWIh169aZ9J6lS5di5cqVosRnzFrK/o08j/erLRl4uSqySTKaMWMG0tLSkJycLPrlufz8fN14U1VFeno6Zs6cCeB/HRiSkpLg6emJr7/+usL3zZgxA8uXL0dBQQHGjx+P9u3bGxVv8+bN2Lx5sxhVN8umTZuwadMmm8VnzFSenp62roLJqtt4epIno9OnT2PBggWYOXMmWrRoIXV4m7hx4wbi4uIE67y8vHD8+HH4+vpW+L4FCxboeq3t378f+fn5UCgUVq0rY4zZgqTJSK1WY9iwYWjVqhWmTp1qlRgKhQIqlcoqZRvSqlUr/PHHH8/cJyQkBPv37wcAPH78GEqlElOmTEFoaCjOnTtn8EwuOTkZ8+bNg7+/P/r27YsFCxYgOjoaS5YsqbROAwcOxNq1a807oHIePXoEHx8fk97TpUsX3fEyVlXl5eXpzogePXr03J1lVLcfppImI5VKhbS0NACocAK4jh07AgC2b9+Ofv36mRxDJpNJ+qEy9ZptvXr1EBUVhezsbMyZMwcxMTFYvHixYJ/Se2pEBKVSidatW+PgwYNYtmwZwsLCdM8lVcTe3l60NnjttdfQo0cPHD582Oj3DBs27Ln7w2YvNmdnZ/7M2pikyahmzZq6Ls3lHTt2DGlpaQgNDUW9evXQuHFjKasmuWnTpmHdunVYsWIFPv/8c8HxxsTEICUlBdHR0br7REqlEu3atcMnn3yCK1euSPqraPz48UYnI3d3d3z00UdWrhFjrNqx8XNOOsOGDXuhHnolIlqyZAkBoE8++US37sSJE2RnZ0ctW7akoqIiwf4zZ84kADR+/HjBems/9KrVamncuHHPfOAVAMnlcjp48KCosRmzFn7otWqpEmPTvagiIyPh7e2NDRs24MaNG8jLy8Pw4cNRo0YNKJVKvUuZ06dPR2BgIJYvX45ffvlFsnrKZDIsW7YM06dPr/Dy6ksvvYR9+/ahZ8+ektWLMVZ9cDKyIUdHR0RHR0OtViMuLg6TJ09Geno6YmJiEBgYqLe/vb09lEol5HI5RowYIemzEXZ2dpgzZw7+/PNPQc/A/v37IzExEbdv30b37t0lqw9jrHqREVl5iOdqztfXFzdu3NC93rFjB95//31J6zB16lTB9OODBg2y6nM+eXl5uh6A1e1ZB/bi4M9x1cJnRhYqf9mq7GjWUik/4kTNmjUlrwNjjFmCk5GF3N3dBa8fP34seR3++usvwWsPDw/J68AYY5bgZGQhb29vwetDhw5JGl+j0eDnn38WrCtfJ8YYq+o4GVkoNDRU8PrAgQPIzs6WLP6xY8eQkZEhWNe3b1/J4jPGmBg4GVkoNDRUcN+ouLgY8fHxksQuKirCvHnzBOsCAwOfOd4dY4xVRZyMLOTm5oZ33nlHsC4hIQExMTEoLi62WtysrCyEhYXpjYwQHh5utZiMMWYt3LVbBLt379a7XAc8TVT9+vVD79694enpCRcXF7PnH9FqtcjJycGtW7ewfft2HDhwACUlJYJ9XF1dceXKFasPpcRdYll1wJ/jqoWTkUhWr16N0aNH2yy+q6sr9u/fj06dOlk9Fv8Rs+qAP8dVC1+mE0lkZCRWrVplk9hSJiLGGLMGTkYiioyMxObNmyVLCg4ODujbty8OHz7MiYgx9lzjy3RWcvfuXWzbtg3bt2/HnTt3kJmZafHoDK6urnB3d0ezZs0QHh6O0NBQuLm5iVRj4/HlDVYd8Oe4auFkxEzGf8SsOuDPcdXCl+kYY4zZHCcjxhhjNsfJiDHGmM1xMmKMMWZznIwYY4zZnL2tK/AiICKoVCoUFhZaVI6LiwucnJxEqlX1QkTIycmxaDxAmUwGV1dXnpyQMRvgZGQFRISzZ88iMTERO3bswJ07d6BWq0Upu2bNmmjevDkGDBiA8PBwNGnSRJRynzcajQbHjh1DYmIidu3ahQcPHkCr1YpStpOTEwICAhAREYEBAwbg5ZdfFqVcxtgzEBPVwoULqWHDhgRAkiUgIID27t0r6TGqVCpdfJVKJWlsjUZD06ZNo/r160vWxh07dqRTp05JepzM+mz5OWb6+KFXEc2cORNxcXGSx5XL5di6davBkcOtwVYPC2q1WkRGRmLt2rWSxCuLx/+rfvih16qFOzCIxFaJCABKSkowYMAA7Nq1S5J4ZX+/SPVbxpaJCAByc3PRq1cvnDp1yibxGavu+MxIBJs2bcKQIUP01vv7+yM8PBy9e/eGl5cXnJ2dLZrPKDc3Fzdv3sT27duxbds2venG5XI5Ll++jGbNmpkV41mICFeuXMH58+dx/PhxKJVKAECfPn3QqlUrtGnTBu3bt0eDBg1Ejw0A8fHxmDZtmt76wMBAhIeHo2fPnqhXrx6cnJzMbmONRoOcnBykpqZi27Zt2LFjB7KysgT7uLq64saNG6hXr55ZMVjVwWdGVYwNLxFWG927d9e7z7By5UrSarVWi6lWq2nkyJF6cb/66itR42RmZtLixYvJz8+v0nsrMpmM3n33Xdq9ezep1WrR6qDVavXiy+Vy2rFjh2gxDCkoKKA+ffroHeeqVausGpdJg+8ZVS2cjCz06NEjsrOzE3xZffPNN5LE1mg0FB4eLojt7+8vShLUarX073//m+rUqaMr29nZmYKDg+n//u//dOsSEhJo1KhRFBAQoHfT//r16yIcJdGlS5f0EsLmzZtFKbsyhYWFFBQUJIjdvXt3SWIz6+JkVLVwMrLQypUrBV9UCoWC8vLyJIt/+vRpvS/qK1euWFSmSqUSJDl/f39asWIF5eTk6LYb+iNOS0ujSZMmkaurKwEgR0dHWrFihUV1ISKaPn264PgaNmxo1bPO8hITEwXx7ezsKCMjQ7L4zDo4GVUtnIws9P777wu+qCIiIiSNr9Vq9bqSz58/3+zycnJyqFOnTgSA7O3tKTY2loqKigT7VPZHfPv2bXrnnXd0+8yePdvs+hARtW7dWnB8EydOtKg8U+Xl5ZFCoRDUYdOmTZLWgYmPk1HVwr3pLPTo0SPB627dukkaXyaT4a233hKsK9+xwVgajQb9+/fHqVOnULt2bfzyyy+YOXMmHBwcTCqnYcOG2L9/P2bNmgUA+Oqrr/Ddd9+ZVSfA9m2sUCjQvn17wTpz25gxZhgnIwuV721Vp04dyevg4eEheJ2ZmWlWOYsXL8bhw4fh4uKCQ4cOWfRMjUwmw1dffaXr7j5x4kT8/vvvZpVVndqYMWaY5MmocePGkMlkBhepf/GKoaSkRPDa0dFR9+9bt27pHaNcLkeDBg0QERGB8+fPC96bm5uLxo0bw9HRESkpKQbjJSQkQCaTYdSoUbp15cerM2d8tt9//x0xMTEAnialtm3bmlyGIV999RXeeecdFBYWYsSIEdBoNCaXURXauGxMQ3VijFnGJmPTubm54fPPP9db37hxY8nrIgUfHx8MHjwYwNNnG5KTk3Xj1h0+fBhBQUEAnj7Dsm7dOvTo0QPDhg3D6dOnYW//v/+iq1evYsaMGWjUqBEWLVokah3nzZuHwsJCvPPOO/jkk09EK1cmk+H7779HixYtcPr0aezfvx/vvfeeaOWXeh7a2BhEhF9//RXfffcdkpOTUVRUBC8vLwwePBgff/wxPwvDqi+pb1I1atSIGjVqJHVYq/Hx8RHc2N65c6du282bNwkAhYSE6L0vPj6eAFBQUJDetvHjxxMAiouL060rLi6mgIAAkslkdOTIEcH+U6dOFdRh0KBBJh3D48ePqWbNmgSAzpw5U+n+5tz4nThxIgGg3r17m1Q3IiIHBwfB8SUnJ+u2SdXGgwYNEtRh6tSpJh9HZbKzs6l3794VPsfl7u5OBw4cED3ui4o7MFQtfM/IRkaOHAkASE5O1tuWkJAAX19fzJkzB5cuXQIAzJo1C5cuXcKECRMQHBwsal1+/PFHFBUVoXXr1mjXrp2oZZcaM2YMAGDfvn24f/++VWKUV5XauDKFhYXo3bs3fvrppwr3yczMxHvvvYeff/5ZwpoxJg2bJKOioiKsX78e8+bNw7fffouzZ8/aohpVQtlLRKUUCgXWr18PjUaDoUOH4sSJE4iPj4e/vz/mz58veh1Onz4NAAgLCzN7KJ3KNGnSBG+88YZueg0pVYU2rsyiRYtw8uTJSvdTq9UYMmQI37Ni1Y5NktHDhw8xYsQITJ8+HRMmTECHDh3Qrl073LhxwxbVsYk1a9YAALp06WJwe+fOnTFx4kRcvXoVPXr0AAAolUqrTK5XepNfrE4LFSkt39CZijVUpTZ+Fo1Gg5UrVxq9/4MHD7Bz504r1ogx6UnegWHEiBHo2rUrWrRoARcXF6SmpmLhwoXYuHEjunfvjqtXr8LV1dXs8okI+fn5Ita48niVSU9Px8yZMwH87+Z6UlISPD098fXXX1f4vhkzZmD58uUoKCjA+PHj9Z51qYharUZeXp5R+2o0GqSnpwMAXnvtNaPeV3YfY+MAgJ+fHwDgypUrUKlUop6FSd3GJSUlJh37s5w7dw537twx6T3/+te/8O6774oS/0Vl7ue4qlAoFFa7kmETNr5npTNkyBBRxnUre1PSFouhDgyGFi8vL0pLS3vmscyYMUO3v6+vb4XDDJXvwFDdF0MdGKzdxuU7MPDCi62X6tbposp0YBg9ejQAGHXd/HkTEhICejr0EjIyMvD1118jIyMDoaGhUKlUBt+TnJyMefPmwd/fH1FRUUhPT0d0dLTENX9+cBsz9nyzyXNGhtStWxeA5afLCoWiwi8fa2jVqhX++OMPo/evV68eoqKikJ2djTlz5iAmJgaLFy8W7FNUVIShQ4eCiKBUKtG6dWscPHgQy5YtQ1hYmO6ZmYoMHDjQ6EnoiAgNGzZEZmYmfvnlF7Rp06bS9+Tl5cHT0xPA06F6jH32Zdq0aVi6dCmGDx+OZcuWGX2JwcPDw6QHeaVo40mTJok2mWJmZib8/PxQUFBg9Hvi4uIwadIkUeK/qMz9HFcVCoXC1lUQlw3PygSUSiUBoNGjR9u6KiYx9zmj/Px88vb2JrlcTjdv3hRsi4qKIgAUHR2tW3fx4kWSy+Xk4+OjdynJ0ueMQkJCCIDRI2yb+3xGt27dCACtXbvWpPqZ+5yRmG1s7eeMDM1NVdHi4ODAo4aLgJ8zqlokvUx3/fp1g50Lrl+/jilTpgAAPv74YymrZDNOTk6YMmUKSkpKMHv2bN36kydPYuHChWjZsqXuhjwABAQEYPr06bhx44aurcRS2svNms+v5Obm4tdffwUAo86+xFCV2rgyU6dOhbu7u1H7fvnllzzTLKt+pMx8sbGx5OrqSu+99x6NGzeOvvzyS3r//fdJLpfr/Up9Xph7ZkT0dCZRb29vsre3p/T0dFKpVOTr60tyuZwuXLigt39JSQkFBgaSTCajo0eP6tZbemZUOnmdvb093b9/v9L9zflFuXz5cgLMm/zP3DMjIvHaWIoRGE6fPk0eHh7PPCsaN24caTQa0WO/iPjMqGqR9MwoODgY7777LlJTU7Fp0yYsWrQIZ8+eRe/evXHgwAHMmzdPyurYnKOjI6Kjo6FWqxEXF4fJkycjPT0dMTExCAwM1Nvf3t4eSqUScrkcI0aMEK076htvvIHOnTtDrVZjyZIlopRZVnFxMZYuXQoAGDdunKTdUatKGxujQ4cOuHjxIqKiovRGCe/Zsyd27NiBb7/9FnZ2VabfEWPisXU2fN4968xIKpaeGRERbd++XXd2dPHixWfua+ovytLu03Xr1qXMzEyT6/asMyOpSHFmVNZff/2li3Xjxg2rxnpR8ZlR1cI/sSxU/le+Wq2WvA7lY5rzy/n9999HWFgY1Go1hg4ditzcXFHqdurUKd0Z7/Lly1G7dm2Ty6gubWyKslNWlPb4Yqw642RkITc3N8Hr7OxsyetQfvK58nUyhkwmw4oVK1CvXj1cvXoVffr0sTgh/frrr3jvvfegVqsRHh6OiIgIs8qpCm1cPqY5bcwYqxgnIwuV7wH122+/SV6H//73v4LXxvbKKq9+/frYt28fatWqhWPHjqFz5866Ea1NQURYs2YN3n77bWRlZaFTp0744YcfzKoTYPs2JiK9ifjMbWPGmGGcjCzUoUMHweutW7caNV6dWO7evasbdbuiOpmiTZs2OHLkiO4M6c0338TUqVONmvaBiHDmzBmEhITgH//4B1QqFXr06IEDBw5Y9EBh+eNJTEw0uyxzGBo7ztgx7BhjRrLtLavn3+XLl/W63x47dkyy+PPnzxfErl27NhUVFVlc7qNHjygsLExXrr29PYWFhdHy5cvp6NGjuvVpaWm0f/9+mjNnDgUGBurWOzo60jfffENqtdriuuzZs0evjdPT0y0u11ilE/GVLuZ0TzcV31y3Pm7jqoWTkYW0Wi35+fkJvqw8PT3p2rVrVo+9Y8cO3TNapcvw4cNFK1+r1dL27dupS5cuRo8OULNmTRo2bBj9/vvvotWjqKiI3NzcBHH8/Pzo3r17osWoyKpVq/SOMSYmxupx+YvS+riNqxZORiKIiYnR+8KqV68eTZ8+nS5fvizqr2i1Wk1HjhyhMWPG6CUiALR3717RYpV1+fJlmj59OvXq1Yvq1KkjiNmkSRP66KOPaOnSpfTXX39ZJf6wYcP0jrVRo0Y0d+5cSk1NFTVWUVER7dmzRzeSfPnl8uXLosYzhL8orY/buGqREUl4g6Oays7ORkhISIUzmDZo0ACenp5wcXEx+4FPrVaLnJwc3L17F0+ePDG4z6hRo7Bq1SqrdzsmIuTk5KCkpATu7u6oUaOGVeMBwP3799GtWzekpaUZ3N64cWPUrVvXojleNBoNsrOzcfv2beTk5BjcJzY2VjCEkLXk5eXBxcUFAKBSqZ67QTyfB9zGVQsnI5FUlpCsTapEZEuVJSRrkyoRAfxFKQVu46ql+n5zSczNzQ0HDhxAp06dJI8dGRlZ7RMRAHh7e+Po0aNo2rSp5LGlTESMvYj4zEhkRIRz584hMTERiYmJJk8nbazAwECEh4cjPDwcvr6+VolRVWk0Ghw/fhyJiYnYtm0bHj16ZJU4nTp1QkREBMLCwvDyyy9bJUZF+Fe79XEbVy2cjKyIiHDx4kXcuXMHmZmZBqfPMIWrqys8PDzQrFkz+Pj4iFTL55tGo8Gvv/6K+/fv48mTJygqKjK7LJlMhlq1asHDwwOtWrWSPAGVxV+U1sdtXLVwMmKsCuIvSuvjNq5aqvdNBsYYY88FTkaMMcZsjpMRY4wxm+NkxBhjzOY4GTHGGLM5e1tXoDr7888/sXPnTty+fRuZmZkoKCiwqDwXFxd4eHigefPm6Nu3L0/wxhirNjgZiezhw4f497//jS1btujNMyQmBwcHhISEIDw8HP379+duqYyx5xo/ZySi69evIzg4GA8fPpQ0bocOHbB//34+U6pG+BkY6+M2rlr4npFIbJWIAODMmTPo1asXsrOzJY/NGGNi4Mt0IkhPT68wEdWuXRs9evSAl5cXnJ2dLZpCIjc3Fzdv3sSRI0dQXFws2F6akA4fPsy/8Bhjzx1ORiJYuHChXiJq27Yt4uLi0KNHDzg4OIgaLzs7G7t27cKXX34pGCT0zJkz2L59OwYPHixqPMYYsza+Z2QhjUYDb29vZGRk6Na1b98eBw4csPo9nOvXr6Nbt26ChNS3b1/s2rXLqnGZ9fH9DOvjNq5a+J6RhY4dOyZIRACwceNGSToTNG3aFP/v//0/wboDBw7wvSPG2HOHk5GFtm7dKngdEBCAJk2aSBY/NDRUcBmwuLgYu3fvliw+Y4yJgZORhVJSUgSvP/jgA0nj165dG2+//bZg3bVr1yStA2OMWYqTkYUyMzMFr1999VXJ69C4cWPB6ydPnkheB8YYswQnIwupVCrBa1dXV8nrUKtWLcHr3NxcyevAGGOWsFky2r59O3r27Ik6derA0dERr776Kj766CPcvXvXVlUShZ3d/5r01q1bkMlkgkUul6NBgwaIiIjA+fPnBe/Nzc1F48aN4ejoqHf5r1RCQgJkMhlGjRplMKYU0tLSoFQqsXLlSiQmJiInJ0fS+Iyx6kfy54yICGPGjMHq1avh4+ODDz/8EK6urrh//z5++eUX3L59G6+88orU1bIqHx8f3bM/eXl5SE5ORmJiInbs2IHDhw8jKCgIwNOzqnXr1qFHjx4YNmwYTp8+DXv7//0XXb16FTNmzECjRo2waNEiyY/jzJkziI2NxcGDBwXrXVxcMGTIEMyZMwceHh6S14sxVg2QxBYvXkwAaNy4caRWq/W2l5SUSF0li/j4+BAA3bJz507dtps3bxIACgkJ0XtffHw8AaCgoCC9bePHjycAFBcXp1tXXFxMAQEBJJPJ6MiRI4L9p06dKqjDoEGDRDzCp3bv3k01a9YUxCm/NG3alB48eCB67BeRSqXStatKpbJ1daolbuOqRdLrOwUFBYiLi8Nrr72GJUuWoEaNGnr7lD0TqM5GjhwJAEhOTtbblpCQAF9fX8yZMweXLl0CAMyaNQuXLl3ChAkTEBwcLGVVce3aNURERKCoqOiZ+12/fh0ffPABiJ+jZoyZSNJkdPDgQWRmZqJfv37QaDT4z3/+g/nz52PlypVIT0+XsipVhqHkq1AosH79emg0GgwdOhQnTpxAfHw8/P39MX/+fMnruGTJEqPnYjpz5gyOHj1q3QoxxqodSU9DSs8CatSogVatWiE1NVW3zc7ODl988QUWLFhgUQwiQn5+vkVlmBrPHGvWrAEAdOnSxeD2zp07Y+LEiViwYAF69OgBAFAqlXBycqq0bLVajby8PLPqVZ5KpcKmTZtMes+3336Ldu3aiRL/RVX2/0+s/0sm9Ly3sUKhMHvg5SpJymuCo0ePJgBUo0YNevPNN+ncuXOUm5tLx44do6ZNmxIAWrFihUUxyl4HtsVi6J6Rj48PxcbGUmxsLEVFRVFwcDABIE9PT0pJSanwWHJycsjJyYkA0Pjx4yvcr/w9I1544aX6L9XtPpekyegf//gHASAnJye6d++eYNvVq1fJzs6OfHx8LIpRFZORocXLy4vS0tKeeSwzZszQ7e/r60t5eXkG9+NkxAsvL95S3ZKRpJfpSgcPbdu2Lby9vQXbWrRogddeew3p6enIyspC7dq1zYqhUCj0HkS1platWuGPP/545j4hISHYv38/AODx48dQKpWYMmUKQkNDce7cOd3IwWUlJydj3rx58Pf3R9++fbFgwQJER0djyZIlldZp4MCBWLt2rXkHVM7ff/+NV199FVqt1uj3dO/eHTt37hQl/osqLy8Pnp6eAIBHjx7xiNJW8Ly3sUKhsHUVRCVpMvL39weAChNN6fqCggKzk5FMJpP0Q2XqNdt69eohKioK2dnZmDNnDmJiYrB48WLBPkVFRRg6dCiICEqlEq1bt8bBgwexbNkyhIWF6Z5Lqoi9vb1obeDs7IzQ0FDs2LHD6PeMGjXqufvDrsqcnZ25Pa2M29j2JO1NV9ol2dBAniUlJUhPT4ezszPq1asnZbVsYtq0afD29saKFStw69YtwbaYmBikpKRg8uTJaN++PeRyOZRKJezt7fHJJ59I2kEDAD777DOj923QoAH69+9vxdowxqojSZORj48P3nnnHaSnp+t6k5WaP38+srKy8MEHH7wQzxo5OTlhypQpKCkpwezZs3XrT548iYULF6Jly5aYOXOmbn1AQACmT5+OGzduYMqUKZLWNTg4GHPmzKl0P1dXV+zYsUP0mW0ZYy8AqW9SpaenU/369QkAvffeezRp0iR6++23CQA1atTouXuC39wRGIiICgoKyNvbm+zt7Sk9PZ1UKhX5+vqSXC6nCxcu6O1fUlJCgYGBJJPJ6OjRo7r1UozAQES0cuVKqlevnsGbqa1bt6bLly9bJe6LiEcHsD5u46pF8oFSfXx8cP78eQwfPhzJyclYunQp0tLS8Omnn+LcuXPw8vKSuko24+joiOjoaKjVasTFxWHy5MlIT09HTEwMAgMD9fa3t7eHUqmEXC7HiBEjJH82YvTo0bh7967grHbChAk4ffo0zp8/j1atWklaH8ZY9SEj4rFbLOHr64sbN27oXu/YsQPvv/++pHWYOnUqEhISdK8HDRpk8oOqpsjLy9P1AFSpVHzj1wq4ja2P27hq4fmMLOTo6Ch4bYsnuct3Za9uXT4ZY9UfJyMLubu7C14/fPhQ8jo8evRI8Lp8nRhjrKrjZGShRo0aCV7/9NNPksYvLi7GoUOHBOsaNmwoaR0YY8xSnIws1K9fP8HrpKQkPH78WLL4hw4dQnZ2tmCd1PesGGPMUpyMLNS7d2/BPRqtVovJkyebNHyOubKzswXPIgFAp06d8PLLL1s9NmOMiYmTkYUUCgX69OkjWLd+/XqMHDnSqmdIaWlpCAkJwfnz5wXrIyIirBaTMcashbt2i+DYsWPo0aMHSkpKBOvt7OwQHByM3r17w9PTEy4uLmbPP6LVapGTk4Nbt25h+/btuhlgy/Ly8sLFixet/qwWd4m1Pm5j6+M2rlo4GYlk165dGDBggF5CkoqXlxeSkpLQtGlTq8fiP2Lr4za2Pm7jqoUv04kkNDQUW7duhVwulzy2lImIMcasgZORiEJDQ3H48GEMHDhQkgdPPT09MW7cOBw/fpwTEWPsuVb9h8eWWFBQEIKCgpCfn499+/Zh+/btuHPnDjIzM1FQUGBR2a6urnB3d0ezZs0QHh6Orl27okaNGiLVnDHGbIfvGTGT8bV26+M2tj5u46qFL9MxxhizOU5GjDHGbI6TEWOMMZvjZMQYY8zmOBkxxhizOe7abWUlJSX4+++/Rena7eLiAg8PD3h4eMDOjn9HlCoqKtK1cVFRkdnlyGQyuLq6wsPDA+7u7mYP3VQdFRQU6NrYklFGZDIZ3Nzc4OHhATc3N27jMvLy8vD3338jKysLarXa7HLs7OxQu3ZtKBQKXLlyBT169BCxltbDycgK8vPz8dNPP2HLli3Yu3cv8vPzRS2/fv36CAsLQ3h4OIKCgl7IZ42ysrKwa9cuJCYm4uDBgyguLha1/IYNG2LAgAEIDw9H+/btX8gvzYyMDGzfvh1btmzB0aNHRR+J3s/PD+Hh4YiIiEDLli1fyDa+e/cutm7disTERJw+fVr08l955RWMGTMG4eHhaNKkiejli4qYaDQaDX3xxRekUCgIgCRL/fr1ae3atZIep0ql0sVXqVSSxi4sLKQhQ4aQXC6XrI1feeUV2rlzp6THacs2zsrKor59+5KdnZ1kbezn50cnT56U9Dht2cb37t2jrl27Sta+ACgwMJCuXbsm6XGagpORSDQaDY0cOVLSD1fZZdWqVZIdq63+iAsLC+m9996zSfvK5XLasWOHZMdqqzbOysqi9u3b26SNXV1dJU1Itmrje/fuUZMmTWzSxp6enlU2IfEIDCLQarWIjIzE2rVrn7mfXC63aAqJyq4jr1q1CpGRkWaVbwqVSgVXV1cAQG5uru4pdmsqKipCWFgY9u7d+8z9LGljjUYDjUbzzLITExMlmUnXFm2cnZ2NkJAQnD179pn7OTg4mB2jsjZ2dXXF/v370alTJ7NjGMsWbXz//n1069YNaWlpFe4jk8nMGnC5srYt5enpiaNHj1a98SxtnQ2rg2XLlun9ArGzs6Pu3bvTypUr6c6dO1RUVGRxnPz8fEpJSaG5c+dSQECAwV8+v/76qwhHZDj2nj17aObMmdSzZ09dvNatW9OQIUNoyZIldO7cOdJqtVaJP3nyZINnK3379qUNGzbQgwcPqKSkxKIYWq2W8vLy6OLFixQTE0N+fn4GY969e1ekoxLKzs6mbdu20bRp0+jtt9/WxWzbti2NHDmSVqxYQVevXrVKbCKijz/+WO94FQoFRUREUGJiIj1+/JjUarVFMbRaLeXm5tLp06dp4sSJ9Morr+jFdHNzo7y8PJGOSigjI4P+9a9/UVRUlOAyWbt27Wjs2LG0Zs0aSk9Pt0psIjJ4ac7NzY2GDRtGe/fupSdPnpBGozGpTK1WSzExMXrljhgxgsaOHUv169fX2/baa69Z7W/VXJyMRNCxY0fJL+lotVqaMWOG3ods0qRJosb5448/KCoqijw8PIy6DNCyZUv67rvvRP0y0Wg0el9aUlzSqejS66JFi0SN89tvv9GYMWPI2dnZqDbu2LEjbdy4kYqLi0WrQ15ent69Tiku6VR06XXr1q2ixjl79iwNHjyYHBwcjGrjnj170vbt201ODM9y584dvThNmjShe/fumV1mQUEBffTRRwaP4dChQ0RU8aXXM2fOiHVoouBkZCFDH7D169dLElur1dLo0aMFsRs2bCjKLx61Wk0LFiwgR0dHXdmvvPIKDRkyhP7f//t/unWbNm2imTNnUp8+fcjJyUm33tfXl44fPy7CURKdPn1ar40PHz4sStmV0Wg01LdvX0HsTp06iVJ2YWEhRUdHU40aNQRfTiNHjqRFixbp1imVSpo2bRr17NmT7O3tBWelV65cEaUuiYmJgmO0s7Oj//73v6KUXZnCwkJ68803BfEHDhwoStnZ2dkUGRmp94Np7NixtHz5ct26tWvXUlRUFAUFBZFMJtOtDw4Opj/++EOUuixcuFDvjMiSRJSRkUGdO3euMKFmZ2fr9s3KyqLGjRtb9YerpTgZWajslwYAql27tiiX5Ix1+fJl0X/xlP+Qv/XWW7R7927dJZqKbvw+efKEFi1aRA0aNCAAJJPJaNq0aRYnx4kTJwqOz8/PT9JLDHv37tVr4zt37lhU5o0bN+j111/XlRcaGkpJSUm646qojR88eECzZ88md3d3Ap6ehS9dutSiuhARRURECI6ve/fuFpdpipUrVwriKxQKi8+uL1y4QA0bNtSVOXjwYDp37pxue0Vt/Mcff9CUKVN0P66cnZ3p3//+t0V1IdK/gjJs2DCzy7p+/Tq99tprFSaili1b6r2n/KU8sX64ioWTkYV69+4t+A8ePny4pPG1Wq3evY05c+aYXd7Dhw+padOmBIBq1apFa9as0fvAVtYLKSsriz755BPdPmPGjLHoQ9+yZUvB8cXExJhdljmKioqodu3aop39pqamkre3NwFPu+b/5z//0dunsja+f/8+hYaGivJ/TkS65Fa6SNk7k4jo0aNHel3Jf/75Z7PLO3v2LNWqVYuAp/dHkpKS9PaprI3T0tIoKChI98Nq3bp1ZtenbKzSZe/evWaVlZSUpPf/VX6JjIzUe5+hH66///672cckNk5GFmrXrp1N/4iJiIYPHy6ow+eff25WOYWFhRQYGEjA00ty169fN7ifsV1i161bp/uCmTlzpll1IiJ66aWXRPkjtkT37t0FdViwYIFZ5fz999/UqFEjAkCvv/463b9/3+B+xrSxVqulOXPm6PYz93kztVqt9yUl1uU/U/j7+wvqsHnzZrPK+eOPP3T3OLt27UpZWVkG9zOmjTUaDY0bN46Ap5cuf/rpJ7PqdPv2bb02fvLkiVHv1Wq1dOLECYqLi6Nx48bpkuyzlh9++MFgOeXvS0r9bNezcDKyUPmzksTERMnr8MUXX4hy+h8dHU0AqF69epSWllbhfqY8n7F69WoCQDVq1DC7p1/Ze1EA6PTp02aVY4kBAwaIcnY2ePBgAkA+Pj708OHDCvczpY1LO7K4uLjQzZs3Ta7T33//rfdl9ueff5pcjqU6dOggqMPKlStNLkOj0VBwcDABoDfffJNyc3Mr3NfYNtZqtboz/ZdeesnoJFJW+bMSmUxWaeeIe/fuUXx8vMFenZUtFf2QfPnll23+w64ikg9wtn79eshksmcu3bt3l7paZivfr7/sMxi3bt3SOza5XI4GDRogIiIC58+fF7w3NzcXjRs3hqOjI1JSUgzGS0hIgEwmw6hRo3TratasKdjHnHGtkpOTkZCQAODp80q+vr4ml2HIP/7xD3z44YfQaDQYNmyYWcP2VJc23rNnDzZt2gQ7Ozts2rQJnp6eJpdhSGxsLLp27QqVSoWRI0eCTHx00NCzKc9rG69evRpJSUlQKBT417/+JcqzQzKZDN9++y38/f3x4MEDfP755yaXUf5Y5HJ5heNLajQaREdH45VXXkF0dDRSU1NNiuXh4QE/Pz+D28RoY6uROvtdvHiRYmNjDS6lN3QTEhKkrpbZfHx8BL80yg4bc/PmTd2v4NJjjIqK0v1yk8vl9MsvvwjK+/nnn0kmk1Hbtm31npu5cuUKOTg4UKNGjSgnJ0e3furUqYI6DBo0yOTj6N+/PwGgiIiISvc19cn1x48fU926dQmAWTeCy3fHTU5O1m2Tqo0HDRokqMPUqVNNPo7SS7rG9GIytY3T0tJ0PR9NvfSSkZGh98s6IyNDt12qNn7rrbcEdfj2229NOo6SkhLdL39jut+b2salvTplMpnJPeySk5MFx+bg4GBwv9zcXOrVq5fJZ0JlFzc3N3r06JHB8p/1fWVrVeYyXVFREdWpU4fs7e2fefmiqjEmGYWEhOi9Lz4+ngBQUFCQ3rbx48cTAIqLi9OtKy4upoCAAJLJZHTkyBHB/pYmo7t37+q6FxvzUKU5w6iUXkoydLyVMSYZWbuNLU1Gv/76q+5LqKIvirLMaeMRI0aY9f9vbDKydhtbmoy2b99OAKhu3bpUUFBQ6f7mtHHpA99TpkwxqW7GJKP8/Hxdgje0+Pr60pAhQ57Zi650eeONNwxeTuRkZITNmzcTAOrXr5+tq2ISc5NR6ReAs7Oz3ra8vDzy9fUluVxOFy9eJKL/dcv87LPP9Pa3NBklJCQQ8PRmrzHM+SMum/BM/VVpbjISs40tTUYTJkwgAPTxxx8btb85bVw24Zky1polyUjMNrY0GfXr148A0OTJk43a35w2Lk14Xl5eJvUQNSYZlf6YKLvY2dnR8OHD6cSJE6TVaunevXsGk4+hh3l79uypF6MqJ6MqMynOmjVrAEBwDflFYG+vP4uHQqHA+vXrodFoMHToUJw4cQLx8fHw9/fH/PnzRa9D6VhkoaGhopdd6uWXX0br1q0BAOfOnbNaHENelDZu27YtvLy8UFxcjMuXL1stjiEvShv36tUL9vb2ePjwIe7evStauampqVAqlYJ1derUwS+//IIffvgBnTt3hkwmQ4MGDfTeO2TIECQnJ6NRo0aC9YcOHcKxY8dEq6O1VYlkdPv2bfz88894+eWX0atXL1tXRxKlybdLly4Gt3fu3BkTJ07E1atXdZNjKZVKODk5iV6X5ORkAECbNm1EL7us0vJL41lbVWnjkpISXXLgNrZOGz948AAPHjyAnZ0dAgICRC27LEdHR7z++usAxG3juXPnCuaLqlmzJg4dOiRo18TERIPvVSqVaNGiBZKSklCnTh3Btri4ONHqaG1VYnK9H374AVqtFsOHD7d4ojgiEn0yu8riVSY9PR0zZ84E8HQ2x+TkZCQlJcHT0xNff/11he+bMWMGli9fjoKCAowfPx7t27c3qk5qtRp5eXlG73v79m0AQKNGjYx6X9l9jI0DQNdDLyUlBSqVStTJ1KRu45KSEqOP/fbt2ygqKoK9vT08PT2t2salE6hdvXrV6DY2tnyp27ioqMjouv32228Ank4mV1q/ypjbxv7+/rh8+TKuXbuGd955x6j3PGuW58zMTPzzn/8UrPviiy8QGBioe63VahEREaH33r179+r+j1999VXExcVh/Pjxuu1HjhzBtWvX0KxZM6PqaVO2vk6o0WioYcOGZvVQMcTQk85SLobuGRlavLy8nvksDxEJBkL19fWtcHiU8veMqvti6J6Rtdu4/D2j6r4Yumdk7TYuf8+oOi9l7xnt379fb1vZ9if63/2w8kt5BQUFVK9ePcE+a9as0W3ne0bPcPjwYdy5cwdvv/02Xn31VVtXxypCQkJATzuLICMjA19//TUyMjIQGhoKlUpl8D3JycmYN28e/P39ERUVhfT0dERHR0tc8+cHt7H1cRtbx4ULFwSv27Rpg3r16ule379/Hzt27NB7X0ZGht46R0dHdOvWTbDu4sWLotTT2mx+mU7sjgsKhaLCPwxraNWqFf744w+j969Xrx6ioqKQnZ2NOXPmICYmBosXLxbsU1RUhKFDh4KIoFQq0bp1axw8eBDLli1DWFgYgoKCnhlj4MCBlU70V4qI4OPjg4yMDBw6dAgdO3as9D15eXm6BzYfPXoEZ2dno2J9+eWX+O677xAZGYlvvvnG6Mt0Hh4eJj0sK0UbT5o0yejr8QUFBfDy8oJGo0FKSgoaNmxY6XvMbeOPPvoIu3fvxsyZMzFp0iSj2vjx48cm/xCUoo2/+eYbjB492qj63LlzB82bN0eNGjXw6NEjODo6Vvoec9s4KCgIFy5cwPr16zFgwACj3nPp0qUK76u1bNkSkZGRyM/PR0FBgd5lzIo6LZRNWGX16tULGo0GTk5OUCgU6NChg1F1tDlbnZIREf3111/k4OBAHh4eVFhYaMuqmM3crt35+fnk7e1NcrlcbwiXqKgoAkDR0dG6dRcvXiS5XE4+Pj56lzks7drdp08fAkBLliwxan9zp2suHQl848aNJtXP3K7dYraxpV27SydD3LZtm1H7m9vGpaNUGxoYtCKWdO0Ws40t6dqt1Wp1D1aXHZn7Wcxp4+LiYqpZsyYBMGkSPmMfei2v/NQepYu5Aw/zZboKbNy4EcXFxRg8eLDeMBXVnZOTE6ZMmYKSkhLMnj1bt/7kyZNYuHAhWrZsqbtZDAABAQGYPn06bty4gSlTpohalzfffBMAsH//flHLLeuvv/7Cr7/+CuBpF2QpVMU2PnDggKjllnXt2jXcuXMHdnZ2gpvf1lRV2lgmk0nyOT569CiKiorg7u6O1157zWpxgKedFsLDw/XWl+20UK3YMhO2aNGCANuMECwWc8+MiJ7ebPT29iZ7e3tKT08nlUqle0jwwoULevuXlJRQYGAgyWQyOnr0qG69pWdGqampBDwd5uTGjRuV7m/OL8rSCflat25t8q86c8+MiMRrY0vPjI4ePUrA04dDKxpFuixz2rj0wdr333/fpLpZcmZEJF4bW/rQ68aNGwkAvfzyy0ZNQW9OG3/wwQcEgD799FOT6mbOmZGxnRZMwWdGBpw7dw6//fYb2rVrh5YtW9qqGjbl6OiI6OhoqNVqxMXFYfLkyUhPT0dMTIzBX7b29vZQKpWQy+UYMWKESd1Rn6VJkya6m9PP6qJrLpVKhWXLlgEAPv30U0l/1VWVNg4KCkLz5s2Rl5eH5cuXi1JmWQ8fPtQ9NPnpp5+KXv6zVJU2Dg8PR926dfHnn3/ixx9/FKXMslJSUrBz504AwLhx40QvvyxTOi1UG7bOhs+7qvBLQ4yBUo8cOaJ7f2X3G0z9Rfnpp58S8HRmSXNm73zWmZFUxBgodcOGDQSAatasWemU3qa0sVarpffff58AUJs2bSqdmqC8ys6MpGLpmRER0bx58wgAeXh40IMHD565ryltXFJSopsavW/fvibXy9Qzo/JTPQCgIUOGmBy3vKrwfVURm3ftft6VHwa+pKRE8jqUj2nOg8PBwcGIjIwEAAwfPhwPHz4UpW47d+7UnQmsXbsWCoXC5DKqSxsPHjwYvXv3RlFREQYPHozc3FxR6rZy5Urs3LkTcrkcP/zwQ4VTE1TE0P7PaxtHRUWhdevWePLkCYYNGybaccTGxuLXX3+Fm5sbvvvuO5PfX76N1Wp1hQ/MX758Gffv39dbX364IHOI0cbWwsnIQrVr1xa8zsrKkrwOmZmZgtfl62Ssr7/+Gq+99hpu376Nnj17WpyQfvrpJwwcOBDA08sapcPBmKoqtHH5mOa0sUwmw+rVq1GnTh1cvHgRffr0QU5OjkX1Wr9+ve6y3KxZs8y65O3m5qa37nn9HMvlcqxfvx5OTk44ePAgPvzwQxQVFZldJyLCvHnzMG/ePADAsmXLDHa1rkz5Y9FqtRX+GPn+++8FQwMB4nVaEOu7wipsfWr2vAsJCRGc9o4dO1byOrzxxhuCOlgyxXdaWppumu8GDRoYnGa5sssbRUVFNGPGDN0o3f369aPi4mKz69S8eXPB8c2dO9fsssyhVqupfv36gjqYO8U3EdG5c+d0U0f7+/sbnLm2sjbOzc3VTYdd+rkzt7svEelNZb1hwwazyzJHZmam3uXYAwcOmF3eTz/9pCvvzTffNHhZtLI2fvz4MX344YeifO6ys7P1LruVn0KjlEajoTVr1ui6qkdFRZkdt6zSjkpll5SUFFHKFgMnIwvNnTtX8J/r6elJarVasviGPmCmPGNiyI0bNwRTHQ8aNEg3BQBRxX/ExcXFlJiYSK1atdJtHzp0qEWJiIhozJgxguMLCAiwqDxTlb2fVrpUNgROZZKTk3VJ387OjsaNG0e///67bntFbZyfn08//PADvfrqq7rtkydPtigREf3vWbPSxZz7IpZQKpV691SM6XX4LAcPHiQ3NzddedHR0XTnzh3d9oraODs7m5YtW6b7AVKjRg1auHChRXUh+t+zZsb+cP37779p8uTJggkILWHr76rKcDKykKFksGvXLsniR0dHW+UDlpeXR//3f/9HMplMV3b79u0pOjqa/vnPf+rWHT16lNasWUNjxozRfbkCTyc427x5swhHaDgZGOoybC1DhgyxSjL8+++/afDgwYKyg4ODKTY2lrZs2aJbd/jwYVqxYgV98skn5O7urlvfsGFDOnTokCh1Ke1cUTYZ/Pnnn6KUXRmNRkNvv/22VZLhn3/+Se+++66uXDs7O+rduzfNnTuXduzYoVu/f/9+Wrx4MQ0aNIicnZ11619//XX69ddfRalL+WRQv359ixOusQoLC/WuMNjiKs6zcDISQflfPK6uriZP/WyOVatW6X1Jjxs3TtQYZ8+epQ8//JDs7e31Yhla6tevT9OnTzdqNlNjGbpM5uXlRdeuXRMtRkViY2P1jnHevHmixjh06BD16dNHkPiftTRq1Iji4+MpOztbtDpkZWXpXSbz8/Oje/fuiRbDEI1GQyNHjtQ7RlNH6XgWrVZL27Zto27duhnVvgCoWbNmtGzZMlFHhjH0w7V9+/ZWT0iFhYV6Z76A5VdQxMbJSASlUy+XXRQKBQ0bNoz27t1LRUVFosXKysqiDRs2GPxwlZ6pWMODBw/ou+++o1GjRgkuw3l7e9Pbb79NX375Jf3nP/8R9VjLKnt/pHRxd3ensWPH0pEjR0S93JCRkUErV66scApoSy/RVeTmzZu0ZMkSGjp0qOBX7Msvv0y9evWi6dOn0759+6x2aSU0NFTvWL28vGjixIl05swZiy8FlnX37l1atGiRrrt02aVmzZpW+4L+73//SwsWLKCPPvpIcCm6UaNG1LdvX5o5cyYdPXpU1GMtKzAwUO94GzduTDExMXT58mVR46amptLcuXP1zohK/1+r0iU6IiIZkRET8rBnKioqwoABA7Bnzx6D2+VyOdzd3eHi4mJ2jxitVoucnBxkZmbq9bQpFRsbKxh6xVqozJxRCoVCkodYs7OzERISopvNs7yaNWvC3d3dovpoNBpkZ2cjKyurwm63q1at0nWBtyZbtPH9+/cRHByM1NRUg9udnJzg7u5u0cR4arUaWVlZyM7ONrhdLpdj69atVp2ttZQt2vj69evo1q0bHj16ZHC7s7Mz3N3dLRoeraSkBJmZmRX21nN1dcX+/fvRqVMns2NYhS0zYXVS0amwVEtsbKytm8DqsrKyqH379jZr41WrVtm6Cazu3r17gjMGKRe5XF6lHsK0lmvXrpGnp6dN2liqWwjm4GQkosLCQgoPD5f0w+Xg4ECzZs2y9aFLJisrS+9mt7UXhUJBq1evtvWhS+bevXsGLydZc6ldu/YLkYhKXbt2jV577TVJ29jLy6vKJiIivkxnFXfv3sW2bduQmJiIU6dOiV6+g4MDQkJCEB4ejtDQUIMPLVZ36enpSExMxJYtW3Dp0iXRy1coFOjTpw8iIiLw7rvvmjVyxPOMiHD16lUkJiYiMTERv//+u+gxateujX79+iE8PBw9evSAg4OD6DGqMiLCuXPndG18584d0WPUr18fYWFhiIiIQNeuXavUiAvlcTKysocPH+LPP/9EZmYmCgoKLCrL1dVVN3R9rVq1RKrh8+/u3bt48OABMjMzLXraXiaToVatWnB3d4evr+8Ll4AqQkS4efMmMjIykJmZadEQO3Z2dnBzc4O7uzv8/PxeuARUESJCWloa/vrrL2RlZUGtVptdVo0aNVC7dm14eHjAz8+vSiegsjgZMcYYszkem44xxpjNcTJijDFmc5yMGGOM2RwnI8YYYzbHyYgxxpjNcTJijDFmc5yMGGOM2RwnI8YYYzbHyYgxxpjNcTJijDFmc5yMGGOM2RwnI8YYYzbHyYgxxpjNcTJijDFmc5yMGGOM2RwnI8YYYzbHyYgxxpjNcTJijDFmc5yMGGOM2RwnI8YYYzbHyYgxxpjNcTJijDFmc5yMGGOM2RwnI8YYYzbHyYgxxpjNcTJijDFmc5yMGGOM2RwnI8YYYzbHyYgxxpjNcTJijDFmc5yMGGOM2RwnI8YYYzbHyYgxxpjNcTJijDFmc/8fHtV01RtkIbsAAAAASUVORK5CYII=\n"
+          },
+          "metadata": {}
+        }
+      ],
+      "source": [
+        "def block(weights, wires):\n",
+        "    qml.RX(weights[0], wires=wires[0])\n",
+        "    qml.RX(weights[1], wires=wires[1])\n",
+        "    qml.CNOT(wires=wires)\n",
+        "\n",
+        "\n",
+        "dev = qml.device(\"default.qubit\", wires=8)\n",
+        "\n",
+        "\n",
+        "@qml.qnode(dev, interface=\"autograd\")\n",
+        "def circuit(template_weights):\n",
+        "    qml.TTN(\n",
+        "        wires=range(8),\n",
+        "        n_block_wires=2,\n",
+        "        block=block,\n",
+        "        n_params_block=2,\n",
+        "        template_weights=template_weights,\n",
+        "    )\n",
+        "    return qml.expval(qml.PauliZ(wires=7))\n",
+        "\n",
+        "\n",
+        "weights = np.random.random(size=[7, 2])\n",
+        "fig, ax = qml.draw_mpl(circuit, expansion_strategy=\"device\")(weights)\n",
+        "fig.set_size_inches((4, 4))"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "WbzXoXTOqtzJ"
+      },
+      "source": [
+        "Classifying the bars and stripes data set\n",
+        "=========================================\n",
+        "\n",
+        "Next, we use a tensor-network quantum circuit to tackle a toy machine\n",
+        "learning problem. For this, we use the bars and stripes data set and\n",
+        "optimize a parametrized circuit to label the images as either bars or\n",
+        "stripes. The data set is composed of binary black and white images of\n",
+        "size $n \\times n$ pixels. In images that should receive the bars label,\n",
+        "all pixels in any given column have the same color. In images with the\n",
+        "stripes label, all pixels in any given row have the same color. The full\n",
+        "data set for $4\\times 4$ images is shown in the image below:\n",
+        "\n",
+        "![](../demonstrations/tn_circuits/BAS.png){.align-center height=\"300px\"}\n",
+        "\n",
+        "A quantum circuit that successfully performs this task accepts any image\n",
+        "from the data set as input and outputs the correct label. We will\n",
+        "therefore choose a data encoding strategy that can record the input\n",
+        "image in a qubit register, a processing circuit that can analyze the\n",
+        "data, and a final measurement that can serve as a label of either\n",
+        "stripes or bars.\n",
+        "\n",
+        "The first step is to generate the bars and stripes data set. For\n",
+        "$2\\times 2$ images, we can manually define the full data set, giving\n",
+        "white pixels a value of 1 and black pixels a value of 0:\n"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": 100,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 268
+        },
+        "id": "jFqOsGo_qtzJ",
+        "outputId": "37a259ac-bdc1-46a8-b322-ec0e08c866b1"
+      },
+      "outputs": [
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "<Figure size 300x300 with 4 Axes>"
+            ],
+            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD7CAYAAACscuKmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAEp0lEQVR4nO3csW7iWhRA0UuUFuhR+P8Pi+Q+do9flamehN8bM0PYa9XW1UkOGwyFD+u6rgN4eW9/ewDgzxA7RIgdIsQOEWKHCLFDhNghQuwQ8b7lotvtNqZpGsfjcRwOh0fPxP+wrutYlmVcLpfx9rbfe7jdP7+tu98U+zRN43q97jYcj/P5+Tk+Pj52O8/uf457u98U+/F4/HXY6XTaZzJ2Nc/zuF6vv3a1l73P43Hu7WpT7N+3b6fTSexPbu9bbbfuP8e9XfmBDiLEDhFihwixQ4TYIULsECF2iBA7RIgdIsQOEWKHCLFDhNghQuwQIXaIEDtEiB0ixA4RYocIsUOE2CFC7BAhdogQO0SIHSLEDhFihwixQ4TYIULsECF2iBA7RIgdIsQOEWKHCLFDhNghQuwQIXaIEDtEiB0ixA4RYocIsUOE2CFC7BAhdogQO0SIHSLe/8vF5/P5UXPw5L6+vsbpdPrbY/Av5nne1KZPdogQO0SIHSLEDhFihwixQ4TYIULsECF2iBA7RIgdIsQOEWKHCLFDhNghQuwQIXaIEDtEiB0ixA4RYocIsUOE2CFC7BAhdogQO0SIHSLEDhFihwixQ4TYIULsECF2iBA7RIgdIsQOEWKHCLFDhNghQuwQIXaIEDtEiB0ixA4RYocIsUOE2CFC7BAhdogQO0SIHSLet1y0ruuj52Ane+/q+7x5nnc9l/187+be7jfFvizL70/EH7Esyzifz7ueN8YY1+t1tzN5jHu7P6wbPgput9uYpmkcj8dxOBx2HZB9rOs6lmUZl8tlvL3t9+3M7p/f1t1vih34+fxABxFihwixQ4TYIULsECF2iBA7RIgdIsQOEWKHCLFDhNghQuwQIXaIEDtEiB0ixA4Rm55B59FEz89jqbq27n5T7NM0eeDgD/H5+Tk+Pj52O8/uf457u98U+/F4/HXY6XTaZ7InsOdTWJ/F966e9bxn8PX19bdH2NU8z+N6vd7d1abYv2/fTqfTS8X+iva+1X7FW/dXfQ3f25Uf6CBC7BAhdogQO0SIHSLEDhFihwixQ4TYIULsECF2iBA7RIgdIsQOEWKHCLFDhNghQuwQIXaIEDtEiB0ixA4RYocIsUOE2CFC7BAhdogQO0SIHSLEDhFihwixQ4TYIULsECF2iBA7RIgdIsQOEWKHCLFDhNghQuwQIXaIEDtEiB0ixA4RYocIsUOE2CFC7BAhdogQO0SIHSLEDhFihwixQ4TYIULsECF2iBA7RIgdIsQOEWKHCLFDhNghQuwQIXaIEDtEiB0ixA4RYocIsUOE2CFC7BAhdogQO0SIHSLEDhFihwixQ4TYIULsECF2iBA7RIgdIsQOEWKHCLFDhNghQuwQIXaIEDtEiB0ixA4RYocIsUOE2CFC7BAhdogQO0SIHSLet1y0rusYY4x5nh86DL/ve1fPet4zeLXX8fffc29Xm2JflmWMMcb1ev3NsXi0ZVnG+Xze9bxXs+f/55nc2/1h3fDWfbvdxjRN43g8jsPhsOuA7GNd17Esy7hcLuPtbb9vZ3b//LbuflPswM/nBzqIEDtEiB0ixA4RYocIsUOE2CHiH7pR48xrbQrKAAAAAElFTkSuQmCC\n"
+          },
+          "metadata": {}
+        }
+      ],
+      "source": [
+        "import matplotlib.pyplot as plt\n",
+        "\n",
+        "BAS = [[1, 1, 0, 0], [0, 0, 1, 1], [1, 0, 1, 0], [0, 1, 0, 1]]\n",
+        "j = 1\n",
+        "plt.figure(figsize=[3, 3])\n",
+        "for i in BAS:\n",
+        "    plt.subplot(2, 2, j)\n",
+        "    j += 1\n",
+        "    plt.imshow(np.reshape(i, [2, 2]), cmap=\"gray\")\n",
+        "    plt.xticks([])\n",
+        "    plt.yticks([])"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "ijzq5BxfqtzJ"
+      },
+      "source": [
+        "The next step is to define the parameterized quantum circuit that will\n",
+        "be trained to label the images. This involves determining the block and\n",
+        "the tensor-network architecture. For the block, a circuit consisting of\n",
+        "`~pennylane.RY`{.interpreted-text role=\"class\"} rotations and\n",
+        "`~pennylane.CNOT`{.interpreted-text role=\"class\"} gates suffices for\n",
+        "this simple data set.\n"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": 101,
+      "metadata": {
+        "id": "6gyHkHrBqtzJ"
+      },
+      "outputs": [],
+      "source": [
+        "def block(weights, wires):\n",
+        "    qml.RY(weights[0], wires=wires[0])\n",
+        "    qml.RY(weights[1], wires=wires[1])\n",
+        "    qml.RY(weights[0], wires=wires[0])\n",
+        "    qml.RY(weights[1], wires=wires[1])\n",
+        "    qml.CNOT(wires=wires)"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "Mwn7JsGYqtzJ"
+      },
+      "source": [
+        "As for the tensor-network architecture, we use the tree tensor-network\n",
+        "quantum circuit. We use\n",
+        "`~pennylane.BasisStatePreparation`{.interpreted-text role=\"class\"} to\n",
+        "encode the input images. The following code implements the\n",
+        "`~pennylane.BasisStatePreparation`{.interpreted-text role=\"class\"}\n",
+        "encoding, followed by a `~pennylane.TTN`{.interpreted-text role=\"class\"}\n",
+        "circuit using the above `block`. Finally, we compute the expectation\n",
+        "value of a `~pennylane.PauliZ`{.interpreted-text role=\"class\"}\n",
+        "measurement as the output. The circuit diagram below shows the full\n",
+        "circuit. The `~pennylane.BasisStatePreparation`{.interpreted-text\n",
+        "role=\"class\"} encoding appears in the initial\n",
+        "`~pennylane.PauliX`{.interpreted-text role=\"class\"} gates.\n"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": 102,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 387
+        },
+        "id": "6y0ZOlGaqtzJ",
+        "outputId": "5f82a59b-3f39-44cf-a93c-6d6775d9fc7a"
+      },
+      "outputs": [
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "<Figure size 600x350 with 1 Axes>"
+            ],
+            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmsAAAFyCAYAAACqfZ0qAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABJHklEQVR4nO3de1xUdf4/8NcMIOooKSp4qbBcY9XVb99HZLap5bc2LxkVuKVgGnlpJUwRE/Wr+7PFUr8+DNxSV0sFb7QrqbSt5C6lq8nKIt92NU3UksrsCyFymUmQmfn8/vDB5JnhMgMzc26v5+NxHnXOnPM577efc4b3nKtBCCFARERERIpklDsAIiIiImoeizUiIiIiBWOxRkRERKRgLNaIiIiIFIzFGhEREZGCsVgjIiIiUjAWa0REREQKxmKNiIiISMFYrBEREREpGIs1IiIiIgVjsUZERESkYCzWiIiIiBSMxRoRERGRgrFYIyIiIlIwFmtERERECsZijYiIiEjBWKwRERERKRiLNSIiIiIFY7FGREREpGAs1oiIiIgUjMUaERERkYKxWCMiIiJSMBZrRERERArGYo2IiIhIwVisERERESkYizUiIiIiBWOxRkRERKRgLNaIiIiIFIzFGhEREZGCsVgjIiIiUjAWa0REREQKxmKNiIiISMFYrBEREREpGIs1IiIiIgVjsUZERESkYCzWiIiIiBSMxRoRERGRgrFYIyIiIlIwFmtERERECsZijYiIiEjBWKwRERERKRiLNSIiIiIFY7FGREREpGAs1oiIiIgUjMUaERERkYKxWCMiIiJSMBZrRERERArGYo2IiIhIwVisERERESkYizUiIiIiBQuUOwDyritXrqC8vBwVFRWoqqqCEMKr7RsMBnTr1g09e/ZEWFgY+vbt69X2PcV8tZ0vERGxWFM9IQROnTqFnJwc5OTk4Ny5c35d/6BBgxAbG4tJkyZh2LBhMBgMPl0f89V2vkRE5MogvP3TnPzm448/RmJiIs6fPy93KACAyMhIbNiwAY8++qhP2me+8vJ1vkRE1DRes6ZC9fX1SE5OxmOPPaaYP+QAUFJSgsceewzJycmor6/3WrvMVxl8lS8REbWMR9ZUxm63Iz4+Hu+9916z8xiNRvTo0QPdu3dHYKB3z3RbrVZcu3YNV69ehd1ub3a+KVOmYPfu3e0+bcZ8XWkpXyIicoMgVVm2bJkA4DJERESIlJQUUVBQIKxWq8/jsFqtoqCgQKSkpIiIiIgmY1q+fHm718N8tZ0vERG1jsWaihQVFbn8wQwODhbr168XNptNtrhsNptYv369CA4OdomvqKioze0yX23nS0RE7mGxpiLjxo2T/KEMCAgQeXl5coflcPDgQWE0GiUxjh8/vs3tMV9t50tERO5hsaYSJ06ccDmqkZaWJndYLtLS0lziLCws9Lgd5qvtfImIyH28G1Ql/vKXv0jGw8PDkZycLFM0zUtOTkZYWJhkmnPs7mC+2s6XiIjcx2JNJY4dOyYZnzp1Kkwmk0zRNM9kMuH555+XTHOO3R3MV9v5EhGR+1isqUB9fT1OnDghmTZ69GiZomndqFGjJOP/+Mc/cOPGDbeXZ77azpeIiDzDYk0FiouLUVdXJ5k2cuRImaJpnXNsdXV1KC4udnt55qvtfImIyDMs1lTg9OnTkvEhQ4YgNDRUpmha16NHDwwePFgy7dSpU24vz3y1nS8REXmGxZoKVFdXS8bvuOMOmSJxn3OMNTU1bi/LfLWdLxEReYbFmgo4/zG/7bbbZIrEfc4xOufQEuar7XyJiMgzLNZUoLa2VjIeEhIiUyTuc/5j7smRF+ar7XyJiMgzLNZUwGazScaDgoJkisR9zjE659AS5qvtfImIyDMs1oiIiIgULFDuAIiIvEUIAbPZDADo0qULDAaDzBEREbUfj6wRkeqVlpYiMTERJpMJISEhCAkJgclkQmJiIkpLS+UOj4ioXRRZrBUVFWHChAno1q0bTCYTRowYgT/96U9yh6UZb731FgwGA6ZNm9bk59euXUO/fv3QuXNnnD9/3s/RtU9paSkMBoNkCAoKQr9+/fDss8/i5MmTAICMjAwYDAYkJCQ029aRI0dgNBpx//33w2q1+isFj+gtX2dWqxVz587FwIEDsWnTJly/ft3x2fXr17Fp0yYMHDgQc+fO5XV1RKRaijsNevjwYYwdOxYdO3bE5MmT0bVrV7z//vt47rnn8O233yIlJUXuEFUvKSkJ+/btw86dOxEbG4unnnpK8vnLL7+MK1euYP369bjnnntkirJ9BgwYgKlTpwIALBYLiouLsXfvXhw4cAD5+fmYN28ecnNzkZmZiZiYGDz55JOS5c1mMxISEhAcHIwdO3YgMFBxu4qE3vIFbp7ynDFjBnbs2NHifFarFW+//TZqamqQmZnJU6NEpD5CQRoaGsSAAQNEcHCw+OyzzxzTq6qqxD333CM6dOggSktL5QtQJomJiQKAY0hMTGx3m5cuXRJdunQRYWFh4ocffnBM37t3rwAgxowZI+x2uywxt2fZS5cuCQBi7NixLp+tWrVKABCjR48WQghRWloqQkJCRHh4uKioqJDMO3v2bAFApKen+zxmveXrLenp6ZIY3BkyMjL8HicRUXsp6jToJ598gi+//BJxcXG49957HdNvu+02LF26FDdu3EBWVpZ8AWpI//79sW7dOpSXl2POnDkAgLKyMsyZMwddu3bF9u3bNXcEYsaMGQDgeI9lREQEMjIyHHk3OnToELZs2YIxY8Zg3rx5ssTqDVrOt6qqCosXL/Z4udTUVD7Al4hUR1HF2pEjRwAAjz/+uMtnY8eOBQD8/e9/92dImjZ79myMHTsWOTk5yM7OxuzZs1FRUYGMjAxERETIHZ7P3HqKLyEhAdHR0di7dy+ys7NRVVWFmTNnIiQkRDMFqxbz3bdvH+rr6z1err6+Hvv27fNBREREvqOoYu3ChQsAgIEDB7p81rt3b3Tp0sUxD3nH1q1b0a1bNyQkJOCDDz7AxIkT8eKLL8odlk+8++67AICRI0dKpm/ZsgU9e/bEyy+/jBdeeAGXL1/WRMGq5Xx3794ty7JERHJQ1FXEjacnmns3YkhIiM9PYQgh8OOPP/p0HZ5qaGjwWdv9+vVDUlISVq5ciaCgIGzZssUn62loaIDFYnF73va6ePEiVqxYAeCnC+4PHz6M8PBwrF27VjJveHg4Nm/ejNjYWOTm5iI6OrrFuybdwXx9x2azOY7Ct8Xhw4dRW1sLo1FRv1WJ6BadO3dWzZF+v5D7orlb/epXvxIAxIULF5r8vG/fviIkJMSnMZjNZo8vWvb34M2LucvKykSvXr0cbW/ZssUr7TpfgO6vfBsvuG9q6N27d7PblhBCDB8+XAAQZ8+eZb5+zJcDBw4cnAez2ezx95KWKeqnZeMRteaOntXU1DR71I3a5je/+Q1++OEHrF69Gj179kRKSgq++eYbucNqt7Fjx0IIASEEysvLsXbtWpSXlyM6OtrxhHtnnTp1kvxXTfSWLxGRnijqNGjjtWoXLlzAfffdJ/ns//7v/2A2mzF8+HCfxtC5c+dm/7jJJTk5Ge+8847X2925cyf279+PiRMnIjU1Ff3798fkyZMxY8YM/O1vf/PqumbNmoX09HS35vV2vr169cLChQtRXV2NlStXYtmyZcjIyPBa+01hvr5js9nQvXt32O32Ni1vNBpRVVXF06BECta5c2e5Q1AURRVrDz/8MFatWoW//vWvmDx5suSzQ4cOOebxJYPBAJPJ5NN1eCooKMjrbX733Xd45ZVXEBoa6rhO7bnnnkNOTg5ycnKwefNmvPTSS15bX1BQkNv/rr7IFwCWLl2Kbdu2YePGjZg/fz769+/vk/UAzNfXHnnkEXzyySdtWnbMmDHo2rWrlyMiIvIdRf20fPTRR3H33Xdjz549+Ne//uWYXl1djTfeeAMdOnRo9hVJ5JkZM2agqqoKb7/9Nvr06eOYvnHjRvTq1Quvvvoqvv76axkj9L5OnTohNTUVDQ0NSEtLkzscn9NyvvHx8bIsS0QkB0UVa4GBgXj33Xdht9sxevRozJ49GykpKfiP//gPnD9/Hm+88YZPjw7oxebNm3Ho0CFMmjQJU6ZMkXzWq1cvbNq0CbW1tXjxxRchhJApSt+YPXs2+vbtix07duDLL7+UOxyf02q+MTExCA4O9ni54OBgxMTE+CAiIiLfUVSxBtw8RfHpp5/ioYcewh//+Eds2rQJ4eHheO+99/heUC+4dOkSFi5ciLCwMGzatKnJeWJjYzFlyhR88sknzc6jVh07dsSSJUtgtVrx2muvyR2Oz2k1327dumH16tUeL7dmzRrepEREqqOoa9YaDR8+HHl5eXKHoUl33XUXamtrW51vz5492LNnjx8i8q7+/fu3ejQwKSkJSUlJLtPb8+wuuegt31vNmzcPn332Wasvcm80bdo0vPLKKz6OiojI+xR3ZI2IyB0GgwHbtm1DUlKS5JVazgIDAzF37lxs27aND9kkIlVisUZEqhUQEIC33noLFy9eRGJiouR2/86dOyMxMREXL17E73//ewQEBMgYKRFR2ynyNCgRkSciIiKwYcMGrFmzxvFYjrKyMnTp0kXmyIiI2o9H1ohIM249zclTnkSkFSzWiIiIiBSMxZoKOF9r09DQIFMk7nOO0ZPrhZivtvMlIiLPsFhTAedX49TU1MgUifuqq6sl4yEhIW4vy3y1nS8REXmGxZoKOD/E0/kPpRI5x+jJg0iZr7bzJSIiz7BYUwHnP4TffvutTJG4zzlGT468MF9t50tERJ5hsaYCQ4cOlYyfOXMGlZWVMkXTuqtXr+Ls2bOSacOGDXN7eear7XyJiMgzLNZUICoqCh07dpRM+/TTT2WKpnXOsXXq1An33Xef28szX23nS0REnmGxpgIdOnTAiBEjJNOOHj0qUzStO3bsmGR8xIgR6NChg9vLM19t50tERJ5hsaYSo0aNkozv2rULFotFpmiaZ7FYsHPnTsk059jdwXy1nS8REbmPxZpKTJw4UTJeVlaG9PR0maJpXnp6OsrLyyXTnnjiCY/bYb7azpeIiDwgSDXGjRsnADiGgIAAkZeXJ3dYDgcPHhRGo1ES4/jx49vcHvPVdr6+YDabHbGZzWa5wyEi8goWaypSVFQk+UMJQAQHB4uMjAxhs9lki8tms4mMjAwRHBzsEl9RUVGb22W+2s7XF1isEZEWsVhTmWXLlrn8wQQgIiIixIIFC8Tx48eF1Wr1eRxWq1UcP35cLFiwQERERDQZ0/Lly9u9Huar7Xy9jcUaEWmRQQgh2nL6lOQhhEB8fDyys7ObncdoNCI0NBShoaEIDAz06vqtVisqKytRWVkJu93e7HxxcXHYtWsXDAZDu9bHfF1pKV9vs1gs6NKlCwDAbDbDZDLJHBERkRfIWipSm9TV1Ynk5OQmj3YoYUhOThZ1dXXMl/n6HY+sEZEW8ciain388cd4+eWXUVJSIncoAIDIyEhs2LABjz76qE/aZ77y8nW+3sAja0SkRSzWVE4IgdOnTyMnJwc5OTn44osv/Lr+wYMHIzY2FpMmTcLQoUN9flqM+Wo73/ZisUZEWsRiTWO+//57lJeXo6KiAteuXYO3u9dgMKB79+7o2bMnwsLC0KdPH6+27ynmq+18PcVijYi0iMUaEWkGizUi0iK+wYCIiIhIwVisERERESkYizUiIiIiBWOxRkRERKRgLNaIiIiIFIzFGhEREZGCsVgjIiIiUjAWa0REREQKxmKNiIiISMFYrBEREREpGIs1IiIiIgULlDsA8q4rV644XvRdVVXlkxd9d+vWzfGi7759+3q1fU8xX23nqzd661+95UvUVizWVE4IgVOnTiEnJwc5OTk4d+6cX9c/aNAgxMbGYtKkSRg2bBgMBoNP18d8tZ2v3uitf/WWL5HXCFKt/Px8cc899wgAihgiIyNFfn4+82W+sjGbzY54zWaz3OG0SG/9q7d8ibyJxZoK1dXVifnz58v+ZdfcMH/+fFFXV8d8ma/fqaFY01v/6i1fIl8wCOHliwTIp+x2O+Lj4/Hee+81O4/RaESPHj3QvXt3BAZ690y31WrFtWvXcPXqVdjt9mbnmzJlCnbv3t3u0wzM15WW8vU2i8WCLl26AADMZjNMJpPMEUnprX/1li+Rz8hdLZJnli1b1uSvw4iICJGSkiIKCgqE1Wr1eRxWq1UUFBSIlJQUERER0WRMy5cvb/d6mK+28/U2pR9Z01v/6i1fIl9hsaYiRUVFLl8wwcHBYv369cJms8kWl81mE+vXrxfBwcEu8RUVFbW5Xear7Xx9oaamxhFbTU2N3OFI6K1/9ZYvkS+xWFORcePGSb5YAgICRF5entxhORw8eFAYjUZJjOPHj29ze8xX2/l6w6VLl0RmZqaYOXOmGDRokCQ+o9EoBg0aJGbOnCkyMzPFpUuXZI1Vb/2rt3yJfInFmkqcOHHC5VdgWlqa3GG5SEtLc4mzsLDQ43aYr7bzba+TJ0+KZ555psnTWS0NMTExori42O/x6q1/9ZYvka+xWFOJ5cuXS75QwsPDFXlNjtlsFmFhYZJYf/vb33rcDvPVdr5tVVJSIsaPH+9Yt8FgEA8++KBYtGiRyM3NFefOnXN8du7cOZGbmysWLVokHnzwQZcjKCUlJX6LW2/9q7d8iXyNr5tSiWPHjknGp06dqrg73QDAZDLh+eefl0xzjt0dzFfb+bbFvn37EBUVhby8PBiNRkydOhWff/45CgoKsGbNGkRHR+P22293zH/77bcjOjoaa9asQUFBAT7//HPEx8fDaDQiLy8PUVFR2L9/v19i11v/6i1fIl9jsaYC9fX1OHHihGTa6NGjZYqmdaNGjZKM/+Mf/8CNGzfcXp75ajtfT1mtVqSmpiI2Nha1tbUYNWoUSkpKsHPnTgwePNjtdoYMGYJdu3ahpKQEo0aNQm1tLWJiYpCamgqr1eqz+PXWv3rLl8gv5D60R607fvy4y3UVV69elTusZlVUVLjEW1BQ4PbyzFfb+XrCZrOJadOmOdazYMECcePGjWbnd/fRHTdu3BDJycmOeadPn+6zOxT11r96y5fIH3hkTQVOnz4tGR8yZAhCQ0NliqZ1PXr0cDnicerUKbeXZ77aztcTS5cuxY4dOxAQEIDs7GysW7cOQUFB7W43KCgIb775Jvbs2YOAgABkZWVh6dKlXojYld76V2/5EvkDizUVqK6ulozfcccdMkXiPucYa2pq3F6W+Wo7X3ft2bMHa9asAQBs3boVkydP9vo6pkyZgq1btwIA1qxZg+zsbK+vQ2/9q7d8ifyBxZoKOH/53XbbbTJF4j7nGJ1zaAnz1Xa+7rhy5Qpmz54NAFiyZAmmT5/u1fZvNX36dCxevBgAMGvWLFy5csWr7eutf/WWL5E/sFhTgdraWsl4SEiITJG4z/nLz5NfqsxX2/m6Y+nSpbBYLBgxYgTS0tK82nZTVq5ciQceeAAWiwX//d//7dW29da/esuXyB9YrKmAzWaTjHvjmh1fc47ROYeWMF9t59uakydPIisrCwCQkZGBgIAAr7XdnICAAGRkZAAAMjMzUVxc7LW29da/esuXyB9YrBGRoqSkpAC4+WyuBx54wG/rHTFiBOLj4wEACxYs8Nt6iYhaw2KNiBTj3LlzOHr0KAIDA7Fq1Sq/r3/16tUIDAzE0aNHUVJS4vf1E91KCIHa2lrU1tZCCCF3OCQjFmtEpBi7d+8GAIwdO1byNgJ/uf322/H4449LYiHyt9LSUiQmJsJkMiEkJAQhISEwmUxITExEaWmp3OGRDBRXrO3atQsvvfQSoqKiEBwcDIPBgMzMTLnD0pS33noLBoMB06ZNa/Lza9euoV+/fujcuTPOnz/v5+jap7S0FAaDQTIEBQWhX79+ePbZZ3Hy5EkAN6+FMhgMSEhIaLatI0eOwGg04v777/fpE+7bQ0v5CiGwZ88eAHCcjpRD47p3794t+9EMLfWvO/SWrzOr1Yq5c+di4MCB2LRpE65fv+747Pr169i0aRMGDhyIuXPn8ro6nQmUOwBny5Ytw9dff42ePXuiT58++Prrr+UOSXOSkpKwb98+7Ny5E7GxsXjqqackn7/88su4cuUK1q9fj3vuuUemKNtnwIABmDp1KgDAYrGguLgYe/fuxYEDB5Cfn4958+YhNzcXmZmZiImJwZNPPilZ3mw2IyEhAcHBwdixYwcCAxW3q0hoId+TJ0/iq6++gslkQnR0tN/X3+ipp56CyWTCV199hZMnT+L++++XLZZGWuhfT+gtX+Dmj5UZM2Zgx44dLc5ntVrx9ttvo6amBpmZmTAYDH6KkGQl6/sTmvC3v/1NlJaWCiGEWLVqlQAgtm/fLm9QMktMTJS8CiUxMbHdbV66dEl06dJFhIWFiR9++MExfe/evQKAGDNmjLDb7bLE3J5lL126JACIsWPHunzWuD2NHj1aCCFEaWmpCAkJEeHh4aKiokIy7+zZswUAkZ6e7vOY9ZZvczZs2CAAiCeeeKLNbbj7uqnWTJgwQQAQGzdubHMbjfTWv3rL11vS09NdXnvV2pCRkeH3OEkeijsN+thjjyEiIkLuMDSvf//+WLduHcrLyzFnzhwAQFlZGebMmYOuXbti+/btmvvFNmPGDABwPJYhIiICGRkZjrwbHTp0CFu2bMGYMWMwb948WWL1BrXl+/nnnwMAhg4dKlsMjRpjaIxJidTWv+2l5XyrqqocD2b2RGpqKh/gqxOKK9bIf2bPno2xY8ciJycH2dnZmD17NioqKpCRkaHpgvnWUyIJCQmIjo7G3r17kZ2djaqqKsycORMhISGaKVjVkm9jYfSLX/xCthgaNcag5GKtkVr611u0mO++fftQX1/v8XL19fXYt2+fDyIipWGxpnNbt25Ft27dkJCQgA8++AATJ07Eiy++KHdYPvHuu+8CAEaOHCmZvmXLFvTs2RMvv/wyXnjhBVy+fFkTBava8j1z5gyAmy/+lltjDEou1tTWv+2l5Xzbc+cx71rWB+VfdelnQgj8+OOPcoch0dDQ4LO2+/Xrh6SkJKxcuRJBQUHYsmWLT9bT0NAAi8Xi9rztdfHiRaxYsQLATxcoHz58GOHh4Vi7dq1k3vDwcGzevBmxsbHIzc1FdHR0i3eZuYP5esZms6GyshLAzVf/tLWtW5drTzyNrx+qrKxEbW0tjMa2/67VW//qLd/2stlsOHLkSJuXP3z4cLu3USXq3Lmzao6M+oXcF821RI4bDG69QFmpgzcvfi0rKxO9evVytL1lyxavtOt8wa6/8m28QLmpoXfv3uLChQvNLjt8+HABQJw9e5b5+jFfvQ1661+95cvBO0N7bhDSIm2V4uSx3/zmN/jhhx+wevVq9OzZEykpKfjmm2/kDqvdxo4dCyEEhBAoLy/H2rVrUV5ejujoaJjN5iaX6dSpk+S/aqK3fPVGb/2rt3yJWsPToE46d+7c7JeBXJKTk/HOO+94vd2dO3di//79mDhxIlJTU9G/f39MnjwZM2bMwN/+9jevrmvWrFlIT093a15v59urVy8sXLgQ1dXVWLlyJZYtW+Z4abevMF/P2Gw2x6nHr776CmFhYW1qx2KxIDw8HMDNu5tNJlOb2ikrK8OAAQMAADU1Ne06xaS3/tVbvu1ls9nQvXt32O32Ni1vNBpRVVWlydOg9BMWa04MBkObv+B9JSgoyOttfvfdd3jllVcQGhrquE7tueeeQ05ODnJycrB582a89NJLXltfUFCQ2/+uvsgXAJYuXYpt27Zh48aNmD9/Pvr37++T9QDMty1CQ0NRWVmJ6upq3HXXXe2OyWQytTmmxschhIaGomvXru2KQ2/9q7d8veGRRx7BJ5980qZlx4wZ0+5tlJRPW6U4uW3GjBmoqqrC22+/jT59+jimb9y4Eb169cKrr76qubdHdOrUCampqWhoaEBaWprc4fic2vJtvAOz8a5QOTXGoITHiDRHbf3bXlrOtz2vV5Pz1WzkP4or1t5991288MILeOGFF7B3716XaY23b1Pbbd68GYcOHcKkSZMwZcoUyWe9evXCpk2bUFtbixdffFH2dyN62+zZs9G3b1/s2LEDX375pdzh+Jya8lXSs82U9My3lqipf71Bq/nGxMQgODjY4+WCg4MRExPjg4hIaRRXrH366afIyspCVlYW/vd//xcAcPz4cce0Tz/9VOYI1e3SpUtYuHAhwsLCsGnTpibniY2NxZQpU/DJJ580O49adezYEUuWLIHVasVrr70mdzg+p6Z8Gwuj06dPyxzJTzEovVhTU/96g1bz7datG1avXu3xcmvWrHFc60naprhr1jIzM5GZmSl3GJp11113oba2ttX59uzZgz179vghIu/q379/q0cDk5KSkJSU5DK9Pc86kouW8m18YfqRI0dgsVhku3bUYrHg73//OwAgKipKlhgaaal/3aG3fG81b948fPbZZ62+yL3RtGnT8Morr/g4KlIKxR1ZIyJ9ioqKwt133w2LxYIPPvhAtjhyc3NhsVgwYMAA2Ys10g+DwYBt27YhKSlJ8kotZ4GBgZg7dy62bdvGh8bqCIs1IlIEg8GAuLg4APK+Qqdx3XFxcfxjSH4VEBCAt956CxcvXkRiYqLk8RWdO3dGYmIiLl68iN///vcICAiQMVLyNxZrRKQYjXe2HTp0CJcvX/b7+i9fvoxDhw5JYiHyt4iICGzYsAFlZWWOaWVlZdiwYYOq3nlK3sNijYgU4+c//zlGjx4Nq9WKJUuW+H39ixcvhs1mw+jRoxEZGen39RPd6tYjuzzKq28s1ohIUdatWwcA2LVrFwoLC/223hMnTmD37t0wGAx48803/bZeIqLWsFhTAedrExoaGmSKxH3OMXpyfQXz1Xa+rYmKisL06dMBAPPnz4fNZvNa282x2WyYP38+AGD69Om47777vNa23vpXb/kS+QOLNRVwfpVITU2NTJG4r/F1PY1CQkLcXpb5ajtfd7zxxhswmUw4ceIEli9f7tW2m7Js2TIUFhbCZDLh9ddf92rbeutfveVL5A8s1lTA+aGHzl8sSuQcoycPbmS+2s7XHX379nW8s3bVqlXIysryavu3ysrKcjyQ9J133kHfvn292r7e+ldv+RL5A4s1FXD+4vj2229lisR9zjF68kuV+Wo7X3fFxcUhNTUVwM132WZnZ3t9HdnZ2ZgxYwYAIDU11eX1a96gt/7VW75E/sBiTQWGDh0qGT9z5gwqKytliqZ1V69exdmzZyXThg0b5vbyzFfb+XrijTfewLRp02Cz2RAXF4cFCxZ45RqohoYGJCcnIy4uDjabDdOnT8eqVau8ELErvfWv3vIl8gcWayoQFRWFjh07SqYp+R2pzrF16tTJowu2ma+28/WE0WjE1q1bHUfY0tPT8eijj+LixYttbvPixYv4r//6L2RkZAC4eUTt3Xff9dmjEfTWv3rLl8gfWKypQIcOHTBixAjJtKNHj8oUTeuOHTsmGR8xYgQ6dOjg9vLMV9v5eiowMBCrV6/Gvn370LVrVxw7dgyRkZGYOnWqyxGRlpw5cwbx8fGIjIzEp59+ipCQEOzfvx+rV69u8fU+7aW3/tVbvkT+wGJNJUaNGiUZ37VrFywWi0zRNM9isWDnzp2Sac6xu4P5ajvftnjmmWdw8uRJTJgwAXa7Hbt378aQIUPwy1/+EosWLUJubq7krQeXL19Gbm4uFi1ahAcffBC/+MUvsGfPHtjtdkyYMAFFRUV4+umn/RK73vpXb/kS+ZwgVSgsLBQAJENaWprcYblIS0tzibOwsNDjdpivtvNtr+LiYhETE+MSS2tDbGysKC4u9nu8eutfveXrK2az2RGX2WyWOxySEYs1FRk3bpzkSyUgIEDk5eXJHZbDwYMHhdFolMQ4fvz4NrfHfLWdrzdcunRJZGVliVmzZonBgwdL4jMajWLw4MFi1qxZIisrS5SWlsoaq976V2/5+gKLNWrEYk1FioqKXH4FBgcHi4yMDGGz2WSLy2aziYyMDBEcHOwSX1FRUZvbZb7aztcXbDabqKysFJWVlbL+mzVFb/2rt3x9gcUaNWKxpjLLli1r8vRORESEWLBggTh+/LiwWq0+j8NqtYrjx4+LBQsWiIiIiCZjWr58ebvXw3y1na/e6K1/9Zavt7FYo0YGIYQAqYYQAvHx8S0+INRoNCI0NBShoaFev8vNarWisrISlZWVsNvtzc4XFxeHXbt2tftxCMzXlZby1Ru99a/e8vU2i8WCLl26AADMZjNMJpPMEZFsZCwUqY3q6upEcnJyk78OlTAkJyeLuro65st8qQl661+95etNPLJGjVisqVh+fr6IjIyU/cuucYiMjBT5+fnMl/mSG/TWv3rL1xtYrFEjngZVOSEETp8+jZycHOTk5OCLL77w6/oHDx6M2NhYTJo0CUOHDvX5aQTmq+189UZv/au3fNuLp0GpEYs1jfn+++9RXl6OiooKXLt2Dd7uXoPBgO7du6Nnz54ICwtDnz59vNq+p5ivtvPVG731r97y9RSLNWrEYo2IiEiBWKxRI75uioiIiEjBWKwRERERKRiLNSIiIiIFY7FGREREpGAs1oiIiIgUjMUaERERkYKxWCMiIiJSMBZrRERERArGYo2IiIhIwVisERERESkYizUiIiIiBQuUOwDyritXrjhejFxVVeWTFyN369bN8WLkvn37erV9T+ktXyIi0h8WayonhMCpU6eQk5ODnJwcnDt3zq/rHzRoEGJjYzFp0iQMGzYMBoPBp+vTW75EREQG4e1DEeQ3H3/8MRITE3H+/Hm5QwEAREZGYsOGDXj00Ud90r7e8iUifbNYLOjSpQsAwGw2w2QyyRwRyYXXrKlQfX09kpOT8dhjjymmcAGAkpISPPbYY0hOTkZ9fb3X2tVbvkRERLfikTWVsdvtiI+Px3vvvdfsPEajET169ED37t0RGOjdM91WqxXXrl3D1atXYbfbm51vypQp2L17d7tPE+otXyKiRjyyRo14zZrK/L//9/+aLFwiIiIwadIkxMbGYvjw4QgICPBpHDabDf/85z/x/vvvIycnB19//bXk8+zsbPzsZz/D7373u3atR2/5EhEROeORNRU5efIk7r//fsm04OBg/M///A+SkpJgNMpzVttut+Ptt9/GokWLXE4HFhUVISoqqk3t6i1fIqJb8cgaNWKxpiLjx4/HRx995BgPCAjAhx9+iHHjxskY1U/y8vIwceJEyenC8ePH4+DBg21qT2/5EhHdisUaNeINBipRWFgoKVwAYMWKFYopXICbhcprr70mmZaXl4d//vOfHrelt3yJiIiaw2JNJf7yl79IxsPDw5GcnCxTNM1LTk5GWFiYZJpz7O7QW75ERETNYbGmEseOHZOMT506VZGHxE0mE55//nnJNOfY3aG3fImIiJrDYk0F6uvrceLECcm00aNHyxRN60aNGiUZ/8c//oEbN264vbze8iUiImoJizUVKC4uRl1dnWTayJEjZYqmdc6x1dXVobi42O3l9ZYvERFRS1isqcDp06cl40OGDEFoaKhM0bSuR48eGDx4sGTaqVOn3F5eb/kSERG1hMWaClRXV0vG77jjDpkicZ9zjDU1NW4vq7d8iYiIWsJiTQWci5fbbrtNpkjc5xyjcw4t0Vu+RERELWGxpgK1tbWS8ZCQEJkicZ9z8eLJkSa95UtERNQSFmsqYLPZJONBQUEyReI+5xidc2iJ3vIlIiJqCYs1IiIiIgULlDsAIvIdIQTMZjMAoEuXLjAYDDJHREREnuKRNSINKi0tRWJiIkwmE0JCQhASEgKTyYTExESUlpbKHR4REXlAUcXad999h4yMDDz++OO488470aFDB/Tu3RuxsbEoLCyUOzxVKi0thcFgkAxBQUHo168fnn32WZw8eRIAkJGRAYPBgISEhGbbOnLkCIxGI+6//35YrVZ/peARveXrzGq1Yu7cuRg4cCA2bdqE69evOz67fv06Nm3ahIEDB2Lu3Lm8ro6ISCUUdRr0rbfewpo1azBgwAA8/vjj6NWrFy5cuIADBw7gwIED2LNnD5577jm5w1SlAQMGYOrUqQAAi8WC4uJi7N27FwcOHEB+fj7mzZuH3NxcZGZmIiYmBk8++aRkebPZjISEBAQHB2PHjh0IDFTUpuNCb/kCN095zpgxAzt27GhxPqvVirfffhs1NTXIzMzkqVEiIqUTCvL++++LI0eOuEw/evSoCAoKEt27dxd1dXUyRCavxMREAcAxJCYmur3spUuXBAAxduxYl89WrVolAIjRo0cLIYQoLS0VISEhIjw8XFRUVEjmnT17tgAg0tPTfR6z3vL1lvT0dEkM7gwZGRl+j5OI3GM2mx37qtlsljsckpGiToPGxMTg4Ycfdpk+atQojBkzBteuXXN5FRG13YwZMwDA8R7LiIgIZGRkoKysDHPmzHHMd+jQIWzZsgVjxozBvHnzZInVG7Scb1VVFRYvXuzxcqmpqXyALxGRwimqWGtJ43Os1HA6Sm1u/TdNSEhAdHQ09u7di+zsbFRVVWHmzJkICQnB9u3bNXHKTIv57tu3D/X19R4vV19fj3379vkgIiIi8hZVFGvffPMN8vPz0adPHwwdOlTucDTj3XffBQCMHDlSMn3Lli3o2bMnXn75Zbzwwgu4fPkyMjIyEBERIUeYXqPlfHfv3i3LskRE5HuKP0zV0NCA559/HvX19VizZg0CAgJ8uj4hBH788UefrsNTDQ0N7W7j4sWLWLFiBYCfLrg/fPgwwsPDsXbtWsm84eHh2Lx5M2JjY5Gbm4vo6OgW75p0R0NDAywWi9vztpea8m0vm82GI0eOtHn5w4cPo7a2FkajKn67EenGrd8h/vo+UYrOnTur5syGX8h90VxLbDabiIuLEwDErFmz/LLOWy/oVOrQlgvumxp69+4tLly40Oyyw4cPFwDE2bNnPf53dL7gnvly4MCBAwd3B95QIaXYn9J2ux0vvvgi9uzZg6lTp+IPf/iD3CGp2tixYyGEgBAC5eXlWLt2LcrLyxEdHe14wr2zTp06Sf6rJnrLl4iItEuRp0HtdjsSEhKwY8cOTJkyBZmZmX47RdO5c+dm/5jLJTk5Ge+8847X2uvVqxcWLlyI6upqrFy5EsuWLUNGRobX2m/KrFmzkJ6e7ta8esu3vWw2G7p37w673d6m5Y1GI6qqqngalEhhLBYLwsPDAQBlZWUwmUwyR+Q/nTt3ljsERVFcsXZrofbcc89h586dPr9O7VYGg0FxO0TjnbDetnTpUmzbtg0bN27E/Pnz0b9/f5+sB7iZg7v/rnrL1xseeeQRfPLJJ21adsyYMejatauXIyIibzKZTIr720T+o6if0o2nPnfs2IFf//rX2LVrl18LNb3p1KkTUlNT0dDQgLS0NLnD8Tkt5xsfHy/LskRE5HuKKtZ+97vfISsrC126dME999yDlStXYsWKFZLhX//6l9xhasrs2bPRt29f7NixA19++aXc4ficVvONiYlBcHCwx8sFBwcjJibGBxEREZG3KOo0aGlpKYCb72V8/fXXm5ynf//+uPfee/0XlMZ17NgRS5Yswdy5c/Haa6+1+l5JtdNqvt26dcPq1auRnJzs0XJr1qzBbbfd5qOoiIjIGxRVrGVmZiIzM1PuMDSlf//+EEK0OE9SUhKSkpJcprfn2V1y0Vu+t5o3bx4+++wztwvQadOm4ZVXXvFxVERE1F6KOg1KRG1nMBiwbds2JCUltfhatsDAQMydOxfbtm3jQyeJiFSAxRqRhgQEBOCtt97CxYsXkZiYKLn9vXPnzkhMTMTFixfx+9//njfvEBGphKJOgxKRd0RERGDDhg1Ys2aN47EcZWVl6NKli8yRERGRp3hkjUjDbj3NyVOeRETqxGKNiIiISMFYrKmA87VFDQ0NMkXiPucYPbk+Sm/5EhERtYTFmgo4vwqopqZGpkjcV11dLRkPCQlxe1m95UtERNQSFmsq4PzQUufCQImcY/Tkwat6y5eIiKglLNZUwPkP/7fffitTJO5zjtGTI016y5eIiKglLNZUYOjQoZLxM2fOoLKyUqZoWnf16lWcPXtWMm3YsGFuL6+3fImIiFrCYk0FoqKi0LFjR8m0Tz/9VKZoWuccW6dOnXDfffe5vbze8iUiImoJizUV6NChA0aMGCGZdvToUZmiad2xY8ck4yNGjECHDh3cXl5v+RIREbWExZpKjBo1SjK+a9cuWCwWmaJpnsViwc6dOyXTnGN3h97yJSIiag6LNZWYOHGiZLysrAzp6ekyRdO89PR0lJeXS6Y98cQTHrejt3yJiIiaYxBCCLmDIPeMHz8eH330kWM8ICAAH374IcaNGydjVD/Jy8vDxIkTYbfbHdPGjx+PgwcPtqk9veXrCxaLxfE+ULPZDJPJJHNEROQu7r/UiEfWVCQtLU0ybrPZ8PTTT2P9+vWSgsHf7HY71q9fj2eeecYljt/97ndtbldv+RIRETWFxZqKREVFYdmyZZJp9fX1mD9/Pu6++26kpKSgoKAANpvN57HYbDYUFBQgJSUFd999N+bPn4/6+nrJPMuXL0dUVFSb16G3fImIiJrC06AqI4RAfHw8srOzm53HaDQiNDQUoaGhCAwM9Or6rVYrKisrUVlZ2eLRrbi4OOzatQsGg6Fd69Nbvt7G0yhE6sX9lxp59y8b+ZzBYMD27dvRu3fvZi+4t9vtqKioQEVFhZ+juyk5ORmrVq3ySuGit3yJiIic8TSoCgUHB+PNN99Efn4+IiMj5Q7HITIyEvn5+XjzzTcRHBzstXb1li8REdGteBpU5YQQOH36NHJycpCTk4MvvvjCr+sfPHgwYmNjMWnSJAwdOtTnR5f0lm978TQKkXpx/6VGLNY05vvvv0d5eTkqKipw7do1eLt7DQYDunfvjp49eyIsLAx9+vTxavue0lu+nuKXPZF6cf+lRizWiDSMX/ZE6sX9lxrxmjUiIiIiBWOxRkRERKRgLNaIiIiIFIzFGhEREZGCsVgjIiIiUjAWa0REREQKxmKNiIiISMFYrBEREREpGIs1IiIiIgVjsUZERESkYCzWiIiIiBQsUO4AyLuuXLnieLF5VVWVT15s3q1bN8eLzfv27evV9j2lt3z1Rm/9q7d8Sdu4PXsPizWVE0Lg1KlTyMnJQU5ODs6dO+fX9Q8aNAixsbGYNGkShg0bBoPB4NP16S1fvdFb/+otX9I2bs8+JEi18vPzxT333CMAKGKIjIwU+fn5zFdBzGazI16z2Sx3OC3SW//qLV/yHPdfbs+NWKypUF1dnZg/f77sO0Nzw/z580VdXR3zVQA1fNnrrX/1li+1Hfdfbs+NDEJ4+SQy+ZTdbkd8fDzee++9ZucxGo3o0aMHunfvjsBA757ptlqtuHbtGq5evQq73d7sfFOmTMHu3bvbfRhab/l6m8ViQZcuXQAAZrMZJpNJ5oik9Na/esuX2of7b/OEELhy5Qqqq6tbnVcT27PMxSJ5aNmyZU3+eoiIiBApKSmioKBAWK1Wn8dhtVpFQUGBSElJEREREU3GtHz58navR2/5epvSf5nrrX/1li+1D/ffptlsNvHSSy851hceHq757ZnFmooUFRW5bIDBwcFi/fr1wmazyRaXzWYT69evF8HBwS7xFRUVtbldveXrCzU1NY7Yampq5A5HQm/9q7d8qf24/7pyLtQAiHHjxkk+1+L2zGJNRcaNGyfZ8AICAkReXp7cYTkcPHhQGI1GSYzjx49vc3t6y9cbLl26JDIzM8XMmTPFoEGDJPEZjUYxaNAgMXPmTJGZmSkuXboka6x661+95Uue4/7bsqYKNQBiyZIlLvNqbXtmsaYSJ06ccNlA09LS5A7LRVpamkuchYWFHrejt3zb6+TJk+KZZ55p8vB/S0NMTIwoLi72e7x661+95Uue4f7buuYKNQDij3/8Y5PLaGl7ZrGmEsuXL5dscOHh4Yq8hsFsNouwsDBJrL/97W89bkdv+bZVSUmJGD9+vGPdBoNBPPjgg2LRokUiNzdXnDt3zvHZuXPnRG5urli0aJF48MEHXX5xlpSU+C1uvfWv3vIl93D/dU9LhRoAcf78+SaX09L2zGJNJR555BHJBpeSkiJ3SM1KSUmRxDpmzBiP29Bbvm3x/vvvi65duwrg5imSqVOnijNnzkjmaekC5c8//1zEx8c7ThV07dpV7Nu3zy+x661/9ZYvtY77r3taK9S6du3a4jVyWtmeWaypQF1dnejYsaNkg8vNzZU7rGYdOHBAEmvHjh1FfX2928vrLV9PNTQ0iEWLFjnWN2rUKHHhwoUm53XnbrILFy6IUaNGOeZbtGiRaGho8Fn8eutfveVLLeP+677WCjUAYuTIkS22oZXtmcWaChw/ftxlA7169arcYTWroqLCJd6CggK3l9dbvp6w2Wxi2rRpjvUsWLBA3Lhxo9n53b31/8aNGyI5Odkx7/Tp0312R5fe+ldv+VLzuP+6z51CDYCYO3dui+1oZXs2ghTv9OnTkvEhQ4YgNDRUpmha16NHDwwePFgy7dSpU24vr7d8PbF06VLs2LEDAQEByM7Oxrp16xAUFNTudoOCgvDmm29iz549CAgIQFZWFpYuXeqFiF3prX/1li81j/uve+x2OxITE7F582aXzwICAiTj9957b4ttaWV7ZrGmAs5PaL7jjjtkisR9zjHW1NS4vaze8nXXnj17sGbNGgDA1q1bMXnyZK+vY8qUKdi6dSsAYM2aNcjOzvb6OvTWv3rLl5rG/dd9H3/8Md55550mP7PZbJLx//zP/2y1PS1szyzWVMB557jttttkisR9zjG680qQ5ubVer7uuHLlCmbPng0AWLJkCaZPn+7V9m81ffp0LF68GAAwa9YsXLlyxavt661/9ZYvueL+27obN27g9OnTKCgogMlkwvbt29G/f/8WlwkKCsKQIUNabVsL2zOLNRWora2VjIeEhMgUifucdw5PfsnoLV93LF26FBaLBSNGjEBaWppX227KypUr8cADD8BiseC///u/vdq23vpXb/mSK+6/TTt//jwWLlyIESNGoGvXrhg2bBgeeughPPTQQ5g+fTq+++67FpcfMmQIOnTo0Op6tLA9s1hTAefDvt64xsHXnGN0zqElesu3NSdPnkRWVhYAICMjw+WaDV8ICAhARkYGACAzMxPFxcVea1tv/au3fEmK+6+rwsJCREdHIzIyEuvWrUNhYSFu3LjhMl9DQ0OL7bhzCrSpGNW4PbNYI1K4lJQUAMDUqVPxwAMP+G29I0aMQHx8PABgwYIFflsvkZZw//1JQ0MDli1bhl/+8pf485//3O72Wru5QEtYrBEp2Llz53D06FEEBgZi1apVfl//6tWrERgYiKNHj6KkpMTv6ydSM+6/PykrK8OoUaPw+uuvw263Nztfly5d0KVLF7fajIiI8FZ4isdijUjBdu/eDQAYO3Ysbr/9dr+v//bbb8fjjz8uiYWI3MP996YffvgBY8aMQWFhoctn3bp1w8KFC/HXv/4V165dQ21trct1cc1JTU3FDz/84O1wFUlRxVpdXR0WLFiA0aNHo2/fvujYsSN69+6Nhx56CNu3b2/1/DW5Ki0thcFgkAxBQUHo168fnn32WZw8eRLAzWspDAYDEhISmm3ryJEjMBqNuP/++2G1Wv2Vgke0lK8QAnv27AEAx+kMOTSue/fu3RBCyBYHoK3+dYfe8tUS7r83Xb9+HU8++SS++OILyfTAwECsXLkS3377LdauXYtf/epX6NatGwA0+8iRwMBAyXhJSQmefPJJXL9+3SexK0lg67P4j9lsxqZNmzB8+HA88cQT6NWrF65du4a8vDy8+OKLeO+995CXlwejUVE1pioMGDAAU6dOBQBYLBYUFxdj7969OHDgAPLz8zFv3jzk5uYiMzMTMTExePLJJyXLm81mJCQkIDg4GDt27HDZaZRGC/mePHkSX331FUwmE6Kjo/2+/kZPPfUUTCYTvvrqK5w8eRL333+/bLE00kL/ekJv+WoB99+bVqxY4XJErX///ti7dy+ioqKaXCYuLs5l2oULF1BVVYVf//rXKC0tdUwvLCzEa6+9htWrV3s1bsWR9wUKUjabrcl3djU0NDheHPvhhx/KEJm8EhMTJa/KSExMdHvZS5cuCQBi7NixLp+tWrVKABCjR48WQghRWloqQkJCRHh4uKioqJDMO3v2bAFApKen+zxmveXbnA0bNggA4oknnmhzG+6+rqY1EyZMEADExo0b29xGI731r97ypZu4/wrx73//WwQEBEjmv/POO8U333zT7DKbN292eT2UwWBwfP7NN9+IO++8U/J5YGCgOHXqlFdiVipFHaIyGo1NPjMlMDAQzzzzDADg4sWL/g5Ls2bMmAEAjtu6IyIikJGRgbKyMsyZM8cx36FDh7BlyxaMGTMG8+bNkyVWb1Bbvp9//jkAYOjQobLF0KgxhsaYlEht/dteestXbbj/AklJSZLHZAQFBeHDDz9s8a0HL730ksu0r7/+2vH/d9xxB/785z9LHsdhtVqRlJTkpaiVSVHFWnPsdjs++ugjAMAvfvELmaPRnltPiSQkJCA6Ohp79+5FdnY2qqqqMHPmTISEhGD79u0wGAwyRuodasm38YtVCdt8YwxKLtYaqaV/vUVv+aqF3vffU6dO4dixY5JpixcvbrF4Xbduncu0bt26uRR3w4YNQ2pqqmTa0aNHXd5bqiWKvHDhxo0beOONNyCEwNWrV/Hxxx/j3LlzSEhIwKOPPip3eJrx7rvvAgBGjhwpmb5lyxYUFBTg5ZdfxujRo3H58mVs27ZN9bdJqy3fM2fOAIBbr1PxtcYYlFysqa1/20tv+aqN3vffxneUNurTp0+LL5cXQmDhwoUu08+dO9fk/EuXLsXWrVvx/fffS9bZ+DBgrVFssfbaa685xg0GAxYuXOiX59QIIfDjjz/6fD2e8MZdsBcvXsSKFSsA/HSB8uHDhxEeHo61a9dK5g0PD8fmzZsRGxuL3NxcREdHt3iXmTsaGhpgsVjcnre91JRvU2w2GyorKwHcfFVKW9u6dbn2xNP4upbKykrU1ta26yYfvfWv3vIl7r92u93lUSEJCQno2LFjs8s0bt+3ioiIQHh4eJPzd+rUCS+88IKkLti1axfefPNNbd6EKPM1cy2y2Wzi22+/FRs3bhTdunUTDz30kKiurvbpOm+9oFOpQ1suUG5q6N27t7hw4UKzyw4fPlwAEGfPnvX439H5gk7my4H9q898OWh7aGp7vnjxost858+fb3Z7s9vtTbZdWVnZ4nZaUlLissyXX37Z6vbMGwy8zGg04vbbb8ecOXOwZcsWHD9+HK+//rrcYanS2LFjIYSAEALl5eVYu3YtysvLER0dDbPZ3OQynTp1kvxXTfSWr97orX/1li+p27/+9S/JeK9evfCzn/2s2fmbeh3W0KFD0b179xbXM3DgQPTs2bPFdWuFIk+DNqXxKcxHjhzx6Xo6d+7c7JefXJKTk/HOO+94rb1evXph4cKFqK6uxsqVK7Fs2TKfn+efNWsW0tPT3ZpXb/k2xWazOU5dfPXVVwgLC2tTOxaLxXEaoaysDCaTqU3tlJWVYcCAAQCAmpqadp1m0Fv/6i1f4v7rfKH/vffe2+zNLXa7vcnt9/jx463GYjAYcO+99yI/P98x7dSpU4iJiWl1WbVRTbF25coVAJDcrusLBoOhzTuEr/gq56VLl2Lbtm3YuHEj5s+fj/79+/tkPcDNHNz9d9Vbvs0JDQ1FZWUlqqurcdddd7U7JpPJ1OaYqqurHTF17dq1XXHorX/1li/dpOf9t6qqSjJ+5513NjvvzJkzXaaNHDnS7Tidb5xpzFVrFHUa9OzZs01e3P/jjz86DpNOmDDB32FpVqdOnZCamoqGhgakpaXJHY7PqS3fxju4Gu8qk1NjDEp4DEFz1Na/7aW3fNVGz/vvK6+8giNHjiAvLw/79++XPPfvVlarFdu3b3eZ/te//tXtdc2ZMwf79+9HXl4ejhw5gldeeaXNcSuZooq1P/3pT+jduzcmTJiAxMRELF68GM8//zzuvPNOfPTRRxg1ahSSk5PlDlNTZs+ejb59+2LHjh348ssv5Q7H59SUr5KebaakZ0a1RE396w16y1dN9Lz/3n333Xj44Ycxbtw4PP3007jvvvuanG/y5Mku05544gmPrrO877778PTTT2PcuHF4+OGHvXIUU4kUVaxNnDgRkydPxjfffIPs7GysW7cOeXl5GDZsGDZv3oxPPvmEF8t6WceOHbFkyRJYrVbJ41K0Sk35Nn6xKuFBj40xKL1YU1P/eoPe8lUT7r8tq6+vx/vvv+8yff/+/TJEo3yKumYtKiqq2Re7Utv0798fQogW50lKSmryVR2+vpnDF7SUb+MLl48cOQKLxSLbNUMWiwV///vfAUD2/VNL/esOveWrJdx/WzZx4kSXaVOmTPH5delqpagja0T0k6ioKNx9992wWCz44IMPZIsjNzcXFosFAwYMUNSXPZGScf9t3o8//ii5g7PRzp07ZYhGHVisESmUwWBAXFwcALg8DdyfGtcdFxfHd0sSuYn7b/MeeeQRl2m/+c1vEBAQ4P9gVILFGpGCxcfHAwAOHTqEy5cv+339ly9fxqFDhySxEJF7uP+6qq6uRlFRkcv0DRs2yBCNerBYI1Kwn//85xg9ejSsViuWLFni9/UvXrwYNpsNo0ePRmRkpN/XT6Rm3H9dPfDAAy7TFi1apM33eXoR/3WIFG7dunUAbr6kuLCw0G/rPXHiBHbv3g2DwYA333zTb+sl0hLuvz+pqKhASUmJy/TVq1fLEI26sFhTAefz+A0NDTJF4j7nGD25FkFv+bYmKioK06dPBwDMnz8fNpvNa203x2azYf78+QCA6dOnN/ucpLbQW//qLV+S4v77k6ZeWbZy5UqfX0unhe2ZxZoKOL92o6amRqZI3Of8yo+QkBC3l9Vbvu544403YDKZcOLECSxfvtyrbTdl2bJlKCwshMlkwuuvv+7VtvXWv3rLl1xx/735XLU//OEPLtOXLl3qlbhaooXtmcWaCjS+ELiRGt595hyjcw4t0Vu+7ujbty+2bNkCAFi1ahWysrK82v6tsrKyHKcl3nnnHfTt29er7eutf/WWL7ni/gsEBwfjgw8+kLxh4PDhw365Q1UL2zOLNRVw3rC+/fZbmSJxn3OMnvyS0Vu+7oqLi0NqaioAYMaMGcjOzvb6OrKzszFjxgwAQGpqKqZMmeL1deitf/WWLzWN+y/w0EMP4d///jcSEhLw2GOPNfkID1/QxPYsSPGOHz8uAEiGq1evyh1WsyoqKlziLSgocHt5veXrCZvNJqZNm+ZYT3Jysrhx40az85vNZse8ZrO52flu3Lgh5s+f75h3+vTpwm63+yIF3fWv3vKl5nH//Ultba0PonOlle2ZxZoK1NfXi44dO0o2ttzcXLnDataBAwcksXbq1EnU19e7vbze8vVUQ0ODSE1Ndaxv1KhR4sKFC03O686X/YULF8TIkSMd86WmpoqGhgafxa+3/tVbvtQy7r/+pZXtmadBVaBDhw4YMWKEZNrRo0dliqZ1x44dk4yPGDECHTp0cHt5veXrqcDAQKxevRr79u1D165dcezYMURGRmLq1Kk4e/as2+2cOXMG8fHxiIyMxKeffoqQkBDs378fq1evRmCg714brLf+1Vu+1DLuv/6lme1Z7mqR3LN8+XLJr4Pw8PAWD4vLxWw2i7CwMEmsv/3tbz1uR2/5tlVJSYmYMGGCZP0PPvigePXVV8WBAwfEuXPnHNPPnTsnDhw4IF599VUxYsQIyTITJkwQJSUlfotbb/2rt3zJPdx/fUtL2zOLNZUoLCx0Oe+elpYmd1gu0tLSXOIsLCz0uB295dtexcXFIiYmxiWW1obY2FhRXFzs93j11r96y5c8w/3XN7S0PbNYU5Fx48ZJNrqAgACRl5cnd1gOBw8eFEajURLj+PHj29ye3vL1hkuXLomsrCwxa9YsMXjwYEl8RqNRDB48WMyaNUtkZWWJ0tJSWWPVW//qLV/yHPdf79Ha9sxiTUWKiopcfiUEBweLjIwMYbPZZIvLZrOJjIwMERwc7BJfUVFRm9vVW76+YLPZRGVlpaisrJT136wpeutfveVL7cf913Na3Z5ZrKnMsmXLmjwcHhERIRYsWCCOHz8urFarz+OwWq3i+PHjYsGCBSIiIqLJmJYvX97u9egtX73RW//qLV/SNm7P/mMQQgiQagghEB8f3+IDFY1GI0JDQxEaGur1u4KsVisqKytRWVkJu93e7HxxcXHYtWtXu59Orbd89UZv/au3fEnbuD37kYyFIrVRXV2dSE5ObvLXgxKG5ORkUVdXx3zJLXrrX73lS9rG7dk/WKypWH5+voiMjJR9Z2gcIiMjRX5+PvOlNtFb/+otX9I2bs++xdOgKieEwOnTp5GTk4OcnBx88cUXfl3/4MGDERsbi0mTJmHo0KE+P8yst3z1Rm/9q7d8Sdu4PfsOizWN+f7771FeXo6Kigpcu3YN3u5eg8GA7t27o2fPnggLC0OfPn282r6n9Jav3uitf/WWL2kbt2fvYbFGREREpGB8NygRERGRgrFYIyIiIlIwFmtERERECsZijYiIiEjBWKwRERERKRiLNSIiIiIFY7FGREREpGAs1oiIiIgUjMUaERERkYKxWCMiIiJSMBZrRERERArGYo2IiIhIwVisERERESkYizUiIiIiBWOxRkRERKRgLNaIiIiIFIzFGhEREZGCsVgjIiIiUjAWa0REREQKxmKNiIiISMFYrBEREREpGIs1IiIiIgVjsUZERESkYCzWiIiIiBSMxRoRERGRgrFYIyIiIlIwFmtERERECsZijYiIiEjBWKwRERERKRiLNSIiIiIFY7FGREREpGAs1oiIiIgUjMUaERERkYKxWCMiIiJSMBZrRERERArGYo2IiIhIwVisERERESkYizUiIiIiBWOxRkRERKRgLNaIiIiIFIzFGhEREZGCsVgjIiIiUjAWa0REREQKxmKNiIiISMFYrBEREREpGIs1IiIiIgVjsUZERESkYCzWiIiIiBSMxRoRERGRgrFYIyIiIlKw/w8QkOrVlrdNmAAAAABJRU5ErkJggg==\n"
+          },
+          "metadata": {}
+        }
+      ],
+      "source": [
+        "dev = qml.device(\"default.qubit\", wires=4)\n",
+        "\n",
+        "\n",
+        "@qml.qnode(dev, interface=\"autograd\")\n",
+        "def circuit(image, template_weights):\n",
+        "    qml.BasisStatePreparation(image, wires=range(4))\n",
+        "    qml.TTN(\n",
+        "        wires=range(4),\n",
+        "        n_block_wires=2,\n",
+        "        block=block,\n",
+        "        n_params_block=2,\n",
+        "        template_weights=template_weights,\n",
+        "    )\n",
+        "    return qml.expval(qml.PauliZ(wires=3))\n",
+        "\n",
+        "\n",
+        "weights = np.random.random(size=[3, 2])\n",
+        "fig, ax = qml.draw_mpl(circuit, expansion_strategy=\"device\")(BAS[0], weights)\n",
+        "fig.set_size_inches((6, 3.5))"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "B1hZ5gssqtzJ"
+      },
+      "source": [
+        "When the output of the above circuit is less than zero, we label the\n",
+        "image \\\"stripes\\\", otherwise we label it \\\"bars\\\". Based on these\n",
+        "labels, we define a cost function to train the circuit. The cost\n",
+        "function in the following code adds the expectation value result if the\n",
+        "label should be negative and subtracts the result if the label should be\n",
+        "positive. In other words, the cost will be minimized when the stripes\n",
+        "images output negative one and the bars images output positive one.\n"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": 103,
+      "metadata": {
+        "id": "O1mGhdIxqtzJ"
+      },
+      "outputs": [],
+      "source": [
+        "def costfunc(params):\n",
+        "    cost = 0\n",
+        "    for i in range(len(BAS)):\n",
+        "        if i < len(BAS) / 2:\n",
+        "            cost += circuit(BAS[i], params)\n",
+        "        else:\n",
+        "            cost -= circuit(BAS[i], params)\n",
+        "    return cost"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "OVv9FDaSqtzJ"
+      },
+      "source": [
+        "Finally, we initialize the parameters and use PennyLane's built-in\n",
+        "optimizer train the circuit over 100 iterations. This optimizer will\n",
+        "attempt to minimize the cost function.\n"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": 104,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 0
+        },
+        "id": "ecXuIDimqtzJ",
+        "outputId": "16eef30c-1a15-4b54-d24f-af5875a059eb"
+      },
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "Step 0, cost: -0.19014484428429757\n",
+            "Step 20, cost: -3.9999999987683417\n",
+            "Step 40, cost: -3.9999999999999996\n",
+            "Step 60, cost: -4.0\n",
+            "Step 80, cost: -3.999999999999999\n"
+          ]
+        }
+      ],
+      "source": [
+        "params = np.random.random(size=[3, 2], requires_grad=True)\n",
+        "optimizer = qml.GradientDescentOptimizer(stepsize=0.1)\n",
+        "\n",
+        "for k in range(100):\n",
+        "    if k % 20 == 0:\n",
+        "        print(f\"Step {k}, cost: {costfunc(params)}\")\n",
+        "    params = optimizer.step(costfunc, params)"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "XdGSFaDXqtzJ"
+      },
+      "source": [
+        "With the circuit trained and the parameters stored in `params`, we can\n",
+        "now show the full circuits and the resulting output for each image.\n"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": 105,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 1966
+        },
+        "id": "2HJMoXFIqtzJ",
+        "outputId": "ab3591db-1744-4953-c019-695c867fbad6"
+      },
+      "outputs": [
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "<Figure size 1000x500 with 1 Axes>"
+            ],
+            "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/sAAAIHCAYAAADAX0zsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABrcUlEQVR4nO3deXRU9f3/8ddkYUJYtIYkVuCbkBCtqCjrt7YStSJ8axErMahUW1nCvgqV5VepWpVQtKAIsgkUq3xLBETtsQHcoNaWAgehpLZJIBHstwkEBZOYZJK5vz84iU4WGMLM3GWej3Pm6Nxk7n3PffH53Hln7txxGYZhCAAAAAAAOEaE2QUAAAAAAIDAotkHAAAAAMBhaPYBAAAAAHAYmn0AAAAAAByGZh8AAAAAAIeh2QcAAAAAwGFo9gEAAAAAcBiafQAAAAAAHIZmHwAAAAAAh6HZBwAAAADAYWj2AQAAAABwGJp9AAAAAAAchmYfAAAAAACHodkHAAAAAMBhaPYBAAAAAHAYmn0AAAAAAByGZh8AAAAAAIeh2QcAAAAAwGFo9gEAAAAAcBiafQAAAAAAHIZmHwAAAAAAh6HZBwAAAADAYWj2AQAAAABwGJp9AAAAAAAchmYfAAAAAACHodkHAAAAAMBhaPYBAAAAAHAYmn0AAAAAAByGZh8AAAAAAIeh2QcAAAAAwGFo9gEAAAAAcBiafQAAAAAAHIZmHwAAAAAAh6HZBwAAAADAYWj2AQAAAABwGJp9AAAAAAAchmYfAAAAAACHodkHAAAAAMBhaPYBAAAAAHAYmn0AAAAAAByGZh8AAAAAAIeh2QcAAAAAwGFo9gEAAAAAcBiafQAAAAAAHIZmHwAAAAAAh6HZBwAAAADAYWj2AQAAAABwGJp9AAAAAAAchmYfAAAAAACHodkHAAAAAMBhaPYBAAAAAHAYmn0AAAAAAByGZh8AAAAAAIeh2QcAAAAAwGFo9gEAAAAAcBiafQAAAAAAHIZmHwAAAAAAh6HZBwAAAADAYWj2AQAAAABwGJp9AAAAAAAchmYfAAAAAACHodkHAAAAAMBhaPYBAAAAAHAYmn0AAAAAAByGZh8AAAAAAIeh2QcAAAAAwGFo9gEAAAAAcBiafQAAAAAAHCbK7AKAUKiurtaRI0eUn5+vgoICnTx5UlVVVaqurja7NB9ut1sxMTHq1KmTunfvrrS0NKWkpMjtdptdWkCRh7WQBwAAgPPQ7MORamtr9cEHHygnJ0e5ubkqLi6WYRhml9UqLpdLSUlJGjx4sDIzM3XzzTcrKspeQ5c8rIU8AAAAnM9l2PUVHtCMgoICPfvss9q8ebNOnDhhdjlBER8fr4yMDM2aNUupqalml3NO5GEt5AEAABA+aPbhCJWVlcrOztbChQtVU1Njdjkh4Xa79cgjj2jOnDmKjY01uxwf5EEeZrNyHgAAAKFAsw/b2759u8aOHavi4uLz/m5iYqK6d++url27KjY2Vm3atFFEhDWuU+n1elVTU6PKykodO3ZMBQUFKikpOe/jkpOTtXLlSg0aNCgEVZ4feZBHMDglDwAAgFCh2Yetbd26VcOHD1dtbW2zP+/Tp48yMzM1cOBApaWlqWPHjiGu8OKcOXNG+fn52rlzpzZt2qT9+/c3+3tRUVHatGmT7r777hBX6Is8ziKP0LBbHgAAAKFEsw/baqmRiYyM1JQpUzRlyhSlpKSYVF1wFBYW6oUXXtDSpUtVV1fn8zOzGxryIA+zWTkPAACAUKPZhy1t375dP/rRj5o0Munp6Vq2bJmuvfZakyoLjb///e+aNGmSdu3a5bM8KipKf/jDH0J+yjJ5kIeVWC0PAAAAM9Dsw3YqKyvVo0ePJp9BzsrK0ooVKyzzGeNg83q9Gj9+vFavXu2zPDk5WXl5eWrbtm1I6iCPs8jDWqySBwAAgFnC41UfHCU7OzvsGxlJioiI0IoVK5SVleWzvKioSNnZ2SGrgzzOIg9rsUoeAAAAZuGdfdhKQUGBrr32WlVXVzcsS09P13vvvRdWjcw3eb1e3XLLLdq9e3fDMrfbrcOHDwf9e8bJoynysBYz8wAAADBTeL76g209++yzPo1MZGSkli1bFraNjHT2Hcxly5YpMjKyYVl1dbWeeeaZoG+bPJoiD2sxMw8AAAAzhe8rQNhObW2tNm/e7LNsypQpjr/YmD+uu+46TZkyxWfZli1bWvzKtUAgj5aRh7WYkQcAAIDZaPZhGx988IFOnDjhs6zxC/hwNnnyZJ/7paWlTa5GHkjkcW7kYS2hzgMAAMBsNPuwjZycHJ/7ffr0cdz3hF+M1NRU9e7d22dZ430WSORxbuRhLaHOAwAAwGw0+7CN3Nxcn/uZmZkmVWJdjfdJ430WSORxfuRhLaHMAwAAwGw0+7CF6urqJl8nNnDgQJOqsa7bb7/d535xcbHPBdsChTz8Qx7WEqo8AAAArIBmH7Zw5MgRNf6WyCuvvNKkaqwrLS3N577X69XRo0cDvh3y8A95WEuo8gAAALACmn3YQn5+vs/9xMREdejQwaRqrKtjx45KSEjwWdZ43wUCefiHPKwlVHkAAABYAc0+bKGgoMDnfvfu3U2qxPoav3sZjGaGPPxHHtYSijwAAACsgGYftnDy5Emf+127djWpEuvr0qWLz/2ysrKAb4M8/Ece1hKKPAAAAKyAZh+2UFVV5XM/NjbWpEqsr/G+abzvAoE8/Ece1hKKPAAAAKyAZh+20PiK2W3atDGpEutzu90+94PRzJCH/8jDWkKRBwAAgBXQ7MOWIiL4p9sSM/YNebSMPKyFfQMAAMIFr3oAAAAAAHAYmn0AAAAAAByGZh8AAAAAAIeJMrsAAAAQfB6PR19++aUkqUOHDoqOjja5IgAAEEy8sw8AgEMdOHBAU6dOVb9+/dS+fXvFxcUpLi5O7du3V79+/TR16lR9/PHHZpcJAACCgGYfAACHOXjwoNLT09WrVy8tXbpUe/fuVU1NTcPPa2pqtHfvXi1dulQ33HCD0tPTdfDgQRMrBgAAgUazDwCAQxiGoezsbPXt21e7d+/2+3G7d+9W3759lZ2dLcMwglghAAAIFZp9AAAcwDAMTZkyRXPnzpXH47ngx3s8Hs2dO1dTpkyh4QcAwAHCotn/29/+pjvuuEOXXnqp2rVrp+9+97vatGmT2WXBppYuXSqXy6Wf/vSnzf78888/V+fOnRUbG6t//etfIa7O2YqKiuRyuXxu0dHR6ty5s4YPH669e/dKkpYsWSKXy6WRI0e2uK73339fERER6tevn2pra0P1FByFPKxl4cKFWrZs2UWvZ9myZVq4cGEAKgIAAGZy/NX433vvPQ0ePFgxMTG677771KFDB23evFn33nuvjh07ppkzZ5pdImxm8uTJ2rJli15++WVlZGTorrvu8vn5pEmT9O9//1vPPfecrrzySpOqdLbU1FQ98MADkqSKigrt27dPOTk5ev3117Vz505NmzZN27Zt0/r16zVs2DDdeeedPo8vLy/XyJEj5Xa7tWHDBkVFOX4qDCryMN/Bgwc1f/78gK1v/vz5uuOOO9SzZ8+ArRMAAISWo9/Zr62tVVZWliIiIrRr1y6tWrVKzz77rD7++GNdeeWVmjdvnoqLi80uEzbjcrm0bt06tW/fXmPHjtXJkycbfvbaa69p48aNuvXWWzVlyhQTq3S27t2767HHHtNjjz2mRYsW6d1339WCBQvk8Xj06KOPyuVyaf369erYsaOysrJUVlbm8/iZM2eqqKhICxYs0NVXX23Ss3AO8jDf5MmTW3Xqfks8Ho8mT54csPUBAIDQc3Sz/+6776qwsFAjRozQDTfc0LD8kksu0bx581RTU6Pf/va35hUI20pOTtazzz6r0tJSTZgwQZJUUlKiCRMmqEOHDlq3bp1cLpfJVYaX0aNHS5L27dsnSUpKStKSJUsacqmXm5urVatW6dZbb9W0adNMqTUckEfoHDhw4IIuxuev3bt387V8AADYmKOb/ffff1+SNGjQoCY/Gzx4sCTpgw8+CGVJcJCxY8dq8ODBDe/m17/Lv2TJEiUlJZldXtj65ingI0eO1NChQ5WTk6ONGzfqiy++0JgxY9SxY0f+IBMi5BF8a9euteW6AQBAcDn6g5H5+fmSpLS0tCY/u/zyy9W+ffuG3wFa46WXXtK1116rkSNHqrq6WkOGDNGoUaPMLissrVmzRpJ00003+SxftWqV/vznP2vSpElKT0/X8ePHtXbtWv4gE2TkETofffSRLdcNAACCy9HN/unTpyWdPW2/OR07dmz4HbswDEOVlZVmlxFygfwsaiB17txZkydP1pNPPqno6GitWrXK7JKa8Hg8qqioCPg6zVRQUKDHHntM0tcXhHvvvfeUmJioRYsW+fxuYmKiVq5cqYyMDG3btk1Dhw4951Xhg408nJ9HKHk8Hh08eDBo6z948KBOnz7NRRMBAJKk2NhYzsSzE8PBbr/9dkOSkZ+f3+zPr7jiCqNjx44hrurilJeXG5LC/jZx4kSzozAMwzBKSkqM+Pj4hrpWrVpldknGxIkTHZvH0aNHW6zh8ssvb3GsG4Zh9O/f35Bk5OXlhaTWeuTRvHDKgxs3bty4cXPKrby8PKTHbVwcR39mv/4d/ZbevT9z5kyL7/oD/hg/frxOnDih7OxsderUSTNnztSnn35qdlmON3jwYBmGIcMwVFpaqkWLFqm0tFRDhw5VeXl5s49p27atz38ROOQBAABgPY4+L6/+s/r5+fnq06ePz8/+85//qLy8XP379zejtFaLjY1t8cWzk82YMUOrV682uwwfL7/8srZu3aohQ4Zo9uzZSk5O1n333afRo0drx44dZpfXICsrS4sXLw7oOq2UR3x8vGbNmqXTp0/rySef1C9+8QstWbLE7LJaRB7WEow8Qsnj8SgxMVE1NTVBWb/b7VZJSQmn8QMAJJ3tRWAfjj5633zzzVqwYIG2b9+u++67z+dnubm5Db9jJy6XS+3atTO7jJCLjo42uwQfn332maZOnarLLrus4XP69957r1577TW99tprWrlypcaNG2dylWdFR0cH/N+M1fKQpHnz5mnt2rVavny5pk+fruTkZLNLahZ5WEsw8gi1nj17au/evUFbN2fAAQBgT44+jf+2225TSkqKXn31VR04cKBh+enTp/X000+rTZs2+ulPf2pegbCt0aNH64svvtALL7ygb3/72w3Lly9frvj4eP385z9XcXGxiRWGn7Zt22r27NnyeDz61a9+ZXY5YY88QufGG2+05boBAEBwObrZj4qK0po1a+T1epWenq6xY8dq5syZuv766/Wvf/1LTz/9tGXfbYJ1rVy5Urm5ubrnnnt0//33+/wsPj5eL774or788kuNGjVKhmGYVGV4Gjt2rK644gpt2LBBhYWFZpcT9sgjNIL5dZ98lSgAAPbl6GZfkm699Vb96U9/0ve//339/ve/14svvqjExET97//+r2bOnGl2ebCZo0ePatasWUpISNCLL77Y7O9kZGTo/vvv17vvvtvi7yA4YmJiNHfuXNXW1urxxx83u5ywRx6hccMNN2jAgAEBX++AAQN0/fXXB3y9AAAgNBz9mf16/fv319tvv212GXCAbt266csvvzzv77366qt69dVXQ1BReElOTj7v2RKTJ0/W5MmTmyx///33g1RV+CIP63jhhRfUt29feTyegKwvOjpay5YtC8i6AACAORz/zj4AAE7Xs2dPPfHEEwFb3xNPPKHrrrsuYOsDAAChR7MPAIADzJ49W5MmTbro9UyePFmzZ88OQEUAAMBMNPsAADiAy+XS0qVLtWDBglZ9HWN0dLQWLFig559/Xi6XKwgVAgCAUKLZBwDAIVwul+bMmaO9e/de0EX7BgwYoH379mnOnDk0+gAAOERYXKAPAIBw0rNnT+3atUsff/yx1q5dq48++kgff/yxampqJElut1s9e/bUjTfeqFGjRnHVfQAAHIhmHwAAh7r++uv13HPPSZJOnz6tSy+9VJJUUlKiSy65xMTKAABAsHEaPwAAYSAqKqrZ/wcAAM5Esw8AAAAAgMPQ7AMAAAAA4DA0+wAAAAAAOAzNPmzJ6/WaXYJlmbFvyKNl5GEt7BsAABAuaPZhC2632+d+/ddHoanq6mqf+zExMQHfBnn4jzysJRR5AAAAWAHNPmyh8QvyyspKkyqxvsb7JhjNDHn4jzysJRR5AAAAWAHNPmyhU6dOPvePHTtmUiXWd/z4cZ/7cXFxAd8GefiPPKwlFHkAAABYAc0+bKF79+4+9wsKCkyqxPry8/N97qelpQV8G+ThP/KwllDkAQAAYAU0+7CFxi/IS0pKdObMGZOqsa4zZ86otLTUZ1kwmhny8A95WEuo8gAAALACmn3YQkpKilwul8+yxu/Qoek+iYiIULdu3QK+HfLwD3lYS6jyAAAAsAKafdiC2+1WUlKSz7KdO3eaVI117dixw+d+UlJSkyu1BwJ5+Ic8rCVUeQAAAFgBzT5sY/DgwT73c3JyTKrEuhrvk8b7LJDI4/zIw1pCmQcAAIDZaPZhG5mZmT739+3bpyNHjphUjfUUFhZq//79Pssa77NAIo9zIw9rCXUeAAAAZqPZh23cfPPNio+P91m2dOlSk6qxnhdeeMHnfkJCgtLT04O2PfI4N/KwllDnAQAAYDaafdhGVFSUMjIyfJYtXbpUf//7302qyDoOHTrUpLEbNmyYoqKigrZN8mgZeViLGXkAAACYzWUYhmF2EYC/CgsLdc0116i6urphWXp6ut577z1FRITn3668Xq9uueUW7d69u2GZ2+3W4cOHlZqaGtRtk0dT5GEtZuZhNRUVFWrfvr0kqby8XO3atTO5IgAAEEzh+eoPtpWamqpHHnnEZ9muXbs0fvx4eb1ek6oyj9fr1fjx430aGUmaPXt2SBoZ8vBFHtZidh4AAABm4p192E5lZaV69Oih4uJin+VZWVlasWJF2LyDWd/IrF692md5cnKy8vLy1LZt25DUQR5nkYe1WCUPK+GdfQAAwkt4vOqDo8TGxmrVqlVNPm+7evVq3XLLLTp06JBJlYXOoUOHdMsttzRpZKKiorRy5cqQNjLkQR5WY6U8AAAAzEKzD1saNGiQNm3a1KSh2b17t3r16qUZM2aosLDQpOqCp7CwUDNmzFCvXr2anJocFRWlTZs2adCgQSGvizzIwwqsmgcAAIAZOI0ftrZ161YNHz5ctbW1zf68d+/eyszM1O233660tDR17NgxxBVenDNnzig/P187duxQTk5Ok+8Jr1ffyNx9990hrtAXeZxFHqFhtzzMxmn8AACEF5p92N727ds1btw4FRUVnfd3ExISlJaWpi5duig2NlZut9syn2H2er2qrq5WZWWljh8/rvz8fJWWlp73ccnJyVq5cqVl3rEkD/IIBqfkYSaafQAAwgvNPhzhq6++UnZ2thYuXOjztWNO5na7NXv2bM2ZM8dyn0EmD/Iwm5XzMAvNPgAA4YVmH45SWFioZ555Rps3b9aJEyfMLicoEhISNGzYMM2aNcvyXx9GHtZCHuGNZh8AgPBCsw9Hqq2t1a5du5STk6Pc3FwVFRXJrv/UXS6XkpOTNXjwYGVmZio9Pb3JhdesjjyshTzCE80+AADhhWYfYaG6ulpHjx5Vfn6+8vPzVVZWpqqqKlVVVZldmo+YmBjFxMQoLi5OaWlpSktLU7du3eR2u80uLaDIw1rIIzzQ7AMAEF5o9gEACAM0+wAAhBdrXGYZAAAAAAAEDM0+AAAAAAAOQ7MPAAAAAIDD0OwDAAAAAOAwNPsAAAAAADgMzT4AAAAAAA5Dsw8AAAAAgMPQ7AMAAAAA4DA0+wAAAAAAOAzNPgAAAAAADkOzDwAAAACAw9DsAwAAAADgMDT7AAAAAAA4DM0+AAAAAAAOQ7MPAAAAAIDD0OwDAAAAAOAwNPsAAAAAADgMzT4AAAAAAA5Dsw8AAAAAgMNEmV0AEArV1dU6cuSI8vPzVVBQoJMnT6qqqkrV1dVml+bD7XYrJiZGnTp1Uvfu3ZWWlqaUlBS53W6zSwso8rAW8gBaxviwFvIAAP/R7MORamtr9cEHHygnJ0e5ubkqLi6WYRhml9UqLpdLSUlJGjx4sDIzM3XzzTcrKspeQ5c8rIU8gJYxPqyFPACg9VyGXWdMoBkFBQV69tlntXnzZp04ccLscoIiPj5eGRkZmjVrllJTU80u55zIw1rII7xVVFSoffv2kqTy8nK1a9fO5IqshfFhLeQBAAFgAA5QUVFhPProo0abNm0MSWFxc7vdxqOPPmpUVFSYvfubIA9rIQ8YhmGUl5c37J/y8nKzy7EMxoe1kAcABA7v7MP2tm/frrFjx6q4uPi8v5uYmKju3bura9euio2NVZs2bRQRYY3rVHq9XtXU1KiyslLHjh1TQUGBSkpKzvu45ORkrVy5UoMGDQpBledHHuQRDE7Jw0y8s98U48Na44M8rJUHAPuj2Yetbd26VcOHD1dtbW2zP+/Tp48yMzM1cOBApaWlqWPHjiGu8OKcOXNG+fn52rlzpzZt2qT9+/c3+3tRUVHatGmT7r777hBX6Is8ziKP0LBbHmaj2ffF+DjLKuODPM6ySh4AHMLcEwuA1tuyZYsRFRXV5HS4yMhIY/r06UZhYaHZJQZcQUGBMX36dCMyMrLJ846KijK2bNliWm3kQR5ms3IeVsBp/F9jfFhrfJCHtfIA4Bw0+7Cl3NzcZl8YpKenG4cOHTK7vKA7dOiQkZ6e3uwLhNzc3JDXQx7kYSVWy8MqaPbPYnxYa3yQh7XyAOAsNPuwnYqKCiMpKanJgTErK8uoq6szu7yQqaurM7Kysprsh+TkZKOysjJkdZDHWeRhLVbJw0rOnDnTsB/OnDljdjmmYHycZZXxQR5nWSUPAM5Dsw/befTRR8P+hUG9ll4gzJ8/P2Q1kMfXyMNarJCHGU6dOmXs3LnTyM7ONjIzM42UlBQjJiamyX6IiYkxUlJSjMzMTGPhwoXGzp07jVOnTpldflAxPr5mhfFBHl+zQh4AnIcL9MFWCgoKdO2116q6urphWXp6ut577z3LXIU31Lxer2655Rbt3r27YZnb7dbhw4eD/r295NEUeViLmXmE0j//+U+9+OKLevPNN3XkyJGLWldKSoruvPNOTZgwQVdddVWAKjQf46Mp5itrCZf5CkDohOdsCtt69tlnfV4YREZGatmyZWH7wkCSIiIitGzZMkVGRjYsq66u1jPPPBP0bZNHU+RhLWbmEWy1tbXasmWLBg4cqO985zt67rnnGhr9bt266Z577lF2drZ27NihI0eOqLCwsOGxhYWFOnLkiHbs2KHs7Gzdc8896tatmyTpyJEjeu655/Sd73xHAwcO1JYtW1q8QrqdMD6aYr6yFifPVwBMYvapBYC/PB6PER8f73N62/Tp080uyzKmT5/us28SEhIMj8cTtO2Rx7mRh7WEOo9g+uqrr4ynnnrK6Ny5c8PziYiIMIYOHWq88cYbRllZWbOP8+cCfWVlZcYbb7xhDB061IiIiGj4/c6dOxtPP/20UVVVFcynFjSMj3NjvrIWJ81XAMxFsw/b2LlzZ5PPsjnx63haq6CgoMn+eeedd4K2PfI4N/KwllDnESx//etfjR49ejQ8h/j4eGPevHlGUVHReR97oVfjLyoqMubNm+fTlPXo0cPYs2dPIJ5KSDE+zo35ylqcMl8BMF/4nisF28nJyfG536dPH6WkpJhUjfWkpqaqd+/ePssa77NAIo9zIw9rCXUegVZVVaU5c+boxhtvVF5enhITE7VhwwYdO3ZMTz31lJKSkgK+zaSkJD311FM6duyYNmzYoMTEROXl5em73/2u5s6dq6qqqoBvM1gYH+fGfGUtdp+vAFgHzT5sIzc31+d+ZmamSZVYV+N90nifBRJ5nB95WEso8wikPXv2qHfv3lq4cKG8Xq9GjBihw4cP68EHH5Tb7Q769t1utx588EEdPnxYI0aMkNfrVXZ2tvr06aM9e/YEffuBwPg4P+Yra7HrfAXAWmj2YQvV1dUqLi72WTZw4ECTqrGu22+/3ed+cXGxzwWQAoU8/EMe1hKqPALptdde00033aR//OMfSkxM1NatW/XKK68oLi4u5LXExcXplVde0datW5WQkKC8vDzddNNN2rx5c8hruRCMD/8wX1mLHecrANZDsw9bOHLkiIxG3xJ55ZVXmlSNdaWlpfnc93q9Onr0aMC3Qx7+IQ9rCVUegbJ27Vrde++98ng8uuuuu3T48GH9+Mc/Nrss/fjHP1ZeXp7uuusueTweDR8+XOvWrTO7rBYxPvzDfGUtdpuvAFgTzT5sIT8/3+d+YmKiOnToYFI11tWxY0clJCT4LGu87wKBPPxDHtYSqjwCYd26dRo9erS8Xq9Gjx6tzZs3m/Jufkvi4uK0efPmhhpHjRpl2Yaf8eEf5itrsdN8BcC6aPZhCwUFBT73u3fvblIl1tf43YBgvDggD/+Rh7WEIo+LtXnzZo0ZM0aSNG3aNK1evdrne7etIjIyUqtXr9a0adMkSWPGjNGWLVtMrqopxof/mK+sxQ7zFQBro9mHLZw8edLnfteuXU2qxPq6dOnic7+srCzg2yAP/5GHtYQij4uxZ88e3X///fJ6vRozZowWL14sl8tldlktcrlcWrx4ccM7/Pfdd5/+9re/mV2WD8aH/5ivrMXq8xUA66PZhy00/oqn2NhYkyqxvsb7Jhhfj0Ue/iMPawlFHq1VVVWlhx56qOEz+itWrLB0o1/P5XJp5cqVDZ/hf+ihhyy3X7+J8dEy5itrsfJ8BcAeaPZhC42vQNumTRuTKrG+xl/FFYwXB+ThP/KwllDk0VqPP/54w1X3X3rpJUueut+SyMhIrVmzpuEq/U888YTZJTVgfPiP+cparDxfAbAHmn3YUkQE/3RbYsa+IY+WkYe1WHXf7NmzR7/+9a8lSStWrLDUxfj81alTJ61YsUKStHDhQsudzl/Pqv8GrID5ylrYNwAuFrMIAAAmqqqq0siRI+X1ejVixAhLfL1ea919990N1xx46KGH+F5wAABMRLMPAICJFi9erLy8PCUmJur55583u5yLtnTpUiUmJiovL0+/+c1vzC4HAICwRbMPAIBJamtrtWzZMknSokWLbHn6fmNxcXENH0lYvny5amtrTa4IAIDwRLMPAIBJ3njjDX322WdKSEjQ8OHDzS4nYO69917Fx8fr+PHjevPNN80uB4DNeDwenTp1SqdOnZLH4zG7HMC2aPYBADDJ8uXLJUljxoxpcuVtO3O73RozZoykr58jAJzLgQMHNHXqVPXr10/t27dXXFyc4uLi1L59e/Xr109Tp07Vxx9/bHaZgK3Q7AMAYIJPPvlE77zzjiIiIjR27Fizywm4cePGyeVyaefOnfrnP/9pdjkALOrgwYNKT09Xr169tHTpUu3du1c1NTUNP6+pqdHevXu1dOlS3XDDDUpPT9fBgwdNrBiwD5p9AABMUP81dUOGDFFSUpLJ1QReUlKShgwZIkl68cUXTa4GgNUYhqHs7Gz17dtXu3fv9vtxu3fvVt++fZWdnS3DMIJYIWB/NPsAAJig/rPs9ae7O1H9c3vrrbdMrgSAlRiGoSlTpmju3Lmt+ky+x+PR3LlzNWXKFBp+4Bwc3+z/7ne/07hx49S3b1+53W65XC6tX7/e7LJgY0uXLpXL5dJPf/rTZn/++eefq3PnzoqNjdW//vWvEFfnbEVFRXK5XD636Ohode7cWcOHD9fevXslSUuWLJHL5dLIkSNbXNf777+viIgI9evXj6uFtxJ5tN7nn3+uI0eOSJK+//3vm1xN8NQ/t8LCQn3xxRfmFhNijA9rIQ9rWbhwYcM3kVyMZcuWaeHChQGoCHCmKLMLCLZf/OIXKi4uVqdOnfTtb39bxcXFZpcEm5s8ebK2bNmil19+WRkZGbrrrrt8fj5p0iT9+9//1nPPPacrr7zSpCqdLTU1VQ888IAkqaKiQvv27VNOTo5ef/117dy5U9OmTdO2bdu0fv16DRs2THfeeafP48vLyzVy5Ei53W5t2LBBUVGOnwqDijwu3P79+yVJ3bp102WXXWZyNcETFxen5ORkFRUVaf/+/frBD35gdkkhx/iwFvIw38GDBzV//vyArW/+/Pm644471LNnz4CtE3AKx7+zv2bNGhUVFenEiRMaP3682eXAAVwul9atW6f27dtr7NixOnnyZMPPXnvtNW3cuFG33nqrpkyZYmKVzta9e3c99thjeuyxx7Ro0SK9++67WrBggTwejx599NGGM3g6duyorKwslZWV+Tx+5syZKioq0oIFC3T11Veb9CycgzwuXP27iH369DG5kuDr27evpK+fc7hhfFgLeZhv8uTJAf06PY/Ho8mTJwdsfYCTOL7ZHzhwoCMvfARzJScn69lnn1VpaakmTJggSSopKdGECRPUoUMHrVu3Ti6Xy+Qqw8vo0aMlSfv27ZN09uJgS5YsacilXm5urlatWqVbb71V06ZNM6XWcEAe51a/X+obYSer/4NG/XMG48NqyCN0Dhw4cEEX4/PX7t27+Vo+oBmOb/aBYBk7dqwGDx7c8G5+/bv8S5Ys4Q9MJvrmKZUjR47U0KFDlZOTo40bN+qLL77QmDFj1LFjR/4gEyLk0bz6piIc3tmn2W8Z48NayCP41q5da8t1A3bFB42Ai/DSSy/p2muv1ciRI1VdXa0hQ4Zo1KhRZpcVltasWSNJuummm3yWr1q1Sn/+8581adIkpaen6/jx41q7di1/kAky8ji3f//735LOfn7Y6bp37y7p6+cMxofVkEfofPTRR7ZcN2BXNPs2YxiGKisrzS4j5AL52a5A6ty5syZPnqwnn3xS0dHRWrVqldklNeHxeFRRURHwdZqpoKBAjz32mKSvL7D03nvvKTExUYsWLfL53cTERK1cuVIZGRnatm2bhg4des6rLAcbeTg/j/Pxer2qqqqSdHZOD9X2v7mdUD7n+q/F+uqrr/Tll18qIiK0JxUyPlqP+cr5eYSSx+PRwYMHg7b+gwcP6vTp01w0MchiY2M5s8VOjDCyYMECQ5Kxbt06s0tptfLyckNS2N8mTpxodhSGYRhGSUmJER8f31DXqlWrzC7JmDhxomPzOHr0aIs1XH755UZ+fn6Lj+3fv78hycjLywtJrfXIo3nhlAc3a90YHy1jvmpeOOXBjdv5buXl5SEdB7g4fGYfuAjjx4/XiRMnlJ2drU6dOmnmzJn69NNPzS7L8QYPHizDMGQYhkpLS7Vo0SKVlpZq6NChKi8vb/Yxbdu29fkvAoc8gJYxPqyFPACEE85zsZnY2NgWD0ZONmPGDK1evdrsMny8/PLL2rp1q4YMGaLZs2crOTlZ9913n0aPHq0dO3aYXV6DrKwsLV68OKDrtFIe8fHxmjVrlk6fPq0nn3xSv/jFL7RkyRKzy2oReVhLMPI4H6/Xq44dO0qSCgsLlZiYGJLtVlRUNGyrpKRE7dq1C8l2S0pKGq5NcObMmZCfxs/4aD3mK2sxY74KJI/Ho8TERNXU1ARl/W63WyUlJZzGH2SxsbFml4ALwGiwGZfLFbIXaFYSHR1tdgk+PvvsM02dOlWXXXZZw+f07733Xr322mt67bXXtHLlSo0bN87kKs+Kjo4O+L8Zq+UhSfPmzdPatWu1fPlyTZ8+XcnJyWaX1CzysJZg5OGPmJgYVVVVmTant2vXLmTbrf9sZ9u2bdWhQ4eQbPObGB+tx3xlLWbNV4HUs2dP7d27N2jrvuSSS4KybsCuOI0faIXRo0friy++0AsvvKBvf/vbDcuXL1+u+Ph4/fznP1dxcbGJFYaftm3bavbs2fJ4PPrVr35ldjlhjzzO7YorrpB09p19pysoKJD09XMG48NqyCN0brzxRluuG7Arxzf7a9as0UMPPaSHHnpIOTk5TZbVf90K4K+VK1cqNzdX99xzj+6//36fn8XHx+vFF1/Ul19+qVGjRjVchRqhMXbsWF1xxRXasGFDWDRRVkceLQun756vf471zxlnMT6shTxCI5hfT8xXHwNNOb7Z/9Of/qTf/va3+u1vf6v9+/dLkj788MOGZX/6059MrhB2cvToUc2aNUsJCQl68cUXm/2djIwM3X///Xr33Xdb/B0ER0xMjObOnava2lo9/vjjZpcT9sijZfWNb7BOZ7USmv3mMT6shTxC44YbbtCAAQMCvt4BAwbo+uuvD/h6Abtz/Gf2169fr/Xr15tdBhyiW7du+vLLL8/7e6+++qpeffXVEFQUXpKTk897tsTkyZM1efLkJsvff//9IFUVvsij9fr27SspPN7Zr/+DRv1zDheMD2shD+t44YUX1LdvX3k8noCsLzo6WsuWLQvIugCncfw7+wAAWE3v3r0lnT1b6NSpUyZXEzxlZWUqKiqS9PVzBhDeevbsqSeeeCJg63viiSd03XXXBWx9gJPQ7AMAEGLf+ta3lJKSIunsR8ucqv65paam6tJLLzW3GACWMXv2bE2aNOmi1zN58mTNnj07ABUBzkSzDwCACe68805JcvSFYuuf25AhQ0yuBICVuFwuLV26VAsWLGjV1zFGR0drwYIFev755xu+3hNAUzT7AACYYMKECZKkt956y5Ff1VlUVKS33npL0tfPFQDquVwuzZkzR3v37r2gi/YNGDBA+/bt05w5c2j0gfOg2QcAwARXXXWVbrvtNnm9Xq1atcrscgJu1apVMgxDAwcO1FVXXWV2OQAsqmfPntq1a5cOHDigqVOnql+/fmrTpk3Dz91ut/r166epU6fqwIED2rVrF5/RB/zk+KvxAwBgVRMnTtQ777yjNWvWaP78+XK73WaXFBDV1dUNp/BPnDjR5GoA2MH111+v5557TpJ0+vTphut8lJSU6JJLLjGxMsC+eGcfAACTDB06VJ07d1Zpaak2bdpkdjkB8/vf/14nTpxQly5dGq5NAAD+ioqKavb/AVwYmn0AAEwSFRXVcEXqn//85yorKzO5ootXVlamRx55RNLZd/V5oQ4AgDlo9gEAMNHDDz+sHj16qKSkRFOnTjW7nIs2ZcoUlZSUqEePHnr44YfNLgcAgLBFsw8AgIncbrfWrVuniIgIvfrqq3r99dfNLqnVtm7dqo0bNyoyMlLr1693zDUIAACwI5p92JLX6zW7BMsyY9+QR8vIw1qsum/69+/fcOr7+PHjbXk6/8mTJzV+/HhJ0iOPPKJ+/fqZXFHzrPpvwAqYr6yFfQPgYtHswxYavztUU1NjUiXWV11d7XM/JiYm4NsgD/+Rh7WEIo/W+uUvf9lwOv/o0aNVV1dndkl+q6ur05gxY1RaWqoePXrol7/8pdklNWB8+I/5ylqsPF8BsAeafdhC4wNcZWWlSZVYX+N9E4wXB+ThP/KwllDk0VoxMTFat26doqOjtW3bNo0bN06GYZhd1nkZhqFx48Zp27ZtatOmjeVO32d8+I/5ylqsPF8BsAeafdhCp06dfO4fO3bMpEqs7/jx4z734+LiAr4N8vAfeVhLKPK4GP3799fGjRsVERGhl156STNmzLB0w28YhmbMmKGXXnpJERER2rhxo+VO32d8+I/5ylqsPl8BsD6afdhC9+7dfe4XFBSYVIn15efn+9xPS0sL+DbIw3/kYS2hyONiZWRkaM2aNZKk5557TllZWZY8pb/+1P3nnntOkvTSSy9p2LBhJlfVFOPDf8xX1mKH+QqAtdHswxYaH+BKSkp05swZk6qxrjNnzqi0tNRnWTBeHJCHf8jDWkKVRyCMHDlSa9eubXiHPyMjw1IX7Tt58qQyMjIaaly3bp0eeughs8tqFuPDP8xX1mKn+QqAddHswxZSUlLkcrl8ljX+izea7pOIiAh169Yt4NshD/+Qh7WEKo9AGTlypDZt2tTwGf4ePXpo69atZpelrVu36pprrtG2bdsUHR2tnJwcyzb6EuPDX8xX1mK3+QqANdHswxbcbreSkpJ8lu3cudOkaqxrx44dPveTkpKCcqEs8vAPeVhLqPIIpIyMDP3pT3/S1VdfrdLSUg0bNkw/+clPTHmXv6ysTCNGjNCwYcMarrr/4YcfWvLU/W9ifPiH+cpa7DhfAbAemn3YxuDBg33u5+TkmFSJdTXeJ433WSCRx/mRh7WEMo9A6t+/v/bv3685c+YoIiJCr776qq655hpt2LChyVdzBUN1dbU2bNiga665puHigXPnztW+ffssdzG+ljA+zo/5ylrsOl8BsBaafdhGZmamz/19+/bpyJEjJlVjPYWFhdq/f7/Pssb7LJDI49zIw1pCnUegxcTEaMGCBfrLX/6iHj16qKSkRD/72c/UtWtXzZs3T8XFxQHfZnFxsebNm6euXbvqZz/7mUpKStSjRw/95S9/0dNPP22rrwFjfJwb85W12H2+AmAdNPuwjZtvvlnx8fE+y5YuXWpSNdbzwgsv+NxPSEhQenp60LZHHudGHtYS6jyCpV+/ftq3b5+efvppde7cWSdOnNCCBQuUkpKioUOH6o033tCpU6davf5Tp07pjTfe0NChQ9WtWzctWLBAJ06cUJcuXfT0009r//79tnk3/5sYH+fGfGUtTpmvAFiAAdjI+PHjDUkNt8jISOPQoUNml2W6gwcPGpGRkT77Zvz48UHfLnk0jzysxaw8gs3j8RhbtmwxBg4c6PPcJBnJycnGPffcYyxYsMDYvn27ceTIEaOwsLDh54WFhcaRI0eM7du3GwsWLDDuueceIzk5ucl6Bg4caGzZssXweDxmP92LxvhoHvOVtTh1vrpQ5eXlDc+/vLzc7HIA23IZhmEE6w8JQKAVFhbqmmuu8fmcanp6ut577z1FRITniSper1e33HKLdu/e3bDM7Xbr8OHDSk1NDeq2yaMp8rAWM/MIpX/+85968cUX9dZbb6mwsPCi1pWamqohQ4ZowoQJuuqqqwJUofkYH00xX1lLuMxX/qioqFD79u0lSeXl5WrXrp3JFQH2FJ6zKWwrNTVVjzzyiM+yXbt2afz48fJ6vSZVZR6v16vx48f7vDCQpNmzZ4fkhQF5+CIPazE7j1C66qqrtGTJEhUUFOjzzz/XO++8o4ULF2r48OFKTU1V27Ztmzymbdu2Sk1N1fDhw/XrX/9a77zzjj7//HMVFBRoyZIljmr0JcZHY2aPD/LwZXYeABzK7FMLgAtVUVFhJCUlNTndNCsry6irqzO7vJCpq6szsrKymj19t7KyMmR1kMdZ5GEtVsnDSurq6oyysjKjrKwsrP4tfBPj4yyrjA/yOMsqeVgJp/EDgUGzD1vKzc01oqKimhwYBwwYYBw8eNDs8oLu4MGDxoABA5o8/6ioKCM3Nzfk9ZAHeViJ1fKAtTA+rDU+yMNaeVgFzT4QGDT7sK0tW7Y0+wIhMjLSmD59ulFQUGB2iQFXUFBgTJ8+vcnFe+pfGGzZssW02siDPMxm5TxgLYwPa40P8rBWHlZAsw8EBhfog61t3bpVw4cPV21tbbM/7927tzIzM3X77bcrLS1NHTt2DHGFF+fMmTPKz8/Xjh07lJOT0+R7d+tFRUVp06ZNuvvuu0NcoS/yOIs8QsNuecBaGB9nWWV8kMdZVsnDbFygDwgMmn3Y3vbt2zVu3DgVFRWd93cTEhKUlpamLl26KDY2Vm632zJX/fV6vaqurlZlZaWOHz+u/Px8lZaWnvdxycnJWrlypQYNGhSCKs+PPMgjGJySB6yF8WGt8UEe1srDTDT7QICYe2IBEBiVlZXG/PnzDbfb3eR0OKfe3G63MX/+fEtevIc8rIU8gJYxPqyFPGAYnMYPBArv7MNRCgsL9cwzz2jz5s06ceKE2eUERUJCgoYNG6ZZs2ZZ/ut4yMNayANoGePDWsgjvPHOPhAYNPtwpNraWu3atUs5OTnKzc1VUVGR7PpP3eVyKTk5WYMHD1ZmZqbS09MVFRVldlkXhDyshTyAljE+rIU8whPNPhAYNPsIC9XV1Tp69Kjy8/OVn5+vsrIyVVVVqaqqyuzSfMTExCgmJkZxcXFKS0tTWlqaunXrJrfbbXZpAUUe1kIeQMsYH9ZCHuGBZh8IDJp9AAAAAJZBsw8EhjUuWwoAAAAAAAKGZh8AAAAAAIeh2QcAAAAAwGFo9gEAAAAAcBiafQAAAAAAHIZmHwAAAAAAh6HZBwAAAADAYWj2AQAAAABwGJp9AAAAAAAchmYfAAAAAACHodkHAAAAAMBhaPYBAAAAAHAYmn0AAAAAAByGZh8AAAAAAIeh2QcAAAAAwGFo9gEAAAAAcBiafQAAAAAAHIZmHwAAAAAAh6HZBwAAAADAYaLMLgAIherqah05ckT5+fkqKCjQyZMnVVVVperqarNL8+F2uxUTE6NOnTqpe/fuSktLU0pKitxut9mlBRR5AAAAAMFFsw9Hqq2t1QcffKCcnBzl5uaquLhYhmGYXVaruFwuJSUlafDgwcrMzNTNN9+sqCh7DV3yAAAAAELLZdj1FTfQjIKCAj377LPavHmzTpw4YXY5QREfH6+MjAzNmjVLqampZpdzTuQBAAAuVEVFhdq3by9JKi8vV7t27UyuCLAnmn04QmVlpbKzs7Vw4ULV1NSYXU5IuN1uPfLII5ozZ45iY2PNLscHeVgrDwAA7IRmHwgMmn3Y3vbt2zV27FgVFxef93cTExPVvXt3de3aVbGxsWrTpo0iIqxxnUqv16uamhpVVlbq2LFjKigoUElJyXkfl5ycrJUrV2rQoEEhqPL8yMNaeQAAYDc0+0Bg0OzD1rZu3arhw4ertra22Z/36dNHmZmZGjhwoNLS0tSxY8cQV3hxzpw5o/z8fO3cuVObNm3S/v37m/29qKgobdq0SXfffXeIK/RFHmdZJQ8AAOyIZh8IDJp92FZLjWVkZKSmTJmiKVOmKCUlxaTqgqOwsFAvvPCCli5dqrq6Op+fmd1gkoe18gAAwK5o9oHAoNmHLW3fvl0/+tGPmjSW6enpWrZsma699lqTKguNv//975o0aZJ27drlszwqKkp/+MMfQn4KOXlYKw8AAOyMZh8IDJp92E5lZaV69OjR5DPhWVlZWrFihWU+8x1sXq9X48eP1+rVq32WJycnKy8vT23btg1JHeRxllXyAADA7mj2gcAIj1fhcJTs7OywbywlKSIiQitWrFBWVpbP8qKiImVnZ4esDvI4yyp5AAAAABLv7MNmCgoKdO2116q6urphWXp6ut57772waiy/yev16pZbbtHu3bsblrndbh0+fDjo3/tOHk2ZmQcAAE7AO/tAYITnq3HY1rPPPuvTWEZGRmrZsmVh21hKZ99RXrZsmSIjIxuWVVdX65lnngn6tsmjKTPzAAAAAOqF7yty2E5tba02b97ss2zKlCmOv/ibP6677jpNmTLFZ9mWLVta/Aq8QCCPlpmRBwAAAPBNNPuwjQ8++EAnTpzwWda4oQpnkydP9rlfWlra5OrwgUQe5xbqPAAAAIBvotmHbeTk5Pjc79Onj+O+t/1ipKamqnfv3j7LGu+zQCKPcwt1HgAAAMA30ezDNnJzc33uZ2ZmmlSJdTXeJ433WSCRx/mFMg8AAADgm2j2YQvV1dVNvt5t4MCBJlVjXbfffrvP/eLiYp8L6AUKefgnVHkAAAAAjdHswxaOHDmixt8SeeWVV5pUjXWlpaX53Pd6vTp69GjAt0Me/glVHgAAAEBjNPuwhfz8fJ/7iYmJ6tChg0nVWFfHjh2VkJDgs6zxvgsE8vBPqPIAAAAAGqPZhy0UFBT43O/evbtJlVhf43eTg9Fckof/QpEHAAAA0BjNPmzh5MmTPve7du1qUiXW16VLF5/7ZWVlAd8GefgvFHkAAAAAjdHswxaqqqp87sfGxppUifU13jeN910gkIf/QpEHAAAA0BjNPmyh8RXM27RpY1Il1ud2u33uB6O5JA//hSIPAAAAoDGafdhSRAT/dFtixr4hj5axbwAAAGAGXoUCAAAAAOAwNPsAAAAAADgMzT4AAAAAAA4TZXYBAABn8ng8+vLLLyVJHTp0UHR0tMkVAQAAhA/e2QcABMyBAwc0depU9evXT+3bt1dcXJzi4uLUvn179evXT1OnTtXHH39sdpkAAACOR7MPALhoBw8eVHp6unr16qWlS5dq7969qqmpafh5TU2N9u7dq6VLl+qGG25Qenq6Dh48aGLFAAAAzkazDwBoNcMwlJ2drb59+2r37t1+P2737t3q27evsrOzZRhGECsEAAAITzT7AIBWMQxDU6ZM0dy5c+XxeC748R6PR3PnztWUKVNo+AEAAALM0c3+Z599piVLlmjQoEH6r//6L7Vp00aXX365MjIy9Ne//tXs8mADRUVFcrlcPrfo6Gh17txZw4cP1969eyVJS5Yskcvl0siRI1tc1/vvv6+IiAj169dPtbW1oXoKjkIe1rJw4UItW7bsotezbNkyLVy4MAAVAQAAoJ6jr8a/dOlSLVy4UKmpqRo0aJDi4+OVn5+v119/Xa+//rpeffVV3XvvvWaXCRtITU3VAw88IEmqqKjQvn37lJOTo9dff107d+7UtGnTtG3bNq1fv17Dhg3TnXfe6fP48vJyjRw5Um63Wxs2bFBUlKOHXtCRh/kOHjyo+fPnB2x98+fP1x133KGePXsGbJ0AAADhzNGvcPv376/3339fN998s8/y3bt367bbbtOECRP04x//WG6326QKYRfdu3fXY4895rMsOztbc+fO1aOPPqoPPvhA69evV8+ePZWVlaXDhw8rLi6u4XdnzpypoqIiLV68WFdffXWIq3ce8jDf5MmTW3Xqfks8Ho8mT56sXbt2BWydAAAA4czRp/EPGzasSaMvSQMGDNCtt96qzz//XIcOHTKhMjjB6NGjJUn79u2TJCUlJWnJkiUqKSnRhAkTGn4vNzdXq1at0q233qpp06aZUms4II/QOXDgwAVdjM9fu3fv5mv5AAAAAsTRzf65REdHSxKn7+KiffPf0MiRIzV06FDl5ORo48aN+uKLLzRmzBh17NhR69atk8vlMrHS8EAewbd27VpbrhsAACCchGWn++mnn2rnzp369re/reuuu87scmBTa9askSTddNNNPstXrVqlP//5z5o0aZLS09N1/PhxrV27VklJSWaUGTbII3Q++ugjW64bAAAgnIRds+/xePTggw+qurpaCxcuVGRkpNklXRDDMFRZWWl2GSEXyM8Gt0ZBQUHDZ8TrLwj33nvvKTExUYsWLfL53cTERK1cuVIZGRnatm2bhg4des6rwgebx+NRRUVFwNdpJvIwj8fj0cGDB4O2/oMHD+r06dOcdQUAYeybx0k7HzOdKDY2ljMj7cQII3V1dcaIESMMSUZWVpbZ5bRKeXm5ISnsbxMnTgzJ/j569GiLNVx++eVGfn5+i4/t37+/IcnIy8sLSa31Jk6cSB7NCKc8uHHjxo0bN27cgnErLy8P6esoXJyw+cy+1+vVqFGj9Oqrr+qBBx7QihUrzC4JNjJ48GAZhiHDMFRaWqpFixaptLRUQ4cOVXl5ebOPadu2rc9/ETjkAQAAAJxbWJwn6fV6NXLkSG3YsEH333+/1q9fr4gIe/6dIzY2tsVmxslmzJih1atXm12GJCk+Pl6zZs3S6dOn9eSTT+oXv/iFlixZYnZZLcrKytLixYsDuk7yaL1g5BFKHo9HiYmJqqmpCcr63W63SkpKOI0fAMJYRUWFEhMTJUklJSVq166dyRWhXmxsrNkl4AI4/tXUNxv9e++9Vy+//LLtPqf/TS6XKywnvPpvT7CSefPmae3atVq+fLmmT5+u5ORks0tqVnR0dMD/zZBH6wUjj1Dr2bOn9u7dG7R1X3LJJUFZNwDAftq1a2f74yZgFnu+ve2n+lP3N2zYoMzMTP3ud7+zdaMPa2nbtq1mz54tj8ejX/3qV2aXE/bII3RuvPFGW64bAAAgnDi62X/iiSf029/+Vu3bt9eVV16pJ598Uo899pjP7cCBA2aXCRsbO3asrrjiCm3YsEGFhYVmlxP2yCM0Ro0aZct1AwAAhBNHn8ZfVFQkSSovL9dTTz3V7O8kJyfrhhtuCF1RcJSYmBjNnTtXU6ZM0eOPP64NGzaYXVJYI4/QuOGGGzRgwADt3r07oOsdMGCArr/++oCuEwAAIFw5utlfv3691q9fb3YZsLHk5GQZhnHO35k8ebImT57cZPn7778fpKrCF3lYxwsvvKC+ffvK4/EEZH3R0dFatmxZQNYFAAAAh5/GDwAIjp49e+qJJ54I2PqeeOIJXXfddQFbHwAAQLij2QcAtMrs2bM1adKki17P5MmTNXv27ABUBAAAgHo0+wCAVnG5XFq6dKkWLFjQqq9jjI6O1oIFC/T888/L5XIFoUIAAIDwRbMPAGg1l8ulOXPmaO/evRowYIDfjxswYID27dunOXPm0OgDAAAEgaMv0AcACI2ePXtq165d+vjjj7V27Vp99NFH+vjjj1VTUyNJcrvd6tmzp2688UaNGjWKq+4DAAAEGc0+ACBgrr/+ej333HOSpNOnT+vSSy+VJJWUlOiSSy4xsTIAAIDwwmn8AICgiIqKavb/AQAAEHw0+wAAAAAAOAzNPgAAAAAADkOzDwAAAACAw9Dsw5a8Xq/ZJViWGfuGPFrGvgEAAIAZaPZhC2632+d+/dd5oanq6mqf+zExMQHfBnn4LxR5AAAAAI3R7MMWGjdIlZWVJlVifY33TTCaS/LwXyjyAAAAABqj2YctdOrUyef+sWPHTKrE+o4fP+5zPy4uLuDbIA//hSIPAAAAoDGafdhC9+7dfe4XFBSYVIn15efn+9xPS0sL+DbIw3+hyAMAAABojGYfttC4QSopKdGZM2dMqsa6zpw5o9LSUp9lwWguycM/ocoDAAAAaIxmH7aQkpIil8vls6zxO6Zouk8iIiLUrVu3gG+HPPwTqjwAAACAxmj2YQtut1tJSUk+y3bu3GlSNda1Y8cOn/tJSUlNrpwfCOThn1DlAQAAADRGsw/bGDx4sM/9nJwckyqxrsb7pPE+CyTyOL9Q5gEAAAB8E80+bCMzM9Pn/r59+3TkyBGTqrGewsJC7d+/32dZ430WSORxbqHOAwAAAPgmmn3Yxs0336z4+HifZUuXLjWpGut54YUXfO4nJCQoPT09aNsjj3MLdR4AAADAN9HswzaioqKUkZHhs2zp0qX6+9//blJF1nHo0KEmjfawYcMUFRUVtG2SR8vMyAMAAAD4Jpp92MqsWbN8LnBWV1enSZMmyev1mliVubxeryZNmqS6urqGZW63W7NmzQr6tsmjKTPzAAAAAOrR7MNWUlNT9cgjj/gs27Vrl8aPHx+WDabX69X48eO1e/dun+WzZ89Wampq0LdPHr7MzgMAAACo5zIMwzC7COBCVFZWqkePHiouLvZZnpWVpRUrVigiIjz+hlXfWK5evdpneXJysvLy8tS2bduQ1EEeZ1klDyupqKhQ+/btJUnl5eVq166dyRUBAOyA4wcQGOHxKhyOEhsbq1WrVjX5/PPq1at1yy236NChQyZVFjqHDh3SLbfc0qSxjIqK0sqVK0PaWJKHtfIAAAAAJJp92NSgQYO0adOmJg3m7t271atXL82YMUOFhYUmVRc8hYWFmjFjhnr16tXkVPGoqCht2rRJgwYNCnld5GGtPAAAAABO44etbd26VcOHD1dtbW2zP+/du7cyMzN1++23Ky0tTR07dgxxhRfnzJkzys/P144dO5STk9Pke9vr1TeWd999d4gr9EUeZ1klD7NxGiYAoDU4fgCBQbMP29u+fbvGjRunoqKi8/5uQkKC0tLS1KVLF8XGxsrtdlvmM+Ver1fV1dWqrKzU8ePHlZ+fr9LS0vM+Ljk5WStXrrTMO8jkYa08zMSLNQBAa3D8AAKDZh+O8NVXXyk7O1sLFy5UdXW12eWEhNvt1uzZszVnzhzLfSacPKyVh1l4sQYAaA2OH0Bg0OzDUQoLC/XMM89o8+bNOnHihNnlBEVCQoKGDRumWbNmWf7r3MgjvPFiDQDQGhw/gMCg2Ycj1dbWateuXcrJyVFubq6Kiopk13/qLpdLycnJGjx4sDIzM5Went7kQnhWRx7hiRdrAIDW4PgBBAbNPsJCdXW1jh49qvz8fOXn56usrExVVVWqqqoyuzQfMTExiomJUVxcnNLS0pSWlqZu3brJ7XabXVpAkUd44MUaAKA1OH4AgUGzDwAICl6sAQBag+MHEBjWuOw1AAAAAAAIGJp9AAAAAAAchmYfAAAAAACHodkHAAAAAMBhaPYBAAAAAHAYmn0AAAAAAByGZh8AAAAAAIeh2QcAAAAAwGFo9gEAAAAAcBiafQAAAAAAHIZmHwAAAAAAh6HZBwAAAADAYWj2AQAAAABwGJp9AAAAAAAchmYfAAAAAACHodkHAAAAAMBhaPYBAAAAAHAYmn0AAAAAAByGZh8AAAAAAIeJMrsAIBSqq6t15MgR5efnq6CgQCdPnlRVVZWqq6vNLs2H2+1WTEyMOnXqpO7duystLU0pKSlyu91mlxZQ5AG0jPFhLeQBwC6Yr9AYzT4cqba2Vh988IFycnKUm5ur4uJiGYZhdlmt4nK5lJSUpMGDByszM1M333yzoqLsNXTJA2gZ48NayAOAXTBf4Xxchl3/RQDNKCgo0LPPPqvNmzfrxIkTZpcTFPHx8crIyNCsWbOUmppqdjnnRB7hraKiQu3bt5cklZeXq127diZXZC2MD2shD8A6OH6cG/MV/GYADlBRUWE8+uijRps2bQxJYXFzu93Go48+alRUVJi9+5sgDxiGYZSXlzfsn/LycrPLsQzGh7WQB2A9HD+ax3yFC8U7+7C97du3a+zYsSouLj7v7yYmJqp79+7q2rWrYmNj1aZNG0VEWOM6lV6vVzU1NaqsrNSxY8dUUFCgkpKS8z4uOTlZK1eu1KBBg0JQ5fmRh7XyMBPvzDTF+LDW+CAPa+UB1OP40ZTT5qtDhw7p//7v/+TxeJivgsnsvzYAF2PLli1GVFRUi38N7NOnj5GdnW3s3bvXOH36tNnlXrDTp08be/fuNbKzs43evXu3+DyjoqKMLVu2mF0ueVgsD7Pxzowvxoe1xgd5WCsP4Js4fvhy0nxVV1dnzJ4925DUMPcwXwUPzT5sq6WJLzIy0pg+fbpRWFhodokBV1BQYEyfPt2IjIy03ARIHtbKwwp4sfY1xoe1xgd5WCsPoDGOH19z0nxVWVlp3HPPPQ3P4f/+7/+a/T3mq8Ch2Yct5ebmNjvxpaenG4cOHTK7vKA7dOiQkZ6e3uwEmJubG/J6yMNaeVgFL9bOYnxYa3yQh7XyAJrD8eMsJ81X//nPf4z+/fs3PIfk5OTzPob56uLR7MN2KioqjKSkpCYDPysry6irqzO7vJCpq6szsrKymuyH5ORko7KyMmR1kMdZVsnDSs6cOdOwH86cOWN2OaZgfJxllfFBHmdZJQ+gJRw/nDVf/f3vf2/yXO6//36/Hst8dXFo9mE7jz76qCMmvkBoaQKcP39+yGogj69ZIQ8znDp1yti5c6eRnZ1tZGZmGikpKUZMTEyT/RATE2OkpKQYmZmZxsKFC42dO3cap06dMrv8oGJ8fM0K44M8vmaFPACOHy1zyny1Y8cOo2PHjk2ey/PPP+/3OpivWo9mH7aSn59vuN3uJqcy2W3iC6S6ujpjwIABPvvE7XYbBQUFQd82eTRlZh6h9MknnxjTpk0zUlJSmhx8L/SWkpJiTJs2zfjkk0/MfloBxfhoivnKWsJlvoK1cPw4P6fMV6tXr27xwoJ/+9vfLmhdzFetQ7MPWxk/frzPII+MjLTdZ5aC4eDBg00uYjJ+/Pigb5c8mmdWHsHm8XiMzZs3G7fddluTg3a3bt2Me+65x8jOzjZ27NhhHDlyxCgsLGz4eWFhoXHkyBFjx44dRnZ2tnHPPfcY3bp1a7Ke2267zdi8ebPh8XjMfroXjfHRPOYra3HqfAVr4fhxYew+X9XV1RmPPPJIi3+kadu2rVFTU3PB62W+unA0+7ANj8djxMfH+wzw6dOnm12WZUyfPt1n3yQkJAT1gEce5xbqPILpq6++Mp566imjc+fODc8nIiLCGDp0qPHGG28YZWVlzT7OnwsslZWVGW+88YYxdOhQIyIiouH3O3fubDz99NNGVVVVMJ9a0DA+zo35ylqcNF/BWjh+XDi7z1eVlZVGRkbGOc/IGDBgQKvXz3x1YWj2YRs7d+5sMlnY6etGgq2goKDJ/nnnnXeCtj3yOLdQ5xEsf/3rX40ePXo0PIf4+Hhj3rx5RlFR0Xkfe6FXUy4qKjLmzZvn8yKnR48exp49ewLxVEKK8XFuzFfW4pT5CtbC8aN17DxfNb7ifku3Rx55pNXbYL66MBECbCInJ8fnfp8+fZSSkmJSNdaTmpqq3r17+yxrvM8CiTzOLdR5BFpVVZXmzJmjG2+8UXl5eUpMTNSGDRt07NgxPfXUU0pKSgr4NpOSkvTUU0/p2LFj2rBhgxITE5WXl6fvfve7mjt3rqqqqgK+zWBhfJwb85W12H2+grVw/Lg4dp2vDh8+rP/+7//Wnj17fJZHRDRtN2+88cZWb4f56sLQ7MM2cnNzfe5nZmaaVIl1Nd4njfdZIJHH+YUyj0Das2ePevfurYULF8rr9WrEiBE6fPiwHnzwQbnd7qBv3+1268EHH9Thw4c1YsQIeb1eZWdnq0+fPk1eRFgV4+P8mK+sxa7zFayF48fFs+N8tWPHDn3ve99TcXGxz/JLLrlEzzzzTJPf/+53v3tR22O+8h/NPmyhurq6yQQycOBAk6qxrttvv93nfnFxsaqrqwO+HfLwT6jyCKTXXntNN910k/7xj38oMTFRW7du1SuvvKK4uLiQ1xIXF6dXXnlFW7duVUJCgvLy8nTTTTdp8+bNIa/lQjA+/MN8ZS12nK9gLRw/Lp4d56vVq1frhz/8oc6cOeOzPDk5WX/+858VGxvbZPnll19+UdtkvvIfzT5s4ciRIzIMw2fZlVdeaVI11pWWluZz3+v16ujRowHfDnn4J1R5BMratWt17733yuPx6K677tLhw4f14x//2Oyy9OMf/1h5eXm666675PF4NHz4cK1bt87sslrE+PAP85W12G2+grVw/AgMO81XXq9Xs2fP1tixY1VXV+fzs//+7//WX/7yF/Xo0UMfffSRz88u5hT+esxX/qPZhy3k5+f73E9MTFSHDh1Mqsa6OnbsqISEBJ9ljfddIJCHf0KVRyCsW7dOo0ePltfr1ejRo7V582ZT3o1pSVxcnDZv3txQ46hRoyz7go3x4R/mK2ux03wFa+H4ETh2ma8qKys1fPhw/frXv2725y+//LISExMlKSjNPvOV/2j2YQsFBQU+97t3725SJdbX+K+dwZj8yMN/ocjjYm3evFljxoyRJE2bNk2rV69WZGSkyVU1FRkZqdWrV2vatGmSpDFjxmjLli0mV9UU48N/zFfWYof5CtbC8SOw7DJfnTp1Sl999VWLP7/yyiv1wx/+UCdPntS//vUvn58FotmXmK/8RbMPWzh58qTP/a5du5pUifV16dLF535ZWVnAt0Ee/gtFHhdjz549uv/+++X1ejVmzBgtXrxYLpfL7LJa5HK5tHjx4oZ3aO677z797W9/M7ssH4wP/zFfWYvV5ytYC8ePwLPLfNWlSxe99dZb2rZtm5KTk5v9nT/+8Y+Kj4/3Wda2bVtdf/31Aavhm5ivmkezD1to/JUpjS/2ga813jfB+LoZ8vBfKPJoraqqKj300EMNn7FcsWKFpV+o1XO5XFq5cmXDZzAfeughy+3Xb2J8tIz5ylqsPF/BWjh+BIeV56u6ujqfz+a7XC4NHTpUeXl5mj9/vl/r6Nu3r6KjowNSD/OVf2j2YQuNr7DZpk0bkyqxvsZfbROMyY88/BeKPFrr8ccfb7hq8ksvvWTJUy9bEhkZqTVr1jRcZfmJJ54wu6QGjA//MV9Zi5XnK1gLx4/gMHu+qqmp0d/+9jetWbNGU6ZMUXp6uuLi4tSmTRtFRUUpKipKbdq0UVxcnNLT0zVlyhS98sor+q//+i+/1h+oU/gl5it/RZldANAaERH8naolZuwb8miZVffNnj17Gi6ss2LFCktdTMlfnTp10ooVKzRs2DAtXLhQd999t/r162d2WU1Y9d+AFTBfWQv7Bv7g+BE6oRqTBw4c0Nq1a/XKK6/o1KlT5/xdj8ejU6dOaffu3dq9e/cFbSeQzT7zlX/YSwAQZqqqqjRy5Eh5vV6NGDHCEl+P1Fp33313w2dGH3roIb5nFwCCiOOHc9TW1mrlypXq1auXevXqpaVLl5630b8QP/rRj5q8+/7d7343YOuHf2j2ASDMLF68WHl5eUpMTNTzzz9vdjkXbenSpUpMTFReXp5+85vfmF0OADgWxw9n+Oijj9S3b1+NHz9eBw4cCMo2/vCHP6hbt24N7+YnJyfr8ssvD8q20DKafQAII7W1tVq2bJkkadGiRbY8/bKxuLi4hlNKly9frtraWpMrAgDn4fhhf2VlZcrKytL3vvc9ffzxxy3+3pVXXqnMzEw9+eSTevPNN7V//34dPnxYhw8f1v79+/Xmm2/qySefbPLOfWOffPKJPvroI91+++26++67A/104Ac+sw8AYeSNN97QZ599poSEBA0fPtzscgLm3nvv1axZs3T8+HG9+eabvKgAgADj+GFvBw4c0JAhQ/TZZ581+/OuXbvqoYce0s9+9jOlpqaec129evVSXFycfvGLX/i17R07digvL08//elPdcMNN1xo6bgIvLMPAGFk+fLlkqQxY8ac9y/yduJ2uzVmzBhJXz9HAEDgcPywrz/+8Y+66aabmm30r732Wr399ts6evSonnjiifM2+pJkGIa+973vNVm+ePFivf3227r22mub/Oyzzz7TTTfdpD/+8Y+texJoFZp9AAgTn3zyid555x1FRERo7NixZpcTcOPGjZPL5dLOnTv1z3/+0+xyAMAxOH7Y15tvvqmhQ4eqoqLCZ3m7du30zDPPaP/+/fqf//mfC/r6xP/3//5fs8unT5+u//mf/9H+/fv1zDPPqF27dj4/r6io0F133aU333zzwp8IWoVmHwDCxIoVKyRJQ4YMUVJSksnVBF5SUpKGDBkiSXrxxRdNrgYAnIPjhz19+OGHysjIkMfj8Vk+YMAA/eMf/9DMmTMVHR19Qev88ssvtWDBgibL//GPfzT8f3R0tGbOnKl//OMfuummm3x+r6amRhkZGfrwww8vaLtoHZp9AAgT9X9Jrz9d0Ynqn9tbb71lciUA4BwcP+zn888/14gRI5o0+vfff7927Nihrl27tmq9zZ3m36tXL33nO99psrxr167auXOn7r//fp/lHo9HI0aM0BdffNGqGuA/Rzf7VVVVevjhh5Wenq4rrrhCMTExuvzyy/X9739f69ata/KPH2isqKhILpfL5xYdHa3OnTtr+PDh2rt3ryRpyZIlcrlcGjlyZIvrev/99xUREaF+/fo5/mqvwUIerff555/ryJEjkqTvf//7JlcTPPXPrbCwMOxeRDA+rIU84BQcP+zHMAxlZWXp008/9Vk+atQovfzyy62+5sJHH32kEydONFn+l7/8pcXHuN1uvfzyyxo1apTP8k8//VRZWVkyDKNVtcA/jr4af3l5uV588UX1799fP/rRjxQfH6/PP/9cb7/9tkaNGqX//d//1dtvv62ICEf/zQMBkJqaqgceeEDS2c8b7du3Tzk5OXr99de1c+dOTZs2Tdu2bdP69es1bNgw3XnnnT6PLy8v18iRI+V2u7VhwwZFRTl66AUdeVy4/fv3S5K6deumyy67zORqgicuLk7JyckqKirS/v379YMf/MDskkKO8WEt5AG74/hhP6tXr9bmzZt9lt1yyy1atWrVBX02/5tauijfc889pzZt2pzzsZGRkVq1apUKCwv1wQcfNCx/7bXXtGbNGmVlZbWqJpyfo48Yl112mU6fPt3kH2Btba1uv/12bd++XW+//bZ+9KMfmVQh7KJ79+567LHHfJZlZ2dr7ty5evTRR/XBBx9o/fr16tmzp7KysnT48GGf75+dOXOmioqKtHjxYl199dUhrt55yOPC1b+L2KdPH5MrCb6+ffuqqKhIe/futfWLtdZifFgLecDuOH7YS2VlpebOneuz7LLLLtPvfve7Vjf6UssX5Zs6dapfj4+MjNTvfvc7XX/99Tp16lTD8rlz5+onP/mJYmNjW10bWubot7QjIiKa/UtTVFRUw3doFhQUhLosOMTo0aMlSfv27ZN09uIuS5YsUUlJiSZMmNDwe7m5uVq1apVuvfVWTZs2zZRawwF5nFv9funbt6/JlQRf/QvS+ucMxofVkAfshOOHvaxfv96nmZakdevWqXPnzq1epz8X5fNHly5dtHbtWp9lZWVl+u1vf9vq2nBujm72W+L1ehu+47G574EELsQ3T6kcOXKkhg4dqpycHG3cuFFffPGFxowZo44dO2rdunVyuVwmVhoeyKN59S9cwuGdGSe8WAsWxoe1kAfsgOOHfdTV1ek3v/mNz7If/vCHGjp06EWt90Iuync+d911l374wx/6LPvNb36jurq6VteHljn6NP56NTU1evrpp2UYhsrKyvTOO+/ok08+0ciRI3XbbbeZXR5sas2aNZLU5CtFVq1apT//+c+aNGmS0tPTdfz4ca1du9aRX1VjJeRxbv/+978lNX/Adpru3btL+vo5g/FhNeQBO+H4YR/btm1TYWGhz7JZs2Zd1Dpbc1G+85k5c6befvvthvsFBQV64403Gs68RuCETbP/+OOPN9x3uVyaNWtWs6ejWJ1hGKqsrDS7jJAz+5sTCgoKGj5zWX+Bpffee0+JiYlatGiRz+8mJiZq5cqVysjI0LZt2zR06NBzXmU52DwejyoqKgK+TjORx4Xxer2qqqqSdHYOCdX2v7mdUD7n+iv7fvXVV/ryyy9DfhFWxkfrMV85Pw/YC8cPex0/Nm3a5HO/V69euvXWW1u9vou5KN+5/OAHP9ANN9ygAwcONCz7/e9/T7MfDEYYqaurM44dO2YsX77cuPTSS43vf//7xunTp80u64KUl5cbksL+NnHixJDs76NHj7ZYw+WXX27k5+e3+Nj+/fsbkoy8vLyQ1Fpv4sSJ5NGMcMqDm7VujI+WMV81L5zy4MaNW8u3C52vkpKSfB7/4osvXtScMHfu3GbrCoTly5f7rDM5OfmCHt94vgrV3G43YfWZ/YiICHXp0kUTJkzQqlWr9OGHH+qpp54yuyzYwODBg2UYhgzDUGlpqRYtWqTS0lINHTpU5eXlzT6mbdu2Pv9F4JAH0DLGh7WQB4BQ+M9//qPi4mKfZY0/KnQhAnVRvpY0rq2oqEglJSUBWTe+Fhan8Tdn0KBBkqT333/f3EIuUGxsbIsvDpxsxowZWr16tdllSJLi4+M1a9YsnT59Wk8++aR+8YtfaMmSJWaX1aKsrCwtXrw4oOskj9YLRh7n4/V61bFjR0lSYWGhEhMTQ7LdioqKhm2VlJSoXbt2IdluSUlJw2dLz5w5E/LTMBkfrcd8ZS1mzFewFo4f9jl+/PWvf/W536FDh4v6us5AXpSvOT169FD79u19+pq//vWvF30xQfgK22a//sIb0dHRJldyYVwuV8gmPCuxYk7z5s3T2rVrtXz5ck2fPl3Jyclml9Ss6OjogP+bIY/WC0Ye/oiJiVFVVZVpc0i7du1Ctt36q5a3bdtWHTp0CMk2v4nx0XrMV9Zi1nwFa+H4EToXM199/PHHPvf79eunyMjIVq0rGBflaywyMlL9+vXTe++917DswIEDNPsB5ujT+PPy8pq9mF1lZaUefvhhSdIdd9wR6rLgEG3bttXs2bPl8Xj0q1/9yuxywh55nNsVV1whSU2u0utEBQUFkr5+zmB8WA15wE44ftjDl19+6XO/a9eurVqPEaSL8jWncY3hePZysDm62d+0aZMuv/xy3XHHHZo4caLmzJmjBx98UP/1X/+lP/7xjxowYIBmzJhhdpmwsbFjx+qKK67Qhg0bwuIgaHXk0TK7f3fwhQin74S+EIwPayEP2AXHD3u4/vrrdd999+muu+7SoEGDdN1117VqPf/v//2/ZpdPnTr1YsprVs+ePTVo0CDddddduu+++3T99dcHfBvhztHN/pAhQ3Tffffp008/1caNG/Xss8/q7bffVs+ePbVy5Uq9++67XPwGFyUmJkZz585VbW2tz9c7whzk0bL6Fy579+41uZLgs/OLtWBifFgLecAuOH7YwwMPPKCNGzfq9ddfV25urmbOnHnB6wj2RfkamzlzpnJzc/X6669r48aN+slPfhKU7YQzR39mv2/fvurbt6/ZZcDGkpOTG75ztSWTJ0/W5MmTmyy328Uf7YA8Wq9+LgyHd2bqX5CG2/zP+LAW8oBTcPwIH8G+KB9Cz9Hv7AMAzurdu7ck6ejRozp16pTJ1QRPWVmZioqKJH39nAEArcfxIzyE4qJ8CD2afQAIA9/61reUkpIiSfrwww9NriZ46p9bamqqLr30UnOLAQAH4PjhfKG8KB9Ci2YfAMLEnXfeKUlas2aNyZUET/1zGzJkiMmVAIBzcPxwtlBelA+hRbMPAGFiwoQJkqS33npLxcXFJlcTeEVFRXrrrbckff1cAQAXj+OHc4X6onwILZp9AAgTV111lW677TZ5vV6tWrXK7HICbtWqVTIMQwMHDtRVV11ldjkA4BgcP5yLi/I5G80+AISRiRMnSjp7umJ1dbXJ1QROdXV1wymY9c8RABA4HD+ch4vyOR/NPgCEkaFDh6pz584qLS3Vpk2bzC4nYH7/+9/rxIkT6tKlS8NnSwEAgcPxw1m4KF94oNkHgDASFRWlSZMmSZJ+/vOfq6yszOSKLl5ZWZkeeeQRSWfflYmKijK5IgBwHo4fzsJF+cIDzT4AhJmHH35YPXr0UElJiSMO6lOmTFFJSYl69Oihhx9+2OxyAMCxOH44AxflCx80+wAQZtxut9atW6eIiAi9+uqrev31180uqdW2bt2qjRs3KjIyUuvXr5fb7Ta7JABwLI4fzsBF+cIHzT5syev1ml2CZZmxb8ijZVbdN/379284dXH8+PG2PB3z5MmTGj9+vCTpkUceUb9+/UyuqHlW/TdgBcxX1sK+gT84foROMMbkJ5984oiL8jFf+YdmH7bQ+K+tNTU1JlVifY2vkBsTExPwbZCH/0KRR2v98pe/bDgdc/To0aqrqzO7JL/V1dVpzJgxKi0tVY8ePfTLX/7S7JIaMD78x3xlLVaer2AtHD+CI9jzlWEYmj59epPldrwoH/OVf2j2YQuNB3BlZaVJlVhf430TjMmPPPwXijxaKyYmRuvWrVN0dLS2bdumcePGyTAMs8s6L8MwNG7cOG3btk1t2rSx3OmXjA//MV9Zi5XnK1gLx4/gCPZ8VVpaqn/+858+y771rW/Z8voLzFf+odmHLXTq1Mnn/rFjx0yqxPqOHz/ucz8uLi7g2yAP/4Uij4vRv39/bdy4UREREXrppZc0Y8YMS79gMwxDM2bM0EsvvaSIiAht3LjRcqdfMj78x3xlLVafr2AtHD8CL9jzVWJiovLy8jR//ny53W61a9dOBw8eDOg2QoX5yj80+7CF7t27+9wvKCgwqRLry8/P97mflpYW8G2Qh/9CkcfFysjI0Jo1aySdPZUvKyvLkqdk1p96+dxzz0mSXnrpJQ0bNszkqppifPiP+cpa7DBfwVo4fgRWKOartm3b6vHHH9fhw4e1YcMGdenSJeDbCAXmK//Q7MMWGg/gkpISnTlzxqRqrOvMmTMqLS31WRaMyY88/BOqPAJh5MiRWrt2bcM7NBkZGZa66NLJkyeVkZHRUOO6dev00EMPmV1Wsxgf/mG+shY7zVewFo4fgRPK+So1NdWSf/DwB/OV/2j2YQspKSlyuVw+yxr/RQ9N90lERIS6desW8O2Qh39ClUegjBw5Ups2bWr4DGaPHj20detWs8vS1q1bdc0112jbtm2Kjo5WTk6OZV+oSYwPfzFfWYvd5itYC8ePwGC+8g/zlf9o9mELbrdbSUlJPst27txpUjXWtWPHDp/7SUlJQbnwDHn4J1R5BFJGRob+9Kc/6eqrr1ZpaamGDRumn/zkJ6a8S1NWVqYRI0Zo2LBhDVdN/vDDDy3/TgTjwz/MV9Zix/kK1sLx4+IxX/mH+cp/NPuwjcGDB/vcz8nJMakS62q8Txrvs0Aij/MLZR6B1L9/f+3fv19z5sxRRESEXn31VV1zzTXasGFDk6+6CYbq6mpt2LBB11xzTcPFn+bOnat9+/ZZ7mJKLWF8nB/zlbXYdb6CtXD8uHjMV+fHfHUBDMAmdu7caUjyuRUWFppdlmUUFBQ02T/vvPNO0LZHHucW6jyCZc+ePUaPHj0ankN8fLwxd+5co6io6LyPLS8vb3hceXn5eX+/qKjImDt3rhEfH9/wuB49ehh79uwJxFMJKcbHuTFfWYtT5itYC8eP1mG+OjfmqwtDsw/b8Hg8PpO4JGP69Olml2UZ06dP99k3CQkJhsfjCdr2yOPcQp1HMH311VfG008/bXTu3Lnh+URERBh33nmnsW3bNqOsrKzZx/nzYq2srMzYtm2bceeddxoul6vh97t06WI8/fTTRlVVVTCfWtAwPs6N+cpanDRfwVo4flw45qtzY766MDT7sJXx48f7DPDIyEjj0KFDZpdluoMHDxqRkZE++2b8+PFB3y55NM+sPILN4/EYW7ZsMQYOHNjkr+rJycnGPffcYyxYsMDYvn27ceTIEaOwsNDnXYkjR44Y27dvNxYsWGDcc889RnJycpP1DBw40NiyZYsjDtyMj+YxX1mLU+crWAvHjwvDfNU85qsLR7MPWykoKDDcbrfPIE9PTzfq6urMLs00dXV1xoABA3z2idvtNgoKCoK+bfJoysw8QumTTz4xpk2bZqSmpjZ5wXWht9TUVGPatGnGJ598YvbTCijGR1PMV9YSLvMVrIXjx/kxXzXFfNU6NPuwnUcffbTJZJ+VlRWWE2BdXZ2RlZXVZH/Mnz8/ZDWQx9eskIcZPv/8c+Odd94xFi5caAwfPtxITU012rZt22Q/tG3b1khNTTWGDx9u/PrXvzbeeecd4/PPPze7/KBifHzNCuODPL5mhTwAjh8tY776GvNV69Hsw3YqKiqMpKSksJ8AW5r4kpOTjcrKypDVQR5nWSUPK6mrqzPKysqMsrKysPq38E2Mj7OsMj7I4yyr5AG0hOMH81U95quLQ7MPW8rNzTWioqKaDPwBAwYYBw8eNLu8oDt48GCTU5kkGVFRUUZubm7I6yEPa+UBa2F8WGt8kIe18gDQMuYr5quLRbMP29qyZUuzE2BkZKQxffp0R36Gp6CgwJg+fXqTi5PUT3xbtmwxrTbysFYesBbGh7XGB3lYKw8ALWO+Yr66GC7DMAwBNrV161YNHz5ctbW1zf68d+/eyszM1O233660tDR17NgxxBVenDNnzig/P187duxQTk6O9u/f3+zvRUVFadOmTbr77rtDXKEv8jjLKnnAWhgfZ1llfJDHWVbJA0DLmK/OYr66cDT7sL3t27dr3LhxKioqOu/vJiQkKC0tTV26dFFsbKzcbrciIiKCX6QfvF6vqqurVVlZqePHjys/P1+lpaXnfVxycrJWrlypQYMGhaDK8yMPa+UBa2F8WGt8kIe18gDQMuYr5qtWMffEAiAwKisrjfnz5zf5mhIn39xutzF//nxLXpyEPICWMT6shTwA2AXzFS4U7+zDUQoLC/XMM89o8+bNOnHihNnlBEVCQoKGDRumWbNmKTU11exyzok8gJYxPqyFPADYBfMV/EWzD0eqra3Vrl27lJOTo9zcXBUVFcmu/9RdLpeSk5M1ePBgZWZmKj09XVFRUWaXdUHIA2gZ48NayAOAXTBf4Xxo9hEWqqurdfToUeXn5ys/P19lZWWqqqpSVVWV2aX5iImJUUxMjOLi4pSWlqa0tDR169ZNbrfb7NICijyAljE+rIU8ANgF8xUao9kHAAAAAMBhrHFZRgAAAAAAEDA0+wAAAAAAOAzNPgAAAAAADkOzDwAAAACAw9DsAwAAAADgMDT7AAAAAAA4DM0+AAAAAAAOQ7MPAAAAAIDD0OwDAAAAAOAwNPsAAAAAADgMzT4AAAAAAA5Dsw8AAAAAgMPQ7AMAAAAA4DA0+wAAAAAAOAzNPgAAAAAADkOzDwAAAACAw9DsAwAAAADgMDT7AAAAAAA4DM0+AAAAAAAOQ7MPAAAAAIDD0OwDAAAAAOAwNPsAAAAAADgMzT4AAAAAAA5Dsw8AAAAAgMPQ7AMAAAAA4DA0+wAAAAAAOAzNPgAAAAAADkOzDwAAAACAw9DsAwAAAADgMDT7AAAAAAA4DM0+AAAAAAAOQ7MPAAAAAIDD0OwDAAAAAOAwNPsAAAAAADgMzT4AAAAAAA5Dsw8AAAAAgMPQ7AMAAAAA4DA0+wAAAAAAOAzNPgAAAAAADkOzDwAAAACAw9DsAwAAAADgMDT7AAAAAAA4DM0+AAAAAAAOQ7MPAAAAAIDD0OwDAAAAAOAwNPsAAAAAADgMzT4AAAAAAA5Dsw8AAAAAgMPQ7AMAAAAA4DA0+wAAAAAAOAzNPgAAAAAADkOzDwAAAACAw9DsAwAAAADgMDT7AAAAAAA4DM0+AAAAAAAOQ7MPAAAAAIDD0OwDAAAAAOAwNPsAAAAAADgMzT4AAAAAAA5Dsw8AAAAAgMPQ7AMAAAAA4DA0+wAAAAAAOAzNPgAAAAAADkOzDwAAAACAw9DsAwAAAADgMDT7AAAAAAA4DM0+AAAAAAAOQ7MPAAAAAIDD0OwDAAAAAOAw/x8dn5rnMaE4ggAAAABJRU5ErkJggg==\n"
+          },
+          "metadata": {}
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "<Figure size 180x180 with 1 Axes>"
+            ],
+            "image/png": "iVBORw0KGgoAAAANSUhEUgAAALwAAACuCAYAAACMV2c7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAKxElEQVR4nO3bf0xV9R/H8dcVlyFwZa5msquwpVzhBlzAH3kTyzQRbQS1cJrzsm4yN/9IWyzWdG4tNbGEudlyI+4tTdNpUUvNTbxqTkzZ1MUMnHMkk00XOLgKLC/3/f2DL2eR9wrXcc18vx7b2dw595zPOec+OfecK5hERECkxIh/eweIHiYGT6oweFKFwZMqDJ5UYfCkCoMnVRg8qcLgSZWwgk9KSoLVaoXdbjem3377bdh3qqenB2PHjkVDQ8OA+Tdv3kRMTAxu3LgRct3i4mJUVlYO+z4Fc+7cOTgcDowePRoFBQVDXu/48eOw2+1hjfUg6wCAx+MJa98Gc+LECcycORN2ux2pqal44YUXjPfD4/GgsbHxvuu/88478Hq9w7Y/4RoZ7gp79+59oBMfjieffBJvvfUW3G43PvvsM2P+119/jfnz52PcuHERHX+oxo8fj8rKSpw/fx6HDx/+t3cn4vx+PwoLC3H06FFkZWUBAJqamhATEwOgL/j4+HhMmTIl6Pq9vb2oqqp6aPsbzLDc0jQ1NcFiseDq1asAgE8//RQLFixAIBCAx+PByy+/jPz8fKSmpmL27Nlobm4edJsulwu7du3C3bt3jXlutxsulwu1tbWYOXMmMjMzYbPZ8OWXXw7HYYTNYrFg+vTpGDVq1D3L6uvrsXDhwrC25/f7kZubi6lTp8Jms2Hp0qW4c+fOgOXLly/Hc889h+zsbFy4cMFYtnPnTsyYMQNZWVmYPXs2Ll68+MDHFYrP50NnZyeeeeYZY57VakVsbCyqqqpQX1+PNWvWwG6349ChQ/B4PJgzZw7eeOMNpKWl4ezZs3jppZdQU1MDoO/T+O2334bD4UBycjKcTie6u7uNsVasWIHp06cjPT0dJSUl+OuvvwAAH3/8MVJSUoy7jD/++GPoByFhSExMlOTkZMnIyDCmrq4uERHZvXu3ZGdni9frlaSkJLl586aIiLjdbnniiSfk0qVLIiKyefNmeeWVV4Y0XlZWlnz//fciIlJXVycJCQni9/ulvb1d/H6/iIi0tbXJxIkTpaWlRUREnE6nVFRUDLrtxsbGAcfx96m4uDic0yJut1tee+21Ib/e6/VKRkbGPfMDgYD8+eefxr9XrlwpmzZtMtYBIEePHhURkb1794rVapVAICCnTp2SvLw86enpERGRkydPSmpq6qD7Vl5eHvIcfPfdd0HXeffddyU2Nlby8vLko48+kqamJmPZiy++aLxf/WNHR0dLY2Nj0Nc4nU5JTU2Vzs5O8fv98uqrr8qGDRtERGTFihXy1VdfGefC5XJJeXm5tLe3y5gxY4zu7ty5I93d3SHP9T8N2y3NkiVL4PV6kZubi9raWjz99NPGMofDgZSUFABASUkJ1q5di97eXkRFRd13LJfLherqahQUFKC6uhpOpxNRUVFoa2uDy+XC5cuXMXLkSLS1taGhoQEWi2XIx2G1WgdcIR8FIoKKigocPHgQfr8fHR0dcDgcxvKkpCTMnTsXAFBUVISSkhK0tLTghx9+wMWLFzFjxgzjte3t7cbVMpTS0lKUlpaGtY+VlZVYs2YNvF4vamtrkZmZiSNHjmDWrFlBX+9wOGC1WkNur6ioCHFxcQD63u9t27bhww8/RE1NDerq6rB161YAQHd3N6KiomA2mzF58mQsW7YM8+fPx6JFi8J638MOPhS/34+GhgaMHTsW169fH5ZtLl26FGVlZbh69Sr27duH+vp6AMDKlSuxcOFCHDhwACaTCVlZWejp6Qlr201NTVi8eHHQZZmZmXC73ffMdzgc6OrqwqhRo/Drr7+Gf0CD2L17N44dO4YTJ07AbDZj27ZtOHbsWMjXm0wmmEwmiAicTic2btwY1nhbtmzBN998E3TZ+vXrUVhYGHRZYmIiiouLUVxcjJiYGOzbty9k8LGxsWHtk8lkAtD3w3/gwAEkJyff85ozZ87g9OnTOH78OJ5//nns2bMHOTk5Q9r+sH0tWVZWBqvVil9++QXvv/8+rly5Yiyrq6sznt6rqqowZ86cQa/uABAfH4/8/HwsXrwYdrsdkyZNAgDcunULiYmJMJlMOHny5APdr/Zf4YNNwWIHgNOnT+PChQtDiv3s2bPG1Xiobt26haeeegpmsxk+nw8ej2fA8ubmZuMbjv3792PcuHGwWCzIz8/Hrl27cO3aNQBAIBAwLg73U1paGvIcBIv99u3bOHz4MOT/f0LR3d2N33//Hc8++ywAwGw2o6OjI6xj3r9/P27fvo3e3l643W7MmzcPAFBQUIDNmzfD7/cb5+bKlSvw+Xy4ceMGcnJysG7dOsyaNQvnz58f8nhhB98fX//k9Xrx008/4eeff8b27dsxadIkbN26FUVFRcZV1+Fw4IMPPoDNZsOPP/6IHTt2AABaW1sH/cbH5XKhvr4eLpfLmPfJJ5+grKwMdrsd1dXVAz7K/+5BHhzD0f+w/t577+HIkSOwWCz4/PPPAfTFGR0dHXLdS5cuwWKxGNObb76J5cuXo6urC1arFXl5efdctWw2GzweD9LS0rBp0ybs2bMHJpMJOTk5KC8vR2FhITIyMmCz2fDtt98O+/GKCL744gtYrVZkZGQgOzsb2dnZWLVqFYC+29WNGzcaD61DMW3aNOTm5iIlJQXx8fFYvXo1AKCiogLR0dGw2+1IT0/H3Llz0dzcjI6ODrz++utIS0tDeno67t69C6fTOeRjMIlE9i+ePB4PampqjCdzLVatWoUlS5aE/Kinvm9p7Ha7EfnDMGz38DTQ9u3b/+1doCAifoUnepTwd2lIFQZPqjB4UiXiD62BQACtra2Ii4sz/lOB6J9EBD6fDwkJCRgxInLX4YgH39raigkTJkR6GHpMtLS0hPWrAuGKePD9vyfR0tICs9kc6eHoP6qzsxMTJkwweomUiAfffxtjNpsZPA0q0re9fGglVRg8qcLgSRUGT6oweFKFwZMqDJ5UYfCkCoMnVRg8qcLgSRUGT6oweFKFwZMqDJ5UYfCkCoMnVRg8qcLgSRUGT6oweFKFwZMqDJ5UYfCkCoMnVRg8qcLgSRUGT6oweFKFwZMqDJ5UYfCkCoMnVRg8qcLgSRUGT6oweFKFwZMqDJ5UYfCkCoMnVRg8qcLgSRUGT6oweFKFwZMqDJ5UYfCkCoMnVRg8qcLgSRUGT6oweFKFwZMqDJ5UYfCkCoMnVRg8qcLgSRUGT6oweFKFwZMqDJ5UYfCkCoMnVRg8qTLyYQ00ZsyYhzUUUUi8wpMqDJ5UYfCkCoMnVRg8qcLgSRUGT6oweFKFwZMqDJ5UYfCkCoMnVRg8qcLgSRUGT6oweFKFwZMqDJ5UYfCkCoMnVRg8qcLgSRUGT6oweFKFwZMqDJ5UYfCkCoMnVRg8qcLgSRUGT6oweFKFwZMqDJ5UYfCkCoMnVRg8qcLgSRUGT6oweFKFwZMqDJ5UYfCkCoMnVRg8qcLgSRUGT6oweFKFwZMqDJ5UYfCkCoMnVRg8qcLgSRUGT6oweFKFwZMqDJ5UYfCkCoMnVRg8qcLgSRUGT6oweFKFwZMqDJ5UYfCkCoMnVSIevIhEegh6jES6l4gH7/P5Ij0EPUYi3YtJIvwjFQgE0Nrairi4OJhMpkgORf9hIgKfz4eEhASMGBG563DEgyd6lPChlVRh8KQKgydVGDypwuBJFQZPqjB4UuV/+iMkag9wzVkAAAAASUVORK5CYII=\n"
+          },
+          "metadata": {}
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "<Figure size 1000x500 with 1 Axes>"
+            ],
+            "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/sAAAIHCAYAAADAX0zsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABrKElEQVR4nO3deXxU9b3/8fdkYZKwaA1JrEATCNGKirLeWiViRbi1iJUYVKqtLIGwg1AWr1K1KqFqQZEtIFBs5ZYIiNqHDUtRqLWlgQdCSW2TQCjY2wQCgiEmmTDn9we/RCcLhDAzZ5nX8/GYh56TmXM+c975fplP5swZl2EYhgAAAAAAgGOEmV0AAAAAAADwL5p9AAAAAAAchmYfAAAAAACHodkHAAAAAMBhaPYBAAAAAHAYmn0AAAAAAByGZh8AAAAAAIeh2QcAAAAAwGFo9gEAAAAAcBiafQAAAAAAHIZmHwAAAAAAh6HZBwAAAADAYWj2AQAAAABwGJp9AAAAAAAchmYfAAAAAACHodkHAAAAAMBhaPYBAAAAAHAYmn0AAAAAAByGZh8AAAAAAIeh2QcAAAAAwGFo9gEAAAAAcBiafQAAAAAAHIZmHwAAAAAAh6HZBwAAAADAYWj2AQAAAABwGJp9AAAAAAAchmYfAAAAAACHodkHAAAAAMBhaPYBAAAAAHAYmn0AAAAAAByGZh8AAAAAAIeh2QcAAAAAwGFo9gEAAAAAcBiafQAAAAAAHIZmHwAAAAAAh6HZBwAAAADAYWj2AQAAAABwGJp9AAAAAAAchmYfAAAAAACHodkHAAAAAMBhaPYBAAAAAHAYmn0AAAAAAByGZh8AAAAAAIeh2QcAAAAAwGFo9gEAAAAAcBiafQAAAAAAHIZmHwAAAAAAh6HZBwAAAADAYWj2AQAAAABwGJp9AAAAAAAchmYfAAAAAACHodkHAAAAAMBhaPYBAAAAAHAYmn0AAAAAAByGZh8AAAAAAIeh2QcAAAAAwGFo9gEAAAAAcBiafQAAAAAAHIZmHwAAAAAAh6HZBwAAAADAYWj2AQAAAABwGJp9AAAAAAAchmYfAAAAAACHodkHAAAAAMBhaPYBAAAAAHAYmn0AAAAAAByGZh8AAAAAAIeh2QcAAAAAwGEizC4ACIaqqiodOnRIBQUFKiws1IkTJ1RZWamqqiqzS/PhdrsVFRWl9u3bq2vXrkpJSVGXLl3kdrvNLs2vyAMAAAAILJp9OFJNTY0+/PBD5eTkKDc3V0eOHJFhGGaX1SIul0uJiYkaNGiQ0tPTdccddygiwl5DlzwAAACA4HIZdn3FDTSisLBQL7/8sjZs2KDjx4+bXU5AxMXFKS0tTTNmzFBycrLZ5VwQeQAAAADmoNmHI1RUVCgrK0vz589XdXW12eUEhdvt1syZMzV79mzFxMSYXY4P8rBWHgAAAAg9NPuwvS1btmjMmDE6cuTIRe+bkJCgrl27qlOnToqJiVGrVq0UFmaN61R6vV5VV1eroqJCR48eVWFhoUpKSi76uKSkJC1fvlwDBw4MQpUXRx7WygMAAAChiWYftrZp0yYNGzZMNTU1jf68V69eSk9P14ABA5SSkqJ27doFucLLc+bMGRUUFGjbtm1av3699u7d2+j9IiIitH79et1///1BrtAXeZxnlTwAAAAQumj2YVtNNZbh4eGaNGmSJk2apC5duphUXWAUFRXptdde06JFi3Tu3Dmfn5ndYJKHtfIAAABAaKPZhy1t2bJFP/jBDxo0lqmpqVq8eLFuvPFGkyoLjr/97W+aMGGCdu7c6bM+IiJCv/vd74J+Cjl5WCsPAAAAgGYftlNRUaFu3bo1+Ex4RkaGli1bZpnPfAea1+tVZmamVqxY4bM+KSlJ+fn5io6ODkod5HGeVfIAAAAAJCk0XoXDUbKyskK+sZSksLAwLVu2TBkZGT7ri4uLlZWVFbQ6yOM8q+QBAAAASLyzD5spLCzUjTfeqKqqqrp1qamp2rFjR0g1ll/n9XrVv39/7dq1q26d2+3WwYMHA/697+TRkJl5AAAAALVC89U4bOvll1/2aSzDw8O1ePHikG0spfPvKC9evFjh4eF166qqqvTSSy8FfN/k0ZCZeQAAAAC1QvcVOWynpqZGGzZs8Fk3adIkx1/8rTluuukmTZo0yWfdxo0bm/wKPH8gj6aZkQcAAADwdTT7sI0PP/xQx48f91lXv6EKZRMnTvRZLi0tbXB1eH8ijwsLdh4AAADA19HswzZycnJ8lnv16uW4722/HMnJyerZs6fPuvrHzJ/I48KCnQcAAADwdTT7sI3c3Fyf5fT0dJMqsa76x6T+MfMn8ri4YOYBAAAAfB3NPmyhqqqqwde7DRgwwKRqrOvuu+/2WT5y5IjPBfT8hTyaJ1h5AAAAAPXR7MMWDh06pPrfEnnttdeaVI11paSk+Cx7vV4dPnzY7/shj+YJVh4AAABAfTT7sIWCggKf5YSEBLVt29akaqyrXbt2io+P91lX/9j5A3k0T7DyAAAAAOqj2YctFBYW+ix37drVpEqsr/67yYFoLsmj+YKRBwAAAFAfzT5s4cSJEz7LnTp1MqkS6+vYsaPPcllZmd/3QR7NF4w8AAAAgPpo9mELlZWVPssxMTEmVWJ99Y9N/WPnD+TRfMHIAwAAAKiPZh+2UP8K5q1atTKpEutzu90+y4FoLsmj+YKRBwAAAFAfzT5sKSyMX92mmHFsyKNpHBsAAACYgVehAAAAAAA4DM0+AAAAAAAOQ7MPAAAAAIDDRJhdAADAmTwej7744gtJUtu2bRUZGWlyRQAAAKGDd/YBAH6zb98+TZ48WX369FGbNm0UGxur2NhYtWnTRn369NHkyZP1ySefmF0mAACA49HsAwAu2/79+5WamqoePXpo0aJFysvLU3V1dd3Pq6urlZeXp0WLFumWW25Ramqq9u/fb2LFAAAAzkazDwBoMcMwlJWVpd69e2vXrl3NftyuXbvUu3dvZWVlyTCMAFYIAAAQmmj2AQAtYhiGJk2apDlz5sjj8Vzy4z0ej+bMmaNJkybR8AMAAPhZSDT7f/3rX3XPPffoyiuvVOvWrfWd73xH69evN7ss2EBxcbFcLpfPLTIyUh06dNCwYcOUl5cnSVq4cKFcLpdGjBjR5LY++OADhYWFqU+fPqqpqQnWU3AU8rCW+fPna/HixZe9ncWLF2v+/Pl+qAgAAAC1HH81/h07dmjQoEGKiorSQw89pLZt22rDhg168MEHdfToUU2fPt3sEmEDycnJeuSRRyRJZ8+e1Z49e5STk6O3335b27Zt05QpU7R582atWbNGQ4cO1b333uvz+PLyco0YMUJut1tr165VRITjh15AkYf59u/fr7lz5/pte3PnztU999yj7t27+22bAAAAoczRr3BramqUkZGhsLAw7dy5U7fccouk8y8q+/btqyeeeEIPPPCAEhMTzS0Ulte1a1c9/fTTPuuysrI0Z84cPfXUU/rwww+1Zs0ade/eXRkZGTp48KBiY2Pr7jt9+nQVFxdrwYIFuv7664NcvfOQh/kmTpzYolP3m+LxeDRx4kTt3LnTb9sEAAAIZY4+jf8Pf/iDioqKNHz48LpGX5KuuOIKPfHEE6qurtavfvUr8wqErY0aNUqStGfPHklSYmKiFi5cqJKSEo0bN67ufrm5ucrOztadd96pKVOmmFJrKCCP4Nm3b98lXYyvuXbt2sXX8gEAAPiJo5v9Dz74QJI0cODABj8bNGiQJOnDDz8MZklwoK+fAj5ixAgNGTJEOTk5WrdunT7//HONHj1a7dq10+rVq+VyuUysNDSQR+CtWrXKltsGAAAIJY4+jb+goECSlJKS0uBnV199tdq0aVN3H+BSrVy5UpJ0++23+6zPzs7Wn/70J02YMEGpqak6duyYVq1axcdFAow8gufjjz+25bYBAABCiaOb/dOnT0s6f9p+Y9q1a1d3H7swDEMVFRVmlxF0/vxscEsUFhbWfUa89oJwO3bsUEJCgl588UWf+yYkJGj58uVKS0vT5s2bNWTIkAteFT7QPB6Pzp496/dtmok8zOPxeLR///6AbX///v06ffo0F00EAMCCYmJiODPSTgwHu/vuuw1JRkFBQaM/v+aaa4x27doFuarLU15ebkgK+dv48eODcrwPHz7cZA1XX311k79bhmEYffv2NSQZ+fn5Qam11vjx48mjEaGUBzdu3Lhx48aNWyBu5eXlQX0dhcvj6M/s176j39S792fOnGnyXX/g6wYNGiTDMGQYhkpLS/Xiiy+qtLRUQ4YMUXl5eaOPiY6O9vkv/Ic8AAAAgAtz9HmStZ/VLygoUK9evXx+9p///Efl5eXq27evGaW1WExMTJPNjJNNmzZNK1asMLsMSVJcXJxmzJih06dP67nnntOTTz6phQsXml1WkzIyMrRgwQK/bpM8Wi4QeQSTx+NRQkKCqqurA7J9t9utkpISTuMHAMCCYmJizC4Bl8DRr6buuOMOzZs3T1u2bNFDDz3k87Pc3Ny6+9iJy+VS69atzS4j6CIjI80uoYEnnnhCq1at0pIlSzR16lQlJSWZXVKjIiMj/f47Qx4tF4g8gq179+7Ky8sL2LY54woAAODyOfo0/rvuuktdunTRm2++qX379tWtP336tF544QW1atVKP/7xj80rELYWHR2tWbNmyePx6Oc//7nZ5YQ88gieW2+91ZbbBgAACCWObvYjIiK0cuVKeb1epaamasyYMZo+fbpuvvlm/fOf/9QLL7xg2Xf/YA9jxozRNddco7Vr16qoqMjsckIeeQTHyJEjbbltAACAUOLoZl+S7rzzTv3xj3/Ubbfdpt/+9rdaunSpEhIS9L//+7+aPn262eXB5qKiojRnzhzV1NTomWeeMbuckEcewXHLLbeoX79+ft9uv379dPPNN/t9uwAAAKHI0Z/Zr9W3b1+9//77ZpcBG0pKSpJhGBe8z8SJEzVx4sQG6z/44IMAVRW6yMM6XnvtNfXu3Vsej8cv24uMjNTixYv9si0AAACEwDv7AAD/6969u5599lm/be/ZZ5/VTTfd5LftAQAAhDqafQBAi8yaNUsTJky47O1MnDhRs2bN8kNFAAAAqEWzDwBoEZfLpUWLFmnevHkt+jrGyMhIzZs3T6+++qpcLlcAKgQAAAhdNPsAgBZzuVyaPXu28vLyLumiff369dOePXs0e/ZsGn0AAIAACIkL9AEAAqt79+7auXOnPvnkE61atUoff/yxPvnkE1VXV0uS3G63unfvrltvvVUjR47kqvsAAAABRrMPAPCbm2++Wa+88ook6fTp07ryyislSSUlJbriiitMrAwAACC0cBo/ACAgIiIiGv1/AAAABB7NPgAAAAAADkOzDwAAAACAw9DsAwAAAADgMDT7sCWv12t2CZZlxrEhj6ZxbAAAAGAGmn3Ygtvt9lmu/TovNFRVVeWzHBUV5fd9kEfzBSMPAAAAoD6afdhC/QapoqLCpEqsr/6xCURzSR7NF4w8AAAAgPpo9mEL7du391k+evSoSZVY37Fjx3yWY2Nj/b4P8mi+YOQBAAAA1EezD1vo2rWrz3JhYaFJlVhfQUGBz3JKSorf90EezReMPAAAAID6aPZhC/UbpJKSEp05c8akaqzrzJkzKi0t9VkXiOaSPJonWHkAAAAA9dHswxa6dOkil8vls67+O6ZoeEzCwsLUuXNnv++HPJonWHkAAAAA9dHswxbcbrcSExN91m3bts2kaqxr69atPsuJiYkNrpzvD+TRPMHKAwAAAKiPZh+2MWjQIJ/lnJwckyqxrvrHpP4x8yfyuLhg5gEAAAB8Hc0+bCM9Pd1nec+ePTp06JBJ1VhPUVGR9u7d67Ou/jHzJ/K4sGDnAQAAAHwdzT5s44477lBcXJzPukWLFplUjfW89tprPsvx8fFKTU0N2P7I48KCnQcAAADwdTT7sI2IiAilpaX5rFu0aJH+9re/mVSRdRw4cKBBoz106FBFREQEbJ/k0TQz8gAAAAC+zmUYhmF2EUBzFRUV6YYbblBVVVXdutTUVO3YsUNhYaH5tyuv16v+/ftr165ddevcbrcOHjyo5OTkgO6bPBoyMw+rOXv2rNq0aSNJKi8vV+vWrU2uCAAAIHSE5qtx2FZycrJmzpzps27nzp3KzMyU1+s1qSrzeL1eZWZm+jSWkjRr1qygNJbk4cvsPAAAAIBavLMP26moqFC3bt105MgRn/UZGRlatmxZyLyjXNtYrlixwmd9UlKS8vPzFR0dHZQ6yOM8q+RhJbyzDwAAYJ7QeBUOR4mJiVF2dnaDzz+vWLFC/fv314EDB0yqLHgOHDig/v37N2gsIyIitHz58qA2luRhrTwAAAAAiWYfNjVw4ECtX7++QYO5a9cu9ejRQ9OmTVNRUZFJ1QVOUVGRpk2bph49ejQ4VTwiIkLr16/XwIEDg14XeVgrDwAAAIDT+GFrmzZt0rBhw1RTU9Poz3v27Kn09HTdfffdSklJUbt27YJc4eU5c+aMCgoKtHXrVuXk5DT43vZatY3l/fffH+QKfZHHeVbJw2ycxg8AAGAemn3Y3pYtWzR27FgVFxdf9L7x8fFKSUlRx44dFRMTI7fbbZnPlHu9XlVVVamiokLHjh1TQUGBSktLL/q4pKQkLV++3DLvIJOHtfIwE80+AACAeWj24QhffvmlsrKyNH/+fJ+vgXMyt9utWbNmafbs2Zb7TDh5WCsPs9DsAwAAmIdmH45SVFSkl156SRs2bNDx48fNLicg4uPjNXToUM2YMcPyX+dGHqGNZh8AAMA8NPtwpJqaGu3cuVM5OTnKzc1VcXGx7Pqr7nK5lJSUpEGDBik9PV2pqakNLoRndeQRmmj2AQAAzEOzj5BQVVWlw4cPq6CgQAUFBSorK1NlZaUqKyvNLs1HVFSUoqKiFBsbq5SUFKWkpKhz585yu91ml+ZX5BEaaPYBAADMQ7MPAAgImn0AAADzWOOy1wAAAAAAwG9o9gEAAAAAcBiafQAAAAAAHIZmHwAAAAAAh6HZBwAAAADAYWj2AQAAAABwGJp9AAAAAAAchmYfAAAAAACHodkHAAAAAMBhaPYBAAAAAHAYmn0AAAAAAByGZh8AAAAAAIeh2QcAAAAAwGFo9gEAAAAAcBiafQAAAAAAHIZmHwAAAAAAh6HZBwAAAADAYWj2AQAAAABwGJp9AAAAAAAcJsLsAoBgqKqq0qFDh1RQUKDCwkKdOHFClZWVqqqqMrs0H263W1FRUWrfvr26du2qlJQUdenSRW632+zS/Io8gKYxPqyFPAAAdkWzD0eqqanRhx9+qJycHOXm5urIkSMyDMPsslrE5XIpMTFRgwYNUnp6uu644w5FRNhr6JIH0DTGh7WQBwDAKVyGXf8FAxpRWFiol19+WRs2bNDx48fNLicg4uLilJaWphkzZig5Odnsci6IPELb2bNn1aZNG0lSeXm5WrdubXJF1sL4sBbyAAA4Dc0+HKGiokJZWVmaP3++qqurzS4nKNxut2bOnKnZs2crJibG7HJ8kIe18jALzX7jGB/WGh/kYa08AAD+Q7MP29uyZYvGjBmjI0eOXPS+CQkJ6tq1qzp16qSYmBi1atVKYWHWuE6l1+tVdXW1KioqdPToURUWFqqkpOSij0tKStLy5cs1cODAIFR5ceRhrTzMRLPfEOPDWuODPKyVBwDAv2j2YWubNm3SsGHDVFNT0+jPe/XqpfT0dA0YMEApKSlq165dkCu8PGfOnFFBQYG2bdum9evXa+/evY3eLyIiQuvXr9f9998f5Ap9kcd5VsnDbDT7vhgf51llfJDHeVbJAwAQAAZgUxs3bjQiIiIMST638PBwY+rUqUZRUZHZJfpdYWGhMXXqVCM8PLzB846IiDA2btxoWm3kYa08rKC8vLzueJSXl5tdjqkYH9YaH+RhrTwAAIFBsw9bys3NbfSFWmpqqnHgwAGzywu4AwcOGKmpqY2+YMvNzQ16PeRhrTysgmb/PMaHtcYHeVgrDwBA4HAaP2ynoqJC3bp1a/AZy4yMDC1btswyn6EMNK/Xq8zMTK1YscJnfVJSkvLz8xUdHR2UOsjjPKvkYSVffPFF3anPZ86cUdu2bU2uKPgYH+dZZXyQx3lWyQMAEFih8a8aHCUrKyvkX6hJUlhYmJYtW6aMjAyf9cXFxcrKygpaHeRxnlXyMMOpU6e0fft2zZ8/X8OGDVNycrKio6N9PuPcrl07RUdHKzk5WcOGDdMvfvELbd++XadOnTKx8sBjfJxnlfFBHudZJQ8AQGDxzj5spbCwUDfeeKOqqqrq1qWmpmrHjh0h9ULt67xer/r3769du3bVrXO73Tp48GDAv0eZPBoyM49g+sc//qGlS5fq3Xff1aFDhy5rW126dNG9996rcePG6brrrvNTheZjfDTEfGUtoTJfAUCoCs1/3WBbL7/8ss8LtfDwcC1evDhkX6hJ59+hWbx4scLDw+vWVVVV6aWXXgr4vsmjITPzCLSamhpt3LhRAwYM0Le//W298sordY1+586d9cADDygrK0tbt27VoUOHVFRUVPfYoqIiHTp0SFu3blVWVpYeeOABde7cWZJ06NAhvfLKK/r2t7+tAQMGaOPGjU1eId1OGB8NMV9Zi5PnKwCAuBo/7MPj8RhxcXE+FxSaOnWq2WVZxtSpU32OTXx8vOHxeAK2P/K4sGDnEUhffvml8fzzzxsdOnSoez5hYWHGkCFDjHfeeccoKytr9HHNuUBfWVmZ8c477xhDhgwxwsLC6u7foUMH44UXXjAqKysD+dQChvFxYcxX1uKk+QoA8BVO44dtbN++XQMGDPBZV1RUpC5duphUkbUUFRWpa9euPuu2b9+u733vewHZH3lcWLDzCJTdu3drxIgRys/PlyTFxcUpIyNDY8aMUWJi4gUfe/bsWbVp00aSVF5ertatW1/w/keOHFF2drZWrFih48ePS5K6deumNWvWqE+fPn54NsHD+Lgw5itrccp8BQDwFbrnrsF2cnJyfJZ79erFC7WvSU5OVs+ePX3W1T9m/kQeFxbsPPytsrJSs2fP1q233qr8/HwlJCRo7dq1Onr0qJ5//vmLNvotkZiYqOeff15Hjx7V2rVrlZCQoPz8fH3nO9/RnDlzVFlZ6fd9Bgrj48KYr6zF7vMVAKBxNPuwjdzcXJ/l9PR0kyqxrvrHpP4x8yfyuLhg5uFPu3fvVs+ePTV//nx5vV4NHz5cBw8e1KOPPiq32x3w/bvdbj366KM6ePCghg8fLq/Xq6ysLPXq1Uu7d+8O+P79gfFxccxX1mLX+QoA0DSafdhCVVVVg69Lqn9KJqS7777bZ/nIkSM+F6TyF/JonmDl4U9vvfWWbr/9dv39739XQkKCNm3apN/85jeKjY0Nei2xsbH6zW9+o02bNik+Pl75+fm6/fbbtWHDhqDXcikYH83DfGUtdpyvAAAXRrMPWzh06JDqX17i2muvNaka60pJSfFZ9nq9Onz4sN/3Qx7NE6w8/GXVqlV68MEH5fF4dN999+ngwYP64Q9/aHZZ+uEPf6j8/Hzdd9998ng8GjZsmFavXm12WU1ifDQP85W12G2+AgBcHM0+bKGgoMBnOSEhQW3btjWpGutq166d4uPjfdbVP3b+QB7NE6w8/GH16tUaNWqUvF6vRo0apQ0bNpjybn5TYmNjtWHDhroaR44cadmGn/HRPMxX1mKn+QoA0Dw0+7CFwsJCn+X6Vw3GV+q/OxOIF2vk0XzByONybdiwQaNHj5YkTZkyRStWrPD53m2rCA8P14oVKzRlyhRJ0ujRo7Vx40aTq2qI8dF8zFfWYof5CgDQfDT7sIUTJ074LHfq1MmkSqyvY8eOPstlZWV+3wd5NF8w8rgcu3fv1sMPPyyv16vRo0drwYIFcrlcZpfVJJfLpQULFtS9w//QQw/pr3/9q9ll+WB8NB/zlbVYfb4CAFwamn3YQv2v3IqJiTGpEuurf2wC8XVl5NF8wcijpSorK/XYY4/VfUZ/2bJllm70a7lcLi1fvrzuM/yPPfaY5Y7r1zE+msZ8ZS1Wnq8AAJeOZh+2UP+KwK1atTKpEuur/9VogXixRh7NF4w8WuqZZ56pu+r+66+/bslT95sSHh6ulStX1l2l/9lnnzW7pDqMj+ZjvrIWK89XAIBLR7MPWwoL41e3KWYcG/JomlWPze7du/WLX/xCkrRs2TJLXYyvudq3b69ly5ZJkubPn2+50/lrWfV3wAqYr6yFYwMAzsKsDgAhprKyUiNGjJDX69Xw4cMt8fV6LXX//ffXXXPgscce43vBAQAA/j+afQAIMQsWLFB+fr4SEhL06quvml3OZVu0aJESEhKUn5+vX/7yl2aXAwAAYAk0+wAQQmpqarR48WJJ0osvvmjL0/fri42NrftIwpIlS1RTU2NyRQAAAOaj2QeAEPLOO+/os88+U3x8vIYNG2Z2OX7z4IMPKi4uTseOHdO7775rdjkAgMvg8Xh08uRJnTx5Uh6Px+xyANui2QeAELJkyRJJ0ujRoxtcedvO3G63Ro8eLemr5wgAsI99+/Zp8uTJ6tOnj9q0aaPY2FjFxsaqTZs26tOnjyZPnqxPPvnE7DIBW6HZB4AQ8emnn2r79u0KCwvTmDFjzC7H78aOHSuXy6Vt27bpH//4h9nlAACaYf/+/UpNTVWPHj20aNEi5eXlqbq6uu7n1dXVysvL06JFi3TLLbcoNTVV+/fvN7FiwD5o9gEgRNR+Td3gwYOVmJhocjX+l5iYqMGDB0uSli5danI1AIALMQxDWVlZ6t27t3bt2tXsx+3atUu9e/dWVlaWDMMIYIWA/dHsA0CIqP0se+3p7k5U+9zee+89kysBADTFMAxNmjRJc+bMadFn8j0ej+bMmaNJkybR8AMX4Phm/9e//rXGjh2r3r17y+12y+Vyac2aNWaXBZsoLi6Wy+XyuUVGRqpDhw4aNmyY8vLyJEkLFy6Uy+XSiBEjmtzWBx98oLCwMPXp04erhbcQebTcqVOndOjQIUnSbbfdZnI1gVP73IqKivT555+bW0yQMT6shTyAps2fP7/um2Eux+LFizV//nw/VAQ4U4TZBQTak08+qSNHjqh9+/b65je/qSNHjphdEmwoOTlZjzzyiCTp7Nmz2rNnj3JycvT2229r27ZtmjJlijZv3qw1a9Zo6NChuvfee30eX15erhEjRsjtdmvt2rWKiHD80Aso8rh0e/fulSR17txZV111lcnVBE5sbKySkpJUXFysvXv36nvf+57ZJQUd48NayAPwtX//fs2dO9dv25s7d67uuecede/e3W/bBJzC8e/sr1y5UsXFxTp+/LgyMzPNLgc21bVrVz399NN6+umn9eKLL+oPf/iD5s2bJ4/Ho6eeeqrujJF27dopIyNDZWVlPo+fPn26iouLNW/ePF1//fUmPQvnII9LV/suYq9evUyuJPB69+4t6avnHGoYH9ZCHoCviRMn+vXr9DwejyZOnOi37QFO4vhmf8CAAY68EBXMN2rUKEnSnj17JJ2/ONjChQtVUlKicePG1d0vNzdX2dnZuvPOOzVlyhRTag0F5HFhtcelthF2sto/aNQ+ZzA+rIY8EKr27dt3SRfja65du3bxtXxAIxzf7AOB9vVTKkeMGKEhQ4YoJydH69at0+eff67Ro0erXbt2Wr16tVwul4mVhgbyaFxtUxEK7+zT7DeN8WEt5IFQs2rVKltuG7ArPvgFtNDKlSslSbfffrvP+uzsbP3pT3/ShAkTlJqaqmPHjmnVqlWcYRJg5HFh//73vyWd//yw03Xt2lXSV88ZjA+rIQ+Eqo8//tiW2wbsimbfZgzDUEVFhdllBJ0/P9vVEoWFhXr66aclfXWBpR07dighIUEvvviiz30TEhK0fPlypaWlafPmzRoyZMgFr7IcaB6PR2fPnvX7Ns1EHpfG6/WqsrJS0vk5JFj7//p+gvmca7+G6csvv9QXX3yhsLDgnsTG+Gg55ivn54HQ5fF4tH///oBtf//+/Tp9+jQXsQywmJgYzjSyEyOEzJs3z5BkrF692uxSWqy8vNyQFPK38ePHB+V4Hz58uMkarr76aqOgoKDJx/bt29eQZOTn5wel1lrjx48nj0aEUh7crHVjfDSN+apxoZQHN27c7HUrLy8P6ryEy8Nn9oFmGDRokAzDkGEYKi0t1YsvvqjS0lINGTJE5eXljT4mOjra57/wH/IAmsb4sBbyAACYhfNcbCYmJqbJFwdONm3aNK1YscLsMiRJcXFxmjFjhk6fPq3nnntOTz75pBYuXGh2WU3KyMjQggUL/LpN8mi5QORxMV6vV+3atZMkFRUVKSEhISj7PXv2bN2+SkpK1Lp166Dst6SkpO7aBGfOnAn6afyMj5ZjvrIWM+YrOJfH41FCQoKqq6sDsn23262SkhJO4w+wmJgYs0vAJWA02IzL5QraC2YriYyMNLuEBp544gmtWrVKS5Ys0dSpU5WUlGR2SY2KjIz0++8MebRcIPJojqioKFVWVpo2h7Ru3Tpo+639LGF0dLTatm0blH1+HeOj5ZivrMWs+QrO1b17d+Xl5QVs21dccUVAtg3YFafxAy0UHR2tWbNmyePx6Oc//7nZ5YQ88riwa665RtL5d/adrrCwUNJXzxmMD6shD4SqW2+91ZbbBuzK8c3+ypUr9dhjj+mxxx5TTk5Og3W1X38DtMSYMWN0zTXXaO3atSHRRFkdeTQtlL57vvY51j5nnMf4sBbyQCgaOXKkLbcN2JXjm/0//vGP+tWvfqVf/epX2rt3ryTpo48+qlv3xz/+0eQKYWdRUVGaM2eOampq9Mwzz5hdTsgjj6bVNr6BOn3SSmj2G8f4sBbyQCi65ZZb1K9fP79vt1+/frr55pv9vl3A7hz/mf01a9ZozZo1ZpcBm0pKSqr7zu6mTJw4URMnTmyw/oMPPghQVaGLPFqud+/ekkLjnf3aP2jUPudQwfiwFvIAGvfaa6+pd+/e8ng8ftleZGSkFi9e7JdtAU7j+Hf2AQBSz549JUmHDx/WyZMnTa4mcMrKylRcXCzpq+cMALCO7t2769lnn/Xb9p599lnddNNNftse4CQ0+wAQAr7xjW+oS5cuks5/lMmpap9bcnKyrrzySnOLAQA0atasWZowYcJlb2fixImaNWuWHyoCnIlmHwBCxL333itJjr4wae1zGzx4sMmVAACa4nK5tGjRIs2bN69FX48ZGRmpefPm6dVXX637ulUADdHsA0CIGDdunCTpvffe05EjR0yuxv+Ki4v13nvvSfrquQIArMnlcmn27NnKy8u7pIv29evXT3v27NHs2bNp9IGLoNkHgBBx3XXX6a677pLX61V2drbZ5fhddna2DMPQgAEDdN1115ldDgCgGbp3766dO3dq3759mjx5svr06aNWrVrV/dztdqtPnz6aPHmy9u3bp507d/IZfaCZHH81fgDAV8aPH6/t27dr5cqVmjt3rtxut9kl+UVVVVXdKfzjx483uRoAwKW6+eab9corr0iSTp8+XXfdlZKSEl1xxRUmVgbYF+/sA0AIGTJkiDp06KDS0lKtX7/e7HL85re//a2OHz+ujh071l2bAABgTxEREY3+P4BLQ7MPACEkIiKi7grIP/3pT1VWVmZyRZevrKxMM2fOlHT+XX1eGAIAANDsA0DIefzxx9WtWzeVlJRo8uTJZpdz2SZNmqSSkhJ169ZNjz/+uNnlAAAAWALNPgCEGLfbrdWrVyssLExvvvmm3n77bbNLarFNmzZp3bp1Cg8P15o1axxzDQIAAIDLRbMPW/J6vWaXYFlmHBvyaJpVj03fvn3rTn3PzMy05en8J06cUGZmpiRp5syZ6tOnj8kVNc6qvwNWwHxlLRwbAHAWmn3YQv1366qrq02qxPqqqqp8lqOiovy+D/JovmDk0VI/+9nP6k7nHzVqlM6dO2d2Sc127tw5jR49WqWlperWrZt+9rOfmV1SHcZH8zFfWYuV5ysAwKWj2Yct1H/BUVFRYVIl1lf/2ATixRp5NF8w8mipqKgorV69WpGRkdq8ebPGjh0rwzDMLuuiDMPQ2LFjtXnzZrVq1cpyp+8zPpqP+cparDxfAQAuHc0+bKF9+/Y+y0ePHjWpEus7duyYz3JsbKzf90EezReMPC5H3759tW7dOoWFhen111/XtGnTLN3wG4ahadOm6fXXX1dYWJjWrVtnudP3GR/Nx3xlLVafrwAAl4ZmH7bQtWtXn+XCwkKTKrG+goICn+WUlBS/74M8mi8YeVyutLQ0rVy5UpL0yiuvKCMjw5Kn9Neeuv/KK69Ikl5//XUNHTrU5KoaYnw0H/OVtdhhvgIANB/NPmyh/guOkpISnTlzxqRqrOvMmTMqLS31WReIF2vk0TzBysMfRowYoVWrVtW9w5+Wlmapi/adOHFCaWlpdTWuXr1ajz32mNllNYrx0TzMV9Zip/kKANA8NPuwhS5dusjlcvmsq/8OBBoek7CwMHXu3Nnv+yGP5glWHv4yYsQIrV+/vu4z/N26ddOmTZvMLkubNm3SDTfcoM2bNysyMlI5OTmWbfQlxkdzMV9Zi93mKwDAxdHswxbcbrcSExN91m3bts2kaqxr69atPsuJiYkBuXAZeTRPsPLwp7S0NP3xj3/U9ddfr9LSUg0dOlQ/+tGPTHmXv6ysTMOHD9fQoUPrrrr/0UcfWfLU/a9jfDQP85W12HG+AgBcGM0+bGPQoEE+yzk5OSZVYl31j0n9Y+ZP5HFxwczDn/r27au9e/dq9uzZCgsL05tvvqkbbrhBa9eubfDVXIFQVVWltWvX6oYbbqi7eOCcOXO0Z88ey12MrymMj4tjvrIWu85XAICm0ezDNtLT032W9+zZo0OHDplUjfUUFRVp7969PuvqHzN/Io8LC3Ye/hYVFaV58+bpz3/+s7p166aSkhL95Cc/UadOnfTEE0/oyJEjft/nkSNH9MQTT6hTp076yU9+opKSEnXr1k1//vOf9cILL9jqa8AYHxfGfGUtdp+vAACNo9mHbdxxxx2Ki4vzWbdo0SKTqrGe1157zWc5Pj5eqampAdsfeVxYsPMIlD59+mjPnj164YUX1KFDBx0/flzz5s1Tly5dNGTIEL3zzjs6efJki7d/8uRJvfPOOxoyZIg6d+6sefPm6fjx4+rYsaNeeOEF7d271zbv5n8d4+PCmK+sxSnzFQDAl8uw8hcqA/WMGzdOy5Ytq1sODw/Xvn37dOONN5pYlfkOHDigHj16+HxdWmZmppYuXRrQ/ZJH48zKI9Bqamr07rvvasmSJQ0+85yUlKTevXurV69e6tWrl7p27SrDMJScnCzp/DuHLpdLhYWF2rNnj/bs2aO8vDwVFxf7bGfAgAEaP3687r33XkVERATrqQUE46NxzFfW4tT5CvZ29uxZtWnTRpJUXl6u1q1bm1wRYE80+7CVoqIi3XDDDT6fG05NTdWOHTsUFhaaJ6p4vV71799fu3btqlvndrt18ODBukYrUMijITPzCKZ//OMfWrp0qd577z0VFRVd1raSk5M1ePBgjRs3Ttddd52fKjQf46Mh5itrCZX5CvZDsw/4R2j+6wbbSk5O1syZM33W7dy5U5mZmfJ6vSZVZR6v16vMzEyfF2qSNGvWrKC8UCMPX2bnEUzXXXedFi5cqMLCQp06dUrbt2/X/PnzNWzYMCUnJys6OrrBY6Kjo5WcnKxhw4bpF7/4hbZv365Tp06psLBQCxcudFSjLzE+6jN7fJCHL7PzAAAEHu/sw3YqKirUrVu3BhcIy8jI0LJly0LmHZraF2orVqzwWZ+UlKT8/PxGm61AII/zrJKHlXi9Xn3++eeSpCuvvDJkfhe+jvFxnlXGB3mcZ5U8gKbwzj7gH6HxrxocJSYmRtnZ2Q0+z7tixQr1799fBw4cMKmy4Dlw4ID69+/f4IVaRESEli9fHtQXauRhrTysJCwsTFdddZWuuuqqkGmi6mN8WGt8kIe18gAABJgB2NTGjRuNiIgIQ5LPLTw83Jg6dapRWFhodol+V1hYaEydOtUIDw9v8LwjIiKMjRs3mlYbeVgrD1gL48Na44M8rJUHUF95eXnd72d5ebnZ5QC2xWn8sLVNmzZp2LBhqqmpafTnPXv2VHp6uu6++26lpKSoXbt2Qa7w8pw5c0YFBQXaunWrcnJyGnwPcq2IiAitX79e999/f5Ar9EUe51klD1gL4+M8q4wP8jjPKnkAX8dp/IB/0OzD9rZs2aKxY8c2+AqvxsTHxyslJUUdO3ZUTEyM3G63ZU4v9nq9qqqqUkVFhY4dO6aCggKVlpZe9HFJSUlavny5Bg4cGIQqL448rJUHrIXxYa3xQR7WygOoRbMP+AfNPhzhyy+/VFZWlubPn+/ztUpO5na7NWvWLM2ePdtyn7EkD2vlAWthfFhrfJCHtfIAJJp9wF9o9uEoRUVFeumll7RhwwYdP37c7HICIj4+XkOHDtWMGTMs//VI5AE0jfFhLeQBWAfNPuAfNPtwpJqaGu3cuVM5OTnKzc1VcXGx7Pqr7nK5lJSUpEGDBik9PV2pqakNriRtdeQBNI3xYS3kAZiPZh/wD5p9hISqqiodPnxYBQUFKigoUFlZmSorK1VZWWl2aT6ioqIUFRWl2NhYpaSkKCUlRZ07d5bb7Ta7NL8iD6BpjA9rIQ8g+Gj2Af+g2QcAAABgGTT7gH9Y4zKyAAAAAADAb2j2AQAAAABwGJp9AAAAAAAchmYfAAAAAACHodkHAAAAAMBhaPYBAAAAAHAYmn0AAAAAAByGZh8AAAAAAIeh2QcAAAAAwGFo9gEAAAAAcBiafQAAAAAAHIZmHwAAAAAAh6HZBwAAAADAYWj2AQAAAABwGJp9AAAAAAAchmYfAAAAAACHodkHAAAAAMBhaPYBAAAAAHAYmn0AAAAAABwmwuwCgGCoqqrSoUOHVFBQoMLCQp04cUKVlZWqqqoyuzQfbrdbUVFRat++vbp27aqUlBR16dJFbrfb7NL8ijyshTwAAACch2YfjlRTU6MPP/xQOTk5ys3N1ZEjR2QYhtlltYjL5VJiYqIGDRqk9PR03XHHHYqIsNfQJQ9rIQ8AAADncxl2fYUHNKKwsFAvv/yyNmzYoOPHj5tdTkDExcUpLS1NM2bMUHJystnlXBB5WAt5AADs4OzZs2rTpo0kqby8XK1btza5IsCeaPbhCBUVFcrKytL8+fNVXV1tdjlB4Xa7NXPmTM2ePVsxMTFml+ODPMjDbFbOAwBwYTT7gH/Q7MP2tmzZojFjxujIkSMXvW9CQoK6du2qTp06KSYmRq1atVJYmDWuU+n1elVdXa2KigodPXpUhYWFKikpuejjkpKStHz5cg0cODAIVV4ceZBHIDglDwDAxdHsA/5Bsw9b27Rpk4YNG6aamppGf96rVy+lp6drwIABSklJUbt27YJc4eU5c+aMCgoKtG3bNq1fv1579+5t9H4RERFav3697r///iBX6Is8ziOP4LBbHgCA5qHZB/yDZh+21VQjEx4erkmTJmnSpEnq0qWLSdUFRlFRkV577TUtWrRI586d8/mZ2Q0NeZCH2aycBwCg+Wj2Af+g2YctbdmyRT/4wQ8aNDKpqalavHixbrzxRpMqC46//e1vmjBhgnbu3OmzPiIiQr/73e+CfsoyeZCHlVgtDwDApaHZB/yDZh+2U1FRoW7dujX4DHJGRoaWLVtmmc8YB5rX61VmZqZWrFjhsz4pKUn5+fmKjo4OSh3kcR55WItV8gAAXDqafcA/QuNVHxwlKysr5BsZSQoLC9OyZcuUkZHhs764uFhZWVlBq4M8ziMPa7FKHgAAAGbhnX3YSmFhoW688UZVVVXVrUtNTdWOHTtCqpH5Oq/Xq/79+2vXrl1169xutw4ePBjw7xknj4bIw1rMzAMA0DK8sw/4R2i++oNtvfzyyz6NTHh4uBYvXhyyjYx0/h3MxYsXKzw8vG5dVVWVXnrppYDvmzwaIg9rMTMPAAAAM4XuK0DYTk1NjTZs2OCzbtKkSY6/2Fhz3HTTTZo0aZLPuo0bNzb5lWv+QB5NIw9rMSMPAAAAs9HswzY+/PBDHT9+3Gdd/RfwoWzixIk+y6WlpQ2uRu5P5HFh5GEtwc4DAADAbDT7sI2cnByf5V69ejnue8IvR3Jysnr27Omzrv4x8yfyuDDysJZg5wEAAGA2mn3YRm5urs9yenq6SZVYV/1jUv+Y+RN5XBx5WEsw8wAAADAbzT5soaqqqsHXiQ0YMMCkaqzr7rvv9lk+cuSIzwXb/IU8moc8rCVYeQAAAFgBzT5s4dChQ6r/LZHXXnutSdVYV0pKis+y1+vV4cOH/b4f8mge8rCWYOUBAABgBTT7sIWCggKf5YSEBLVt29akaqyrXbt2io+P91lX/9j5A3k0D3lYS7DyAAAAsAKafdhCYWGhz3LXrl1NqsT66r97GYhmhjyajzysJRh5AAAAWAHNPmzhxIkTPsudOnUyqRLr69ixo89yWVmZ3/dBHs1HHtYSjDwAAACsgGYftlBZWemzHBMTY1Il1lf/2NQ/dv5AHs1HHtYSjDwAAACsgGYftlD/itmtWrUyqRLrc7vdPsuBaGbIo/nIw1qCkQcAAIAV0OzDlsLC+NVtihnHhjyaRh7WwrEBAAChglc9AAAAAAA4DM0+AAAAAAAOQ7MPAAAAAIDDRJhdAAAACDyPx6MvvvhCktS2bVtFRkaaXBEAAAgk3tkHAMCh9u3bp8mTJ6tPnz5q06aNYmNjFRsbqzZt2qhPnz6aPHmyPvnkE7PLBAAAAUCzDwCAw+zfv1+pqanq0aOHFi1apLy8PFVXV9f9vLq6Wnl5eVq0aJFuueUWpaamav/+/SZWDAAA/I1mHwAAhzAMQ1lZWerdu7d27drV7Mft2rVLvXv3VlZWlgzDCGCFAAAgWGj2AQBwAMMwNGnSJM2ZM0cej+eSH+/xeDRnzhxNmjSJhh8AAAdwdLP/2WefaeHChRo4cKC+9a1vqVWrVrr66quVlpamv/zlL2aXB5tatGiRXC6XfvzjHzf681OnTqlDhw6KiYnRP//5zyBX52zFxcVyuVw+t8jISHXo0EHDhg1TXl6eJGnhwoVyuVwaMWJEk9v64IMPFBYWpj59+qimpiZYT8FRyMNa5s+fr8WLF1/2dhYvXqz58+f7oSIAAGAmR1+Nf9GiRZo/f76Sk5M1cOBAxcXFqaCgQG+//bbefvttvfnmm3rwwQfNLhM2M3HiRG3cuFFvvPGG0tLSdN999/n8fMKECfr3v/+tV155Rddee61JVTpbcnKyHnnkEUnS2bNntWfPHuXk5Ojtt9/Wtm3bNGXKFG3evFlr1qzR0KFDde+99/o8vry8XCNGjJDb7dbatWsVEeHoqTDgyMN8+/fv19y5c/22vblz5+qee+5R9+7d/bZNAAAQXI5+RdW3b1998MEHuuOOO3zW79q1S3fddZfGjRunH/7wh3K73SZVCDtyuVxavXq1brrpJo0ZM0a33Xab2rdvL0l66623tG7dOt15552aNGmSyZU6V9euXfX000/7rMvKytKcOXP01FNP6cMPP9SaNWvUvXt3ZWRk6ODBg4qNja277/Tp01VcXKwFCxbo+uuvD3L1zkMe5ps4cWKLTt1visfj0cSJE7Vz506/bRMAAASXo0/jHzp0aINGX5L69eunO++8U6dOndKBAwdMqAx2l5SUpJdfflmlpaUaN26cJKmkpETjxo1T27ZttXr1arlcLpOrDC2jRo2SJO3Zs0eSlJiYqIULF9blUis3N1fZ2dm68847NWXKFFNqDQXkETz79u27pIvxNdeuXbv4Wj4AAGzM0c3+hURGRkoSp4uixcaMGaNBgwbVvZs/ZswYnThxQgsXLlRiYqLZ5YWsr4/pESNGaMiQIcrJydG6dev0+eefa/To0WrXrh1/kAkS8gi8VatW2XLbAAAgsEKy0/3Xv/6lbdu26Zvf/KZuuukms8uBjb3++uu68cYbNWLECFVVVWnw4MEaOXKk2WWFpJUrV0qSbr/9dp/12dnZ+tOf/qQJEyYoNTVVx44d06pVq/iDTICRR/B8/PHHttw2AAAIrJBr9j0ejx599FFVVVVp/vz5Cg8PN7ukS2IYhioqKswuI+j8+VlUf+rQoYMmTpyo5557TpGRkcrOzja7pAY8Ho/Onj3r922aqbCwsO4z4rUXhNuxY4cSEhL04osv+tw3ISFBy5cvV1pamjZv3qwhQ4Zc8KrwgUYezs8jmDwej/bv3x+w7e/fv1+nT5/mLDgAQfX1ednOc7QTxcTEcCaenRgh5Ny5c8bw4cMNSUZGRobZ5bRIeXm5ISnkb+PHjzc7CsMwDKOkpMSIi4urqys7O9vskozx48c7No/Dhw83WcPVV19tFBQUNPnYvn37GpKM/Pz8oNRaizwaF0p5cOPGjRs3bk65lZeXB/XfbVyekPnMvtfr1ciRI/Xmm2/qkUce0bJly8wuCQ6QmZmp48ePKysrS+3bt9f06dP1r3/9y+yyHG/QoEEyDEOGYai0tFQvvviiSktLNWTIEJWXlzf6mOjoaJ//wn/IAwAAwHpC4rw8r9erESNGaO3atXr44Ye1Zs0ahYXZ8+8cMTExTb54drJp06ZpxYoVZpfh44033tCmTZs0ePBgzZo1S0lJSXrooYc0atQobd261ezy6mRkZGjBggV+3aaV8oiLi9OMGTN0+vRpPffcc3ryySe1cOFCs8tqEnlYSyDyCCaPx6OEhARVV1cHZPtut1slJSWcxg8gqM6ePauEhARJ57/tqHXr1iZXhFoxMTFml4BL4Ph/vb/e6D/44IN64403bPc5/a9zuVwhOeHVfnuCVXz22WeaPHmyrrrqqrrP6T/44IN666239NZbb2n58uUaO3asyVWeFxkZ6fffGavlIUlPPPGEVq1apSVLlmjq1KlKSkoyu6RGkYe1BCKPYOvevbvy8vICtu0rrrgiINsGgOZo3bq17edpwCz2fHu7mWpP3V+7dq3S09P161//2taNPqxj1KhR+vzzz/Xaa6/pm9/8Zt36JUuWKC4uTj/96U915MgREysMPdHR0Zo1a5Y8Ho9+/vOfm11OyCOP4Ln11lttuW0AABBYjm72n332Wf3qV79SmzZtdO211+q5557T008/7XPbt2+f2WXCZpYvX67c3Fw98MADevjhh31+FhcXp6VLl+qLL77QyJEjZRiGSVWGpjFjxuiaa67R2rVrVVRUZHY5IY88giOQX/fJV4kCAGBfjj6Nv7i4WJJUXl6u559/vtH7JCUl6ZZbbgleUbC1w4cPa8aMGYqPj9fSpUsbvU9aWpoefvhhrVu3TkuXLtX48eODXGXoioqK0pw5czRp0iQ988wzWrt2rdklhTTyCI5bbrlF/fr1065du/y63X79+unmm2/26zYBAEDwOLrZX7NmjdasWWN2GXCQzp0764svvrjo/d588029+eabQagotCQlJV30bImJEydq4sSJDdZ/8MEHAaoqdJGHdbz22mvq3bu3PB6PX7YXGRmpxYsX+2VbAADAHI4+jR8AgFDQvXt3Pfvss37b3rPPPqubbrrJb9sDAADBR7MPAIADzJo1SxMmTLjs7UycOFGzZs3yQ0UAAMBMNPsAADiAy+XSokWLNG/evBZ9HWNkZKTmzZunV199VS6XKwAVAgCAYKLZBwDAIVwul2bPnq28vDz169ev2Y/r16+f9uzZo9mzZ9PoAwDgEI6+QB8AAKGoe/fu2rlzpz755BOtWrVKH3/8sT755BNVV1dLktxut7p3765bb71VI0eO5Kr7AAA4EM0+AAAOdfPNN+uVV16RJJ0+fVpXXnmlJKmkpERXXHGFiZUBAIBA4zR+AABCQERERKP/DwAAnIlmHwAAAAAAh6HZBwAAAADAYWj2AQAAAABwGJp92JLX6zW7BMsy49iQR9PIw1o4NgAAIFTQ7MMW3G63z3Lt10ehoaqqKp/lqKgov++DPJqPPKwlGHkAAABYAc0+bKH+C/KKigqTKrG++scmEM0MeTQfeVhLMPIAAACwApp92EL79u19lo8ePWpSJdZ37Ngxn+XY2Fi/74M8mo88rCUYeQAAAFgBzT5soWvXrj7LhYWFJlVifQUFBT7LKSkpft8HeTQfeVhLMPIAAACwApp92EL9F+QlJSU6c+aMSdVY15kzZ1RaWuqzLhDNDHk0D3lYS7DyAAAAsAKafdhCly5d5HK5fNbVf4cODY9JWFiYOnfu7Pf9kEfzkIe1BCsPAAAAK6DZhy243W4lJib6rNu2bZtJ1VjX1q1bfZYTExMbXKndH8ijecjDWoKVBwAAgBXQ7MM2Bg0a5LOck5NjUiXWVf+Y1D9m/kQeF0ce1hLMPAAAAMxGsw/bSE9P91nes2ePDh06ZFI11lNUVKS9e/f6rKt/zPyJPC6MPKwl2HkAAACYjWYftnHHHXcoLi7OZ92iRYtMqsZ6XnvtNZ/l+Ph4paamBmx/5HFh5GEtwc4DAADAbDT7sI2IiAilpaX5rFu0aJH+9re/mVSRdRw4cKBBYzd06FBFREQEbJ/k0TTysBYz8gAAADCbyzAMw+wigOYqKirSDTfcoKqqqrp1qamp2rFjh8LCQvNvV16vV/3799euXbvq1rndbh08eFDJyckB3Td5NEQe1mJmHlZz9uxZtWnTRpJUXl6u1q1bm1wRADSO+Qrwj9B89QfbSk5O1syZM33W7dy5U5mZmfJ6vSZVZR6v16vMzEyfRkaSZs2aFZRGhjx8kYe1mJ0HAACAmXhnH7ZTUVGhbt266ciRIz7rMzIytGzZspB5B7O2kVmxYoXP+qSkJOXn5ys6OjoodZDHeeRhLVbJw0p4pwyAXTBfAf4RGq/64CgxMTHKzs5u8HnbFStWqH///jpw4IBJlQXPgQMH1L9//waNTEREhJYvXx7URoY8yMNqrJQHAACAWWj2YUsDBw7U+vXrGzQ0u3btUo8ePTRt2jQVFRWZVF3gFBUVadq0aerRo0eDU5MjIiK0fv16DRw4MOh1kQd5WIFV8wAAADADp/HD1jZt2qRhw4appqam0Z/37NlT6enpuvvuu5WSkqJ27doFucLLc+bMGRUUFGjr1q3Kyclp8D3htWobmfvvvz/IFfoij/PIIzjslofZOC0WgF0wXwH+QbMP29uyZYvGjh2r4uLii943Pj5eKSkp6tixo2JiYuR2uy3zGWav16uqqipVVFTo2LFjKigoUGlp6UUfl5SUpOXLl1vmHUvyII9AcEoeZuLFMwC7YL4C/INmH47w5ZdfKisrS/Pnz/f52jEnc7vdmjVrlmbPnm25zyCTB3mYzcp5mIUXzwDsgvkK8A+afThKUVGRXnrpJW3YsEHHjx83u5yAiI+P19ChQzVjxgzLf30YeVgLeYQ2XjwDsAvmK8A/aPbhSDU1Ndq5c6dycnKUm5ur4uJi2fVX3eVyKSkpSYMGDVJ6erpSU1MbXHjN6sjDWsgjNPHiGYBdMF8B/kGzj5BQVVWlw4cPq6CgQAUFBSorK1NlZaUqKyvNLs1HVFSUoqKiFBsbq5SUFKWkpKhz585yu91ml+ZX5GEt5BEaePEMwC6YrwD/oNkHACAE8OIZgF0wXwH+YY3LLAMAAAAAAL+h2QcAAAAAwGFo9gEAAAAAcBiafQAAAAAAHIZmHwAAAAAAh6HZBwAAAADAYWj2AQAAAABwGJp9AAAAAAAchmYfAAAAAACHodkHAAAAAMBhaPYBAAAAAHAYmn0AAAAAAByGZh8AAAAAAIeh2QcAAAAAwGFo9gEAAAAAcBiafQAAAAAAHIZmHwAAAAAAh6HZBwAAAADAYWj2AQAAAABwmAizCwCCoaqqSocOHVJBQYEKCwt14sQJVVZWqqqqyuzSfLjdbkVFRal9+/bq2rWrUlJS1KVLF7ndbrNL8yvysBbyAJrG+LAW8gCaxvhAfTT7cKSamhp9+OGHysnJUW5uro4cOSLDMMwuq0VcLpcSExM1aNAgpaen64477lBEhL2GLnlYC3kATWN8WAt5AE1jfOCiDMBBCgoKjMzMTCMuLs6Q5MhbXFyckZmZaRQWFpp9uC+KPKyFPEJbeXl53XEqLy83uxzLYXxYC3mENuarC2N8oLlo9uEIZ8+eNZ566imjVatWpk9Owbq53W7jqaeeMs6ePWv24W+APKyFPGAYvHhuCuPDWsgDhsF81RTGBy6VyzBseq4H8P9t2bJFY8aM0ZEjRy5634SEBHXt2lWdOnVSTEyMWrVqpbAwa1yn0uv1qrq6WhUVFTp69KgKCwtVUlJy0cclJSVp+fLlGjhwYBCqvDjyII9AcEoeZjp79qzatGkjSSovL1fr1q1Nrsh8jA9rjQ/ysFYeZmK+ashp4+PAgQP6v//7P3k8HsZHIJn91wbgcmzcuNGIiIho8q+BvXr1MrKysoy8vDzj9OnTZpd7yU6fPm3k5eUZWVlZRs+ePZt8nhEREcbGjRvNLpc8yCOo7JaH2XinzBfjw1rjgzyslYfZmK98OWl8nDt3zpg1a5Yhqe53nfERODT7sK2mJr7w8HBj6tSpRlFRkdkl+l1hYaExdepUIzw83HITIHmQh9msnIcV8OL5K4wPa40P8rBWHlbAfPUVJ42PiooK44EHHqh7Dv/3f//X6P0YH/5Dsw9bys3NbXTiS01NNQ4cOGB2eQF34MABIzU1tdEJMDc3N+j1kAd5WInV8rAKXjyfx/iw1vggD2vlYRXMV+c5aXz85z//Mfr27Vv3HJKSki76GMbH5aPZh+2cPXvWSExMbDDwMzIyjHPnzpldXtCcO3fOyMjIaHAckpKSjIqKiqDVQR7nkYe1WCUPKzlz5kzdcThz5ozZ5ZiC8XGeVcYHeZxnlTyshPnKWePjb3/7W4Pn8vDDDzfrsYyPy0OzD9t56qmnHDHx+UNTE+DcuXODVgN5fIU8rMUKeZjh5MmTxrZt24ysrCwjPT3d6NKlixEVFdXgOERFRRldunQx0tPTjfnz5xvbtm0zTp48aXb5AcX4+IoVxgd5fMUKeZiB+appThkfW7duNdq1a9fgubz66qvN3kaojg9/oNmHrRQUFBhut7vBqUx2m/j86dy5c0a/fv18jonb7Q7K95KSR0PkYS1m5hFMn376qTFlyhSjS5cuDV4MXeqtS5cuxpQpU4xPP/3U7KflV4yPhpivrIX5ivmqllPGx4oVK5q8sOBf//rXS9pWqIwPf6PZh61kZmb6DPLw8HDbfWYpEPbv39/gIiaZmZkB3y95NI48rMWsPALN4/EYGzZsMO66664GL6I6d+5sPPDAA0ZWVpaxdetW49ChQ0ZRUVHdz4uKioxDhw4ZW7duNbKysowHHnjA6Ny5c4Pt3HXXXcaGDRsMj8dj9tO9bIyPxjFfWQvzFfOVYdh/fJw7d86YOXNmk3+kiY6ONqqrqy95u04dH4FEsw/b8Hg8RlxcnM8Anzp1qtllWcbUqVN9jk18fHxA/8EjjwsjD2sJdh6B9OWXXxrPP/+80aFDh7rnExYWZgwZMsR45513jLKyskYf15wLXpWVlRnvvPOOMWTIECMsLKzu/h06dDBeeOEFo7KyMpBPLWAYHxfGfGUtzFfMV3YeHxUVFUZaWtoFz8jo169fi7fvpPERDDT7sI1t27Y1mCzs9HUjgVZYWNjg+Gzfvj1g+yOPCyMPawl2HoHyl7/8xejWrVvdc4iLizOeeOIJo7i4+KKPvdSrWxcXFxtPPPGEz4vObt26Gbt37/bHUwkqxseFMV9ZC/MV85Vdx0f9K+43dZs5c2aL9+GU8REsNPuwjbFjx/oM7F69epldkuX07NnT5xgF8tQm8rg48rCWYObhb19++aUxa9asunevEhISjLVr117SO1ct/SqryspKY+3atUZCQkLdu3KzZ882vvzyy5Y8FVMwPi6O+cpamK+Yr+w2Phq74n5tBvXXbdq06bL2ZefxEWxhAmwiNzfXZzk9Pd2kSqyr/jGpf8z8iTwujjysJZh5+NPu3bvVs2dPzZ8/X16vV8OHD9fBgwf16KOPyu12B3z/brdbjz76qA4ePKjhw4fL6/UqKytLvXr10u7duwO+f39gfFwc85W1MF+1DPOVObZu3arvfve7OnLkiM/6K664Qi+99FKD+3/nO9+5rP3ZdXyYwuy/NgDNUVlZabhcLp+/4uXl5ZldluXk5eU1+GtqID6zRh7NQx7WEqw8/CknJ8eIjIyse3fsct4Naek7ZfVt2rTJiI+PNyQZkZGRxltvvdXibQUD46N5mK+shfmK+cou4yM7O7vBRfMkGUlJScbBgweNZcuWNVh/uew4PszCO/uwhUOHDskwDJ911157rUnVWFdKSorPstfr1eHDh/2+H/JoHvKwlmDl4S+rVq3Sgw8+KI/Ho/vuu08HDx7UD3/4Q7PL0g9/+EPl5+frvvvuk8fj0bBhw7R69Wqzy2oS46N5mK+shfnKP5ivAsfr9WrWrFkaM2aMzp075/Oz//qv/9Kf//xndevWTR9//LHPz2699dbL3rfdxoeZaPZhCwUFBT7LCQkJatu2rUnVWFe7du0UHx/vs67+sfMH8mge8rCWYOXhD6tXr9aoUaPk9Xo1atQobdiwQbGxsWaXVSc2NlYbNmyoq3HkyJGWfQHN+Gge5itrYb7yH+Yr/6uoqNCwYcP0i1/8otGfv/HGG0pISJCkgDT7dhofZqPZhy0UFhb6LHft2tWkSqyv/l87AzH5kUfzkYe1BCOPy7VhwwaNHj1akjRlyhStWLFC4eHhJlfVUHh4uFasWKEpU6ZIkkaPHq2NGzeaXFVDjI/mY76yFuYr/2G+8q+TJ0/qyy+/bPLn1157rb7//e/rxIkT+uc//+nzM380+5I9xocV0OzDFk6cOOGz3KlTJ5Mqsb6OHTv6LJeVlfl9H+TRfORhLcHI43Ls3r1bDz/8sLxer0aPHq0FCxbI5XKZXVaTXC6XFixYUPeO2UMPPaS//vWvZpflg/HRfMxX1sJ85V/MV/7TsWNHvffee9q8ebOSkpIavc/vf/97xcXF+ayLjo7WzTff7Lcavs5q48MqaPZhC5WVlT7LMTExJlViffWPTf1j5w/k0XzkYS3ByKOlKisr9dhjj9V95nXZsmWWfuFcy+Vyafny5XWfiX3ssccsd1y/jvHRNOYra2G+8j/mq5Y7d+6cz2fzXS6XhgwZovz8fM2dO7dZ2+jdu7ciIyP9Uo+Vx4eV0OzDFqqqqnyWW7VqZVIl1lf/q20CMfmRR/ORh7UEI4+WeuaZZ/T3v/9dCQkJev311y15KmxTwsPDtXLlSsXHxys/P1/PPvus2SXVYXw0H/OVtTBfBQbzVdOqq6v117/+VStXrtSkSZOUmpqq2NhYtWrVShEREYqIiFCrVq0UGxur1NRUTZo0Sb/5zW/0rW99q1nb99cp/JK1x4eVRJhdANASYWH8naopZhwb8mgaeViLVY/N7t276y50tGzZMktd3Kq52rdvr2XLlmno0KGaP3++7r//fvXp08fsshqw6u+AFTBfWYtVjw3zVfAE63dg3759WrVqlX7zm9/o5MmTF7yvx+PRyZMntWvXLu3ateuS9uPPZt+q48NqOEoAAJiosrJSI0aMkNfr1fDhwy3xdVUtdf/999d9hvexxx5r8C4VAHtjvnKOmpoaLV++XD169FCPHj20aNGiizb6l+IHP/hBg3ffv/Od7/ht+2gemn0AAEy0YMEC5efnKyEhQa+++qrZ5Vy2RYsWKSEhQfn5+frlL39pdjkA/Ij5yhk+/vhj9e7dW5mZmdq3b19A9vG73/1OnTt3rns3PykpSVdffXVA9oWm0ewDAGCSmpoaLV68WJL04osv2vJ02PpiY2PrTvFdsmSJampqTK4IgD8wX9lfWVmZMjIy9N3vfleffPJJk/e79tprlZ6erueee07vvvuu9u7dq4MHD+rgwYPau3ev3n33XT333HMN3rmv79NPP9XHH3+su+++W/fff7+/nw6agc/sAwBgknfeeUefffaZ4uPjNWzYMLPL8ZsHH3xQM2bM0LFjx/Tuu+/yIg9wAOYre9u3b58GDx6szz77rNGfd+rUSY899ph+8pOfKDk5+YLb6tGjh2JjY/Xkk082a99bt25Vfn6+fvzjH+uWW2651NJxGXhnHwAAkyxZskSSNHr06Iu+Q2Inbrdbo0ePlvTVcwRgb8xX9vX73/9et99+e6ON/o033qj3339fhw8f1rPPPnvRRl+SDMPQd7/73QbrFyxYoPfff1833nhjg5999tlnuv322/X73/++ZU8CLUKzDwCACT799FNt375dYWFhGjNmjNnl+N3YsWPlcrm0bds2/eMf/zC7HACXgfnKvt59910NGTJEZ8+e9VnfunVrvfTSS9q7d6/++7//+5K+PvF//ud/Gl0/depU/fd//7f27t2rl156Sa1bt/b5+dmzZ3Xffffp3XffvfQnghah2QcAwATLli2TJA0ePFiJiYkmV+N/iYmJGjx4sCRp6dKlJlcD4HIwX9nTRx99pLS0NHk8Hp/1/fr109///ndNnz5dkZGRl7TNL774QvPmzWuw/u9//3vd/0dGRmr69On6+9//rttvv93nftXV1UpLS9NHH310SftFy9DsAwBggtp3NmpPH3Wi2uf23nvvmVwJgMvBfGU/p06d0vDhwxs0+g8//LC2bt2qTp06tWi7jZ3m36NHD337299usL5Tp07atm2bHn74YZ/1Ho9Hw4cP1+eff96iGtB8jm72Kysr9fjjjys1NVXXXHONoqKidPXVV+u2227T6tWrG/zyA82xaNEiuVwu/fjHP27056dOnVKHDh0UExOjf/7zn0GuztmKi4vlcrl8bpGRkerQoYOGDRumvLw8SdLChQvlcrk0YsSIJrf1wQcfKCwsTH369HH81XcDhTxa7tSpUzp06JAk6bbbbjO5msCpfW5FRUUh96KO8WEt5NFyzFf2YxiGMjIy9K9//ctn/ciRI/XGG2+0+JoLH3/8sY4fP95g/Z///OcmH+N2u/XGG29o5MiRPuv/9a9/KSMjQ4ZhtKgWNI+jr8ZfXl6upUuXqm/fvvrBD36guLg4nTp1Su+//75Gjhyp//3f/9X777+vsDBH/80DfjZx4kRt3LhRb7zxhtLS0nTffff5/HzChAn697//rVdeeUXXXnutSVU6W3Jysh555BFJ5z//tWfPHuXk5Ojtt9/Wtm3bNGXKFG3evFlr1qzR0KFDde+99/o8vry8XCNGjJDb7dbatWsVEeHoqTDgyOPS7d27V5LUuXNnXXXVVSZXEzixsbFKSkpScXGx9u7dq+9973tmlxR0jA9rIY9Lx3xlPytWrNCGDRt81vXv31/Z2dmX9Nn8r2vqonyvvPKKWrVqdcHHhoeHKzs7W0VFRfrwww/r1r/11ltauXKlMjIyWlQTLs7RM9RVV12l06dPN/gFrKmp0d13360tW7bo/fff1w9+8AOTKoQduVwurV69WjfddJPGjBmj2267Te3bt5d0ftJat26d7rzzTk2aNMnkSp2ra9euevrpp33WZWVlac6cOXrqqaf04Ycfas2aNerevbsyMjJ08OBBn+8Dnj59uoqLi7VgwQJdf/31Qa7eecjj0tW+i9irVy+TKwm83r17q7i4WHl5ebZ+8dxSjA9rIY9Lx3xlLxUVFZozZ47Puquuukq//vWvW9zoS01flG/y5MnNenx4eLh+/etf6+abb9bJkyfr1s+ZM0c/+tGPFBMT0+La0DRHv6UdFhbW6F+aIiIi6r5Ds7CwMNhlwQGSkpL08ssvq7S0VOPGjZMklZSUaNy4cWrbtq1Wr14tl8tlcpWhZdSoUZKkPXv2SDp/sZ2FCxfW5VIrNzdX2dnZuvPOOzVlyhRTag0F5HFhtceld+/eJlcSeLUNQu1zBuPDasjjwpiv7GXNmjU+zbQkrV69Wh06dGjxNptzUb7m6Nixo1atWuWzrqysTL/61a9aXBsuzNHNflO8Xm/ddzw29j2QQHOMGTNGgwYNqns3f8yYMTpx4oQWLlzoyCvV2sXXT6kcMWKEhgwZopycHK1bt06ff/65Ro8erXbt2vEHmSAhj8bVvpAMhXfKnPDiOVAYH9ZCHo1jvrKPc+fO6Ze//KXPuu9///saMmTIZW33Ui7KdzH33Xefvv/97/us++Uvf6lz5861uD40zdGn8deqrq7WCy+8IMMwVFZWpu3bt+vTTz/ViBEjdNddd5ldHmzs9ddf14033qgRI0aoqqpKgwcPbnABEgTHypUrJanBV7xkZ2frT3/6kyZMmKDU1FQdO3ZMq1at4g8yAUYeF/bvf/9bUuMvoJyma9eukr56zmB8WA15XBjzlX1s3rxZRUVFPutmzJhxWdtsyUX5Lmb69Ol6//3365YLCwv1zjvv1J15Df8JmWb/mWeeqVt2uVyaMWNGo6ejWJ1hGKqoqDC7jKCz6jcndOjQQRMnTtRzzz2nyMhIZWdnm11SAx6PR2fPnvX7Ns1UWFhY95nL2gss7dixQwkJCXrxxRd97puQkKDly5crLS1Nmzdv1pAhQy54leVAIw/n53ExXq9XlZWVks7P6cHa/9f3E8znXHul5S+//FJffPFF0C+Ky/hoOeYr5+dxMcxX9pqv1q9f77Pco0cP3XnnnS3e3uVclO9Cvve97+mWW27Rvn376tb99re/pdkPBCOEnDt3zjh69KixZMkS48orrzRuu+024/Tp02aXdUnKy8sNSSF/Gz9+vNlRGIZhGCUlJUZcXFxdXdnZ2WaXZIwfP96xeRw+fLjJGq6++mqjoKCgycf27dvXkGTk5+cHpdZa5NG4UMqDm7VujI+mMV81LpTy4Gat26WOj8TERJ/HL1269LJ+B+fMmdNoXf6wZMkSn20mJSVd0uPrjw+r9AZWE1Kf2Q8LC1PHjh01btw4ZWdn66OPPtLzzz9vdlmwsczMTB0/flxZWVlq3769pk+f3uA7TeF/gwYNkmEYMgxDpaWlevHFF1VaWqohQ4aovLy80cdER0f7/Bf+Qx5A0xgf1kIecKr//Oc/OnLkiM+6+h9NuRT+uihfU+rXVlxcrJKSEr9sG18JidP4GzNw4EBJ0gcffGBuIZcoJiamyX+MnGzatGlasWKF2WX4eOONN7Rp0yYNHjxYs2bNUlJSkh566CGNGjVKW7duNbu8OhkZGVqwYIFft2mlPOLi4jRjxgydPn1azz33nJ588kktXLjQ7LKaRB7WEog8Lsbr9apdu3aSpKKiIiUkJARlv2fPnq3bV0lJiVq3bh2U/ZaUlNR91vfMmTNBPy2W8dFyzFfWwnwVeHaer/7yl7/4LLdt2/ayvh7Snxfla0y3bt3Upk0bn77mL3/5y2VfTBC+QrbZr73wRmRkpMmVXBqXyxW0Cc9KrJbTZ599psmTJ+uqq66q+5z+gw8+qLfeektvvfWWli9frrFjx5pc5XmRkZF+/52xWh6S9MQTT2jVqlVasmSJpk6dqqSkJLNLahR5WEsg8miOqKgoVVZWmjant27dOmj7rb1qeXR0tNq2bRuUfX4d46PlmK+shfkq8Ow8X33yySc+y3369FF4eHiLthWIi/LVFx4erj59+mjHjh116/bt20ez72eOPo0/Pz+/0YvZVVRU6PHHH5ck3XPPPcEuCw4watQoff7553rttdf0zW9+s279kiVLFBcXp5/+9KcNTqVCYEVHR2vWrFnyeDz6+c9/bnY5IY88Luyaa66RpAZXTXaiwsJCSV89ZzA+rIY8Loz5yh6++OILn+VOnTq1aDtGgC7K15j6NYbi2cuB5uhmf/369br66qt1zz33aPz48Zo9e7YeffRRfetb39Lvf/979evXT9OmTTO7TNjM8uXLlZubqwceeEAPP/ywz8/i4uK0dOlSffHFFxo5cmTdVV0RHGPGjNE111yjtWvXhsSLEqsjj6bZ/bucL0UofUf3pWB8WAt5NI35yh5uvvlmPfTQQ7rvvvs0cOBA3XTTTS3azv/8z/80un7y5MmXU16junfvroEDB+q+++7TQw89pJtvvtnv+wh1jm72Bw8erIceekj/+te/tG7dOr388st6//331b17dy1fvlx/+MMfuNgKLsnhw4c1Y8YMxcfHa+nSpY3eJy0tTQ8//LD+8Ic/NHkfBEZUVJTmzJmjmpoan6/bhDnIo2m1LyTz8vJMriTw7PziOZAYH9ZCHk1jvrKHRx55ROvWrdPbb7+t3NxcTZ8+/ZK3EeiL8tU3ffp05ebm6u2339a6dev0ox/9KCD7CWWO/sx+79691bt3b7PLgIN07ty5wWlSjXnzzTf15ptvBqGi0JKUlHTRsyUmTpyoiRMnNlhvt4tx2gF5tFztv02h8E5ZbYMQav8eMz6shTxajvkqdAT6onwIPke/sw8AgBX17NlT0vmzhU6ePGlyNYFTVlam4uJiSV89ZwD2wnwVGoJxUT4EH80+AABB9o1vfENdunSRJH300UcmVxM4tc8tOTlZV155pbnFAGgR5ivnC+ZF+RBcNPsAAJjg3nvvlSStXLnS5EoCp/a5DR482ORKAFwO5itnC+ZF+RBcNPsAAJhg3LhxkqT33nvPkV/VWVxcrPfee0/SV88VgD0xXzlXsC/Kh+Ci2QcAwATXXXed7rrrLnm9XmVnZ5tdjt9lZ2fLMAwNGDBA1113ndnlALgMzFfOxUX5nI1mHwAAk4wfP17S+dNHq6qqTK7Gf6qqqupOia19jgDsjfnKebgon/PR7AMAYJIhQ4aoQ4cOKi0t1fr1680ux29++9vf6vjx4+rYsWPdZ30B2BvzlbNwUb7QQLMPAIBJIiIiNGHCBEnST3/6U5WVlZlc0eUrKyvTzJkzJZ1/lywiIsLkigD4A/OVs3BRvtBAsw8AgIkef/xxdevWTSUlJY54kTVp0iSVlJSoW7duevzxx80uB4AfMV85AxflCx00+wAAmMjtdmv16tUKCwvTm2++qbffftvsklps06ZNWrduncLDw7VmzRq53W6zSwLgR8xXzsBF+UIHzT5syev1ml2CZZlxbMijaeRhLVY9Nn379q07lTQzM9OWp8eeOHFCmZmZkqSZM2eqT58+JlfUOKv+DlgB85W1WPXYMF8FTyB+Bz799FNHXJTPquPDamj2YQv1/9paXV1tUiXWV/8KuVFRUX7fB3k0H3lYSzDyaKmf/exndafHjho1SufOnTO7pGY7d+6cRo8erdLSUnXr1k0/+9nPzC6pDuOj+ZivrIX5KjBCeb4yDENTp05tsN6OF+Wz8viwEpp92EL9AVxRUWFSJdZX/9gEYvIjj+YjD2sJRh4tFRUVpdWrVysyMlKbN2/W2LFjZRiG2WVdlGEYGjt2rDZv3qxWrVpZ7nRYxkfzMV9ZC/OV/4X6fFVaWqp//OMfPuu+8Y1v2PL6C1YeH1ZCsw9baN++vc/y0aNHTarE+o4dO+azHBsb6/d9kEfzkYe1BCOPy9G3b1+tW7dOYWFhev311zVt2jRLv4A2DEPTpk3T66+/rrCwMK1bt85yp8MyPpqP+cpamK/8i/lKSkhIUH5+vubOnSu3263WrVtr//79ft1HsFh9fFgFzT5soWvXrj7LhYWFJlVifQUFBT7LKSkpft8HeTQfeVhLMPK4XGlpaVq5cqWk86dWZmRkWPIU2dpTYV955RVJ0uuvv66hQ4eaXFVDjI/mY76yFuYr/2G++kp0dLSeeeYZHTx4UGvXrlXHjh39vo9gsMP4sAKafdhC/QFcUlKiM2fOmFSNdZ05c0alpaU+6wIx+ZFH85CHtQQrD38YMWKEVq1aVfeOWVpamqUugnXixAmlpaXV1bh69Wo99thjZpfVKMZH8zBfWQvzlf8wXzUuOTnZkn/waA47jQ+z0ezDFrp06SKXy+Wzrv5f9NDwmISFhalz585+3w95NA95WEuw8vCXESNGaP369XWfie3WrZs2bdpkdlnatGmTbrjhBm3evFmRkZHKycmx7AtnifHRXMxX1sJ85R/MV85kt/FhJpp92ILb7VZiYqLPum3btplUjXVt3brVZzkxMTEgF54hj+YhD2sJVh7+lJaWpj/+8Y+6/vrrVVpaqqFDh+pHP/qRKe+alZWVafjw4Ro6dGjdVaw/+ugjy78zxPhoHuYra2G+ujzMV85mx/FhFpp92MagQYN8lnNyckyqxLrqH5P6x8yfyOPiyMNagpmHP/Xt21d79+7V7NmzFRYWpjfffFM33HCD1q5d2+CrhwKhqqpKa9eu1Q033FB3Ma45c+Zoz549lru4VVMYHxfHfGUtzFctw3wVGuw6PkxhADaxbds2Q5LPraioyOyyLKOwsLDB8dm+fXvA9kceF0Ye1hLsPAJl9+7dRrdu3eqeQ1xcnDFnzhyjuLj4oo8tLy+ve1x5eflF719cXGzMmTPHiIuLq3tct27djN27d/vjqQQV4+PCmK+shfmK+Yrx0TSnjI9godmHbXg8Hp9JXJIxdepUs8uyjKlTp/ocm/j4eMPj8QRsf+RxYeRhLcHOI5C+/PJL44UXXjA6dOhQ93zCwsKMe++919i8ebNRVlbW6OOa8+K5rKzM2Lx5s3HvvfcaLper7v4dO3Y0XnjhBaOysjKQTy1gGB8XxnxlLcxXzFeMj6Y5aXwEA80+bCUzM9NngIeHhxsHDhwwuyzT7d+/3wgPD/c5NpmZmQHfL3k0jjysxaw8As3j8RgbN240BgwY0OBdjqSkJOOBBx4w5s2bZ2zZssU4dOiQUVRU5PMu0aFDh4wtW7YY8+bNMx544AEjKSmpwXYGDBhgbNy40REvpBgfjWO+shbmK+Yrw2B8NMWp4yOQaPZhK4WFhYbb7fYZ5Kmpqca5c+fMLs00586dM/r16+dzTNxut1FYWBjwfZNHQ+RhLWbmEUyffvqpMWXKFCM5ObnBC+BLvSUnJxtTpkwxPv30U7Ofll8xPhpivrIW5ivmq1qMj4ZCZXz4G80+bOepp55qMNlnZGSE5AR47tw5IyMjo8HxmDt3btBqII+vkIe1WCEPM5w6dcrYvn27MX/+fGPYsGFGcnKyER0d3eA4REdHG8nJycawYcOMX/ziF8b27duNU6dOmV1+QDE+vmKF8UEeX7FCHmZgvmoa4+MroTo+/IFmH7Zz9uxZIzExMeQnwKYmvqSkJKOioiJodZDHeeRhLVbJw0rOnTtnlJWVGWVlZSH1u/B1jI/zrDI+yOM8q+RhJcxXjI9ajI/LQ7MPW8rNzTUiIiIaDPx+/foZ+/fvN7u8gNu/f3+DU5kkGREREUZubm7Q6yEP8rASq+UBa2F8WGt8kIe18oC1MD4YH5eLZh+2tXHjxkYnwPDwcGPq1KmO/AxPYWGhMXXq1AYXJ6md+DZu3GhabeRBHmazch6wFsaHtcYHeVgrD1gL44PxcTlo9mFrTU2AtbeePXsa8+bNM/Ly8ozTp0+bXe4lO336tJGXl2fMmzfP6NmzZ5PP0yoTH3mQRzDZLQ9YC+PDWuODPKyVB6yF8cH4aCmXYRiGABvbsmWLxo4dq+Li4oveNz4+XikpKerYsaNiYmLkdrsVFhYW+CKbwev1qqqqShUVFTp27JgKCgpUWlp60cclJSVp+fLlGjhwYBCqvDjyII9AcEoesBbGh7XGB3lYKw9YC+OD8dEiZv+1AfCHiooKY+7cuQ2+psTJN7fbbcydO9eSFychD2shD6BpjA9rIQ+gaYwPXCqafThKYWGhkZmZacTFxZk+OQXqFh8fb2RmZtriM1rkYS3kATSN8WEt5AE0jfGB5uI0fjhSTU2Ndu7cqZycHOXm5qq4uFh2/VV3uVxKSkrSoEGDlJ6ertTUVEVERJhd1iUhD2shD6BpjA9rIQ+gaYwPXAzNPkJCVVWVDh8+rIKCAhUUFKisrEyVlZWqrKw0uzQfUVFRioqKUmxsrFJSUpSSkqLOnTvL7XabXZpfkYe1kAfQNMaHtZAH0DTGB+qj2QcAAAAAwGGscVlGAAAAAADgNzT7AAAAAAA4DM0+AAAAAAAOQ7MPAAAAAIDD0OwDAAAAAOAwNPsAAAAAADgMzT4AAAAAAA5Dsw8AAAAAgMPQ7AMAAAAA4DA0+wAAAAAAOAzNPgAAAAAADkOzDwAAAACAw9DsAwAAAADgMDT7AAAAAAA4DM0+AAAAAAAOQ7MPAAAAAIDD0OwDAAAAAOAwNPsAAAAAADgMzT4AAAAAAA5Dsw8AAAAAgMPQ7AMAAAAA4DA0+wAAAAAAOAzNPgAAAAAADkOzDwAAAACAw9DsAwAAAADgMDT7AAAAAAA4DM0+AAAAAAAOQ7MPAAAAAIDD0OwDAAAAAOAwNPsAAAAAADgMzT4AAAAAAA5Dsw8AAAAAgMPQ7AMAAAAA4DA0+wAAAAAAOAzNPgAAAAAADkOzDwAAAACAw9DsAwAAAADgMDT7AAAAAAA4DM0+AAAAAAAOQ7MPAAAAAIDD0OwDAAAAAOAwNPsAAAAAADgMzT4AAAAAAA5Dsw8AAAAAgMPQ7AMAAAAA4DA0+wAAAAAAOAzNPgAAAAAADkOzDwAAAACAw9DsAwAAAADgMDT7AAAAAAA4DM0+AAAAAAAOQ7MPAAAAAIDD0OwDAAAAAOAwNPsAAAAAADgMzT4AAAAAAA5Dsw8AAAAAgMPQ7AMAAAAA4DA0+wAAAAAAOAzNPgAAAAAADkOzDwAAAACAw9DsAwAAAADgMDT7AAAAAAA4DM0+AAAAAAAOQ7MPAAAAAIDD0OwDAAAAAOAwNPsAAAAAADgMzT4AAAAAAA5Dsw8AAAAAgMPQ7AMAAAAA4DD/DwsTCEp83VslAAAAAElFTkSuQmCC\n"
+          },
+          "metadata": {}
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "<Figure size 180x180 with 1 Axes>"
+            ],
+            "image/png": "iVBORw0KGgoAAAANSUhEUgAAALwAAACuCAYAAACMV2c7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAK0ElEQVR4nO3bf0xV9R/H8dcVpxJwYa5msquwadzgBlygNK+i+SMIawi1cGrzsm4yN/8oWyzWam4tNcmEudlyI+6t/D1NdJa5iVetSRqbOplCc45ksekCB1eB5eW+v3/w5SzyIvc6rv14vx7b2dw595zPOec+OfecK5hERECkxJi/eweIHiYGT6oweFKFwZMqDJ5UYfCkCoMnVRg8qcLgSZWwgk9OTobVaoXdbjemS5cujfpO9fX1YeLEiWhqahoy/+bNm4iJicGNGzeGXbe0tBTV1dWjvk/B/Pzzz3A4HHjkkUdQVFQU8nonT56E3W4Pa6wHWQcAPB5PWPs2klOnTmHWrFmw2+1IS0vD7NmzjffD4/Ggubn5vuu/8cYb8Hq9o7Y/4Rob7gp79+59oBMfjgkTJmDFihVwu9349NNPjflfffUV8vLyMGnSpIiOH6rJkyejuroa58+fx9GjR//u3Yk4v9+P4uJiHD9+HNnZ2QCAlpYWxMTEABgIPiEhAU8++WTQ9fv7+1FTU/PQ9jeYUbmlaWlpgcViwbVr1wAAmzdvxgsvvIBAIACPx4MFCxagsLAQaWlpmDt3LlpbW0fcpsvlwo4dO3D37l1jntvthsvlQn19PWbNmoWsrCzYbDZ88cUXo3EYYbNYLJgxYwbGjx9/z7LGxkYsXrw4rO35/X7k5+fj6aefhs1mw/Lly3Hnzp0hy1euXImnnnoKOTk5uHDhgrHs66+/xsyZM5GdnY25c+fi4sWLD3xcw/H5fOju7sbjjz9uzLNarYiNjUVNTQ0aGxuxdu1a2O12fPfdd/B4PJg/fz5eeeUVpKen49y5c3juuedQV1cHYODT+PXXX4fD4UBKSgqcTid6e3uNsVatWoUZM2YgIyMDZWVl+OOPPwAAH330EVJTU427jF9//TX0g5AwJCUlSUpKimRmZhpTT0+PiIjs2rVLcnJyxOv1SnJysty8eVNERNxut4wbN04uX74sIiKbNm2S559/PqTxsrOz5eDBgyIi0tDQIImJieL3+6Wzs1P8fr+IiHR0dMjUqVOlra1NREScTqdUVVWNuO3m5uYhx/HnqbS0NJzTIm63W5YsWRLy671er2RmZt4zPxAIyO+//278e/Xq1bJx40ZjHQBy/PhxERHZu3evWK1WCQQC8uOPP0pBQYH09fWJiMjp06clLS1txH2rrKwc9hx88803Qdd58803JTY2VgoKCuTDDz+UlpYWY9m8efOM92tw7OjoaGlubg76GqfTKWlpadLd3S1+v19eeuklWb9+vYiIrFq1Sr788kvjXLhcLqmsrJTOzk6Jj483urtz54709vYOe67/atRuaZYtWwav14v8/HzU19fjscceM5Y5HA6kpqYCAMrKyvD++++jv78fUVFR9x3L5XKhtrYWRUVFqK2thdPpRFRUFDo6OuByufDLL79g7Nix6OjoQFNTEywWS8jHYbVah1wh/wlEBFVVVfj222/h9/vR1dUFh8NhLE9OTsbChQsBACUlJSgrK0NbWxsOHTqEixcvYubMmcZrOzs7javlcMrLy1FeXh7WPlZXV2Pt2rXwer2or69HVlYWjh07hjlz5gR9vcPhgNVqHXZ7JSUliIuLAzDwfm/duhXvvfce6urq0NDQgC1btgAAent7ERUVBbPZjCeeeAKvvfYa8vLy8OKLL4b1vocd/HD8fj+ampowceJE/Pbbb6OyzeXLl6OiogLXrl3Dvn370NjYCABYvXo1Fi9ejAMHDsBkMiE7Oxt9fX1hbbulpQVLly4NuiwrKwtut/ue+Q6HAz09PRg/fjzOnj0b/gGNYNeuXThx4gROnToFs9mMrVu34sSJE8O+3mQywWQyQUTgdDqxYcOGsMb75JNPsHPnzqDL1q1bh+Li4qDLkpKSUFpaitLSUsTExGDfvn3DBh8bGxvWPplMJgADP/wHDhxASkrKPa/56aefcObMGZw8eRLPPvssdu/ejdzc3JC2P2pfS1ZUVMBqteKHH37AO++8g6tXrxrLGhoajKf3mpoazJ8/f8SrOwAkJCSgsLAQS5cuhd1ux/Tp0wEAt27dQlJSEkwmE06fPv1A96uDV/hgU7DYAeDMmTO4cOFCSLGfO3fOuBqH6tatW3j00UdhNpvh8/ng8XiGLG9tbTW+4di/fz8mTZoEi8WCwsJC7NixA9evXwcABAIB4+JwP+Xl5cOeg2Cx3759G0ePHoX8/08oent7ceXKFUybNg0AYDab0dXVFdYx79+/H7dv30Z/fz/cbjcWLVoEACgqKsKmTZvg9/uNc3P16lX4fD7cuHEDubm5+OCDDzBnzhycP38+5PHCDn4wvsHJ6/XiyJEj+P7777Ft2zZMnz4dW7ZsQUlJiXHVdTgcePfdd2Gz2XD48GFs374dANDe3j7iNz4ulwuNjY1wuVzGvI8//hgVFRWw2+2ora0d8lH+Zw/y4BiOwYf1t99+G8eOHYPFYsFnn30GYCDO6OjoYde9fPkyLBaLMb366qtYuXIlenp6YLVaUVBQcM9Vy2azwePxID09HRs3bsTu3bthMpmQm5uLyspKFBcXIzMzEzabDXv27Bn14xURfP7557BarcjMzEROTg5ycnKwZs0aAAO3qxs2bDAeWkPxzDPPID8/H6mpqUhISMBbb70FAKiqqkJ0dDTsdjsyMjKwcOFCtLa2oqurCy+//DLS09ORkZGBu3fvwul0hnwMJpHI/sWTx+NBXV2d8WSuxZo1a7Bs2bJhP+pp4Fsau91uRP4wjNo9PA21bdu2v3sXKIiIX+GJ/kn4uzSkCoMnVRg8qRLxh9ZAIID29nbExcUZ/6lA9FciAp/Ph8TERIwZE7nrcMSDb29vx5QpUyI9DP1HtLW1hfWrAuGK+C3N4O9JEIUi0r1EPHjexlA4It0LH1pJFQZPqjB4UoXBkyoMnlRh8KQKgydVGDypwuBJFQZPqjB4UoXBkyoMnlRh8KQKgydVGDypwuBJFQZPqjB4UoXBkyoMnlRh8KQKgydVGDypwuBJFQZPqjB4UoXBkyoMnlRh8KQKgydVGDypwuBJFQZPqjB4UoXBkyoMnlRh8KQKgydVGDypwuBJFQZPqjB4UoXBkyoMnlRh8KQKgydVGDypwuBJFQZPqjB4UoXBkyoMnlRh8KQKgydVGDypwuBJFQZPqjB4UoXBkyoMnlRh8KQKgydVGDypwuBJFQZPqox9WAN1dXXBbDY/rOHoX6a7uxvx8fERH4dXeFKFwZMqDJ5UYfCkCoMnVRg8qcLgSRUGT6oweFKFwZMqDJ5UYfCkCoMnVRg8qcLgSRUGT6oweFKFwZMqDJ5UYfCkCoMnVRg8qcLgSRUGT6oweFKFwZMqDJ5UYfCkCoMnVRg8qcLgSRUGT6oweFKFwZMqDJ5UYfCkCoMnVRg8qcLgSRUGT6oweFKFwZMqDJ5UYfCkCoMnVRg8qcLgSRUGT6oweFKFwZMqDJ5UYfCkCoMnVRg8qcLgSRUGT6oweFKFwZMqDJ5UYfCkCoMnVRg8qcLgSRUGT6oweFKFwZMqDJ5UYfCkythIDyAiAIDu7u5ID0X/YoN9DPYSKREP3ufzAQCmTJkS6aHoP8Dn8yE+Pj5i2zdJhH+kAoEA2tvbERcXB5PJFMmh6F9MRODz+ZCYmIgxYyJ3px3x4In+SfjQSqoweFKFwZMqDJ5UYfCkCoMnVRg8qfI/WNwqGZ5sJhQAAAAASUVORK5CYII=\n"
+          },
+          "metadata": {}
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "<Figure size 1000x500 with 1 Axes>"
+            ],
+            "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/sAAAIHCAYAAADAX0zsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABrzUlEQVR4nO3de3gU9b3H8c/mwibhojUksQJNIEQrKsr11CoRK8KpRazEoFJt5RLuV6FcPErVqoSiBUVuAYFilVMiIGofGy5FodaWAg9CSW2TQCLY0wQCgklMsmHn/MGT6OYCAXZ3Lvt+Pc8+OpPszHfnk/nNftnZGZdhGIYAAAAAAIBjhJldAAAAAAAA8C+afQAAAAAAHIZmHwAAAAAAh6HZBwAAAADAYWj2AQAAAABwGJp9AAAAAAAchmYfAAAAAACHodkHAAAAAMBhaPYBAAAAAHAYmn0AAAAAAByGZh8AAAAAAIeh2QcAAAAAwGFo9gEAAAAAcBiafQAAAAAAHIZmHwAAAAAAh6HZBwAAAADAYWj2AQAAAABwGJp9AAAAAAAchmYfAAAAAACHodkHAAAAAMBhaPYBAAAAAHAYmn0AAAAAAByGZh8AAAAAAIeh2QcAAAAAwGFo9gEAAAAAcBiafQAAAAAAHIZmHwAAAAAAh6HZBwAAAADAYWj2AQAAAABwGJp9AAAAAAAchmYfAAAAAACHodkHAAAAAMBhaPYBAAAAAHAYmn0AAAAAAByGZh8AAAAAAIeh2QcAAAAAwGFo9gEAAAAAcBiafQAAAAAAHIZmHwAAAAAAh6HZBwAAAADAYWj2AQAAAABwGJp9AAAAAAAchmYfAAAAAACHodkHAAAAAMBhaPYBAAAAAHAYmn0AAAAAAByGZh8AAAAAAIeh2QcAAAAAwGFo9gEAAAAAcBiafQAAAAAAHIZmHwAAAAAAh6HZBwAAAADAYWj2AQAAAABwGJp9AAAAAAAchmYfAAAAAACHodkHAAAAAMBhaPYBAAAAAHAYmn0AAAAAAByGZh8AAAAAAIeh2QcAAAAAwGFo9gEAAAAAcBiafQAAAAAAHIZmHwAAAAAAh6HZBwAAAADAYWj2AQAAAABwGJp9AAAAAAAchmYfAAAAAACHodkHAAAAAMBhIswuAAiGqqoqHT58WHl5ecrPz9eJEydUWVmpqqoqs0vz4Xa7FRUVpbZt26pz585KSUlRp06d5Ha7zS7Nr8jDWsgDAADAeWj24Ug1NTX68MMPlZ2drZycHBUVFckwDLPLuiQul0uJiYkaMGCA0tPTdccddygiwl67LnlYC3kAAAA4n8uw6zs8oBH5+fl66aWXtGHDBh0/ftzscgIiLi5OaWlpmj59upKTk80u57zIw1rIAwAAIHTQ7MMRKioqlJmZqXnz5qm6utrscoLC7XZrxowZmjVrlmJiYswuxwd5kIfZrJwHAABAMNDsw/a2bNmiUaNGqaio6IK/m5CQoM6dO6tDhw6KiYlRixYtFBZmjetUer1eVVdXq6KiQkePHlV+fr6Ki4sv+LykpCQtX75c/fv3D0KVF0Ye5BEITskDAAAgWGj2YWubNm3SkCFDVFNT0+jPe/ToofT0dPXr108pKSlq06ZNkCu8PGfOnFFeXp62bdum9evXa9++fY3+XkREhNavX6/7778/yBX6Io9zyCM47JYHAABAMNHsw7aaamTCw8M1ceJETZw4UZ06dTKpusAoKCjQq6++qkWLFuns2bM+PzO7oSEP8jCblfMAAAAINpp92NKWLVv0ox/9qEEjk5qaqsWLF+vGG280qbLg+Pvf/67x48dr586dPvMjIiL0+9//PuinLJMHeViJ1fIAAAAwA80+bKeiokJdunRp8B3kjIwMLVu2zDLfMQ40r9erMWPGaMWKFT7zk5KSlJubq+jo6KDUQR7nkIe1WCUPAAAAs4TGuz44SmZmZsg3MpIUFhamZcuWKSMjw2d+YWGhMjMzg1YHeZxDHtZilTwAAADMwif7sJX8/HzdeOONqqqqqpuXmpqqHTt2hFQj801er1d9+/bVrl276ua53W4dOnQo4PcZJ4+GyMNazMwDAADATKH57g+29dJLL/k0MuHh4Vq8eHHINjLSuU8wFy9erPDw8Lp5VVVVevHFFwO+bvJoiDysxcw8AAAAzBS67wBhOzU1NdqwYYPPvIkTJzr+YmPNcdNNN2nixIk+8zZu3NjkLdf8gTyaRh7WYkYeAAAAZqPZh218+OGHOn78uM+8+m/gQ9mECRN8pktKShpcjdyfyOP8yMNagp0HAACA2Wj2YRvZ2dk+0z169HDcfcIvR3Jysrp37+4zr/428yfyOD/ysJZg5wEAAGA2mn3YRk5Ojs90enq6SZVYV/1tUn+b+RN5XBh5WEsw8wAAADAbzT5soaqqqsHtxPr162dSNdZ19913+0wXFRX5XLDNX8ijecjDWoKVBwAAgBXQ7MMWDh8+rPp3ibz22mtNqsa6UlJSfKa9Xq+OHDni9/WQR/OQh7UEKw8AAAAroNmHLeTl5flMJyQkqHXr1iZVY11t2rRRfHy8z7z6284fyKN5yMNagpUHAACAFdDswxby8/N9pjt37mxSJdZX/9PLQDQz5NF85GEtwcgDAADACmj2YQsnTpzwme7QoYNJlVhf+/btfaZLS0v9vg7yaD7ysJZg5AEAAGAFNPuwhcrKSp/pmJgYkyqxvvrbpv628wfyaD7ysJZg5AEAAGAFNPuwhfpXzG7RooVJlVif2+32mQ5EM0MezUce1hKMPAAAAKyAZh+2FBbGn25TzNg25NE08rAWtg0AAAgVvOsBAAAAAMBhaPYBAAAAAHAYmn0AAAAAABwmwuwCAABA4Hk8Hn355ZeSpNatWysyMtLkigAAQCDxyT4AAA61f/9+TZo0Sb169VKrVq0UGxur2NhYtWrVSr169dKkSZP0ySefmF0mAAAIAJp9AAAc5sCBA0pNTVW3bt20aNEi7dmzR9XV1XU/r66u1p49e7Ro0SLdcsstSk1N1YEDB0ysGAAA+BvNPgAADmEYhjIzM9WzZ0/t2rWr2c/btWuXevbsqczMTBmGEcAKAQBAsNDsAwDgAIZhaOLEiZo9e7Y8Hs9FP9/j8Wj27NmaOHEiDT8AAA4QEs3+3/72N91zzz268sor1bJlS33ve9/T+vXrzS4LNrVo0SK5XC799Kc/bfTnp06dUrt27RQTE6N//etfQa7O2QoLC+VyuXwekZGRateunYYMGaI9e/ZIkhYuXCiXy6Vhw4Y1uawPPvhAYWFh6tWrl2pqaoL1EhyFPKxl3rx5Wrx48WUvZ/HixZo3b54fKgIAAGZy/NX4d+zYoQEDBigqKkoPPfSQWrdurQ0bNujBBx/U0aNHNW3aNLNLhM1MmDBBGzdu1Ouvv660tDTdd999Pj8fP368/v3vf+vll1/Wtddea1KVzpacnKxHHnlEklReXq69e/cqOztbb7/9trZt26bJkydr8+bNWrNmjQYPHqx7773X5/llZWUaNmyY3G631q5dq4gIxw+FAUUe5jtw4IDmzJnjt+XNmTNH99xzj7p27eq3ZQIAgOBy9Cf7NTU1ysjIUFhYmHbu3KmsrCy99NJL+uSTT3TttdfqiSeeUFFRkdllwmZcLpdWr16tVq1aadSoUTpx4kTdz9566y2tW7dOd955pyZOnGhilc7WuXNnPf3003r66ac1f/58/fGPf9TcuXPl8Xj01FNPyeVyac2aNWrTpo0yMjJUWlrq8/xp06apsLBQc+fO1fXXX2/Sq3AO8jDfhAkTLunU/aZ4PB5NmDDBb8sDAADB5+hm/49//KMKCgo0dOhQ3XLLLXXzr7jiCj3xxBOqrq7Wb37zG/MKhG0lJSXppZdeUklJicaOHStJKi4u1tixY9W6dWutXr1aLpfL5CpDy4gRIyRJe/fulSQlJiZq4cKFdbnUysnJUVZWlu68805NnjzZlFpDAXkEz/79+y/qYnzNtWvXLm7LBwCAjTm62f/ggw8kSf3792/wswEDBkiSPvzww2CWBAcZNWqUBgwYUPdpfu2n/AsXLlRiYqLZ5YWsb54CPmzYMA0aNEjZ2dlat26dvvjiC40cOVJt2rThH2SChDwCb9WqVbZcNgAACCxHfzEyLy9PkpSSktLgZ1dffbVatWpV9zvApXjttdd04403atiwYaqqqtLAgQM1fPhws8sKSStXrpQk3X777T7zs7Ky9Oc//1njx49Xamqqjh07plWrVvEPMgFGHsHz8ccf23LZAAAgsBzd7J8+fVrSudP2G9OmTZu637ELwzBUUVFhdhlB58/vovpTu3btNGHCBD333HOKjIxUVlaW2SU14PF4VF5e7vdlmik/P19PP/20pK8vCLdjxw4lJCRo/vz5Pr+bkJCg5cuXKy0tTZs3b9agQYPOe1X4QCMP5+cRTB6PRwcOHAjY8g8cOKDTp09z0UQAgCQpJiaGM/HsxHCwu+++25Bk5OXlNfrza665xmjTpk2Qq7o8ZWVlhqSQf4wbN87sKAzDMIzi4mIjLi6urq6srCyzSzLGjRvn2DyOHDnSZA1XX311k/u6YRhG7969DUlGbm5uUGqtRR6NC6U8ePDgwYMHD6c8ysrKgnrcxuVx9Hf2az/Rb+rT+zNnzjT5qT/QHGPGjNHx48eVmZmptm3batq0afrss8/MLsvxBgwYIMMwZBiGSkpKNH/+fJWUlGjQoEEqKytr9DnR0dE+/4X/kAcAAID1OPq8vNrv6ufl5alHjx4+P/vPf/6jsrIy9e7d24zSLllMTEyTb56dbOrUqVqxYoXZZfh4/fXXtWnTJg0cOFAzZ85UUlKSHnroIY0YMUJbt241u7w6GRkZWrBggV+XaaU84uLiNH36dJ0+fVrPPfecnnzySS1cuNDssppEHtYSiDyCyePxKCEhQdXV1QFZvtvtVnFxMafxAwAknetFYB+OPnrfcccdmjt3rrZs2aKHHnrI52c5OTl1v2MnLpdLLVu2NLuMoIuMjDS7BB+ff/65Jk2apKuuuqrue/oPPvig3nrrLb311ltavny5Ro8ebXKV50RGRvr9b8ZqeUjSE088oVWrVmnJkiWaMmWKkpKSzC6pUeRhLYHII9i6du2qPXv2BGzZnAEHAIA9Ofo0/rvuukudOnXSm2++qf3799fNP336tF544QW1aNFCP/3pT80rELY1YsQIffHFF3r11Vf17W9/u27+kiVLFBcXp5///OcqKioyscLQEx0drZkzZ8rj8eiXv/yl2eWEPPIInltvvdWWywYAAIHl6GY/IiJCK1eulNfrVWpqqkaNGqVp06bp5ptv1r/+9S+98MILlv20Cda1fPly5eTk6IEHHtDDDz/s87O4uDgtXbpUX375pYYPHy7DMEyqMjSNGjVK11xzjdauXauCggKzywl55BEcgbzdJ7cSBQDAvhzd7EvSnXfeqT/96U+67bbb9Lvf/U5Lly5VQkKC/vd//1fTpk0zuzzYzJEjRzR9+nTFx8dr6dKljf5OWlqaHn74Yf3xj39s8ncQGFFRUZo9e7Zqamr0zDPPmF1OyCOP4LjlllvUp08fvy+3T58+uvnmm/2+XAAAEByO/s5+rd69e+v99983uww4QMeOHfXll19e8PfefPNNvfnmm0GoKLQkJSVd8GyJCRMmaMKECQ3mf/DBBwGqKnSRh3W8+uqr6tmzpzwej1+WFxkZqcWLF/tlWQAAwByO/2QfAACn69q1q5599lm/Le/ZZ5/VTTfd5LflAQCA4KPZBwDAAWbOnKnx48df9nImTJigmTNn+qEiAABgJpp9AAAcwOVyadGiRZo7d+4l3Y4xMjJSc+fO1SuvvCKXyxWACgEAQDDR7AMA4BAul0uzZs3Snj17LuqifX369NHevXs1a9YsGn0AABwiJC7QBwBAKOnatat27typTz75RKtWrdLHH3+sTz75RNXV1ZIkt9utrl276tZbb9Xw4cO56j4AAA5Esw8AgEPdfPPNevnllyVJp0+f1pVXXilJKi4u1hVXXGFiZQAAINA4jR8AgBAQERHR6P8DAABnotkHAAAAAMBhaPYBAAAAAHAYmn0AAAAAAByGZh+25PV6zS7BsszYNuTRNPKwFrYNAAAIFTT7sAW32+0zXXv7KDRUVVXlMx0VFeX3dZBH85GHtQQjDwAAACug2Yct1H9DXlFRYVIl1ld/2wSimSGP5iMPawlGHgAAAFZAsw9baNu2rc/00aNHTarE+o4dO+YzHRsb6/d1kEfzkYe1BCMPAAAAK6DZhy107tzZZzo/P9+kSqwvLy/PZzolJcXv6yCP5iMPawlGHgAAAFZAsw9bqP+GvLi4WGfOnDGpGus6c+aMSkpKfOYFopkhj+YhD2sJVh4AAABWQLMPW+jUqZNcLpfPvPqf0KHhNgkLC1PHjh39vh7yaB7ysJZg5QEAAGAFNPuwBbfbrcTERJ9527ZtM6ka69q6davPdGJiYoMrtfsDeTQPeVhLsPIAAACwApp92MaAAQN8prOzs02qxLrqb5P628yfyOPCyMNagpkHAACA2Wj2YRvp6ek+03v37tXhw4dNqsZ6CgoKtG/fPp959beZP5HH+ZGHtQQ7DwAAALPR7MM27rjjDsXFxfnMW7RokUnVWM+rr77qMx0fH6/U1NSArY88zo88rCXYeQAAAJiNZh+2ERERobS0NJ95ixYt0t///neTKrKOgwcPNmjsBg8erIiIiICtkzyaRh7WYkYeAAAAZnMZhmGYXQTQXAUFBbrhhhtUVVVVNy81NVU7duxQWFho/tuV1+tV3759tWvXrrp5brdbhw4dUnJyckDXTR4NkYe1mJmH1ZSXl6tVq1aSpLKyMrVs2dLkigAAQCCF5rs/2FZycrJmzJjhM2/nzp0aM2aMvF6vSVWZx+v1asyYMT6NjCTNnDkzKI0MefgiD2sxOw8AAAAz8ck+bKeiokJdunRRUVGRz/yMjAwtW7YsZD7BrG1kVqxY4TM/KSlJubm5io6ODkod5HEOeViLVfKwEj7ZBwAgtITGuz44SkxMjLKyshp833bFihXq27evDh48aFJlwXPw4EH17du3QSMTERGh5cuXB7WRIQ/ysBor5QEAAGAWmn3YUv/+/bV+/foGDc2uXbvUrVs3TZ06VQUFBSZVFzgFBQWaOnWqunXr1uDU5IiICK1fv179+/cPel3kQR5WYNU8AAAAzMBp/LC1TZs2aciQIaqpqWn05927d1d6erruvvtupaSkqE2bNkGu8PKcOXNGeXl52rp1q7KzsxvcJ7xWbSNz//33B7lCX+RxDnkEh93yMBun8QMAEFpo9mF7W7Zs0ejRo1VYWHjB342Pj1dKSorat2+vmJgYud1uy3yH2ev1qqqqShUVFTp27Jjy8vJUUlJyweclJSVp+fLllvnEkjzIIxCckoeZaPYBAAgtNPtwhK+++kqZmZmaN2+ez23HnMztdmvmzJmaNWuW5b6DTB7kYTYr52EWmn0AAEILzT4cpaCgQC+++KI2bNig48ePm11OQMTHx2vw4MGaPn265W8fRh7WQh6hjWYfAIDQQrMPR6qpqdHOnTuVnZ2tnJwcFRYWyq5/6i6XS0lJSRowYIDS09OVmpra4MJrVkce1kIeoYlmHwCA0EKzj5BQVVWlI0eOKC8vT3l5eSotLVVlZaUqKyvNLs1HVFSUoqKiFBsbq5SUFKWkpKhjx45yu91ml+ZX5GEt5BEaaPYBAAgtNPsAAIQAmn0AAEKLNS6zDAAAAAAA/IZmHwAAAAAAh6HZBwAAAADAYWj2AQAAAABwGJp9AAAAAAAchmYfAAAAAACHodkHAAAAAMBhaPYBAAAAAHAYmn0AAAAAAByGZh8AAAAAAIeh2QcAAAAAwGFo9gEAAAAAcBiafQAAAAAAHIZmHwAAAAAAh6HZBwAAAADAYWj2AQAAAABwGJp9AAAAAAAchmYfAAAAAACHodkHAAAAAMBhIswuAAiGqqoqHT58WHl5ecrPz9eJEydUWVmpqqoqs0vz4Xa7FRUVpbZt26pz585KSUlRp06d5Ha7zS7Nr8gDgF0wXlkLeQBA89Hsw5Fqamr04YcfKjs7Wzk5OSoqKpJhGGaXdUlcLpcSExM1YMAApaen64477lBEhL12XfIAYBeMV9ZCHgBw6VyGXUdMoBH5+fl66aWXtGHDBh0/ftzscgIiLi5OaWlpmj59upKTk80u57zIA7CO8vJytWrVSpJUVlamli1bmlyRtTBeWQt5AMDlo9mHI1RUVCgzM1Pz5s1TdXW12eUEhdvt1owZMzRr1izFxMSYXY4P8rBWHoBEs98UxitrjVfkYa08ANgbzT5sb8uWLRo1apSKioou+LsJCQnq3LmzOnTooJiYGLVo0UJhYda4TqXX61V1dbUqKip09OhR5efnq7i4+ILPS0pK0vLly9W/f/8gVHlh5GGtPIBaNPsNMV5Za7wiD2vlAcD+aPZha5s2bdKQIUNUU1PT6M979Oih9PR09evXTykpKWrTpk2QK7w8Z86cUV5enrZt26b169dr3759jf5eRESE1q9fr/vvvz/IFfoij3OskgfwTTT7vhivzrHKeEUe51glDwAOYQA2tXHjRiMiIsKQ5PMIDw83pkyZYhQUFJhdot/l5+cbU6ZMMcLDwxu87oiICGPjxo2m1UYe1soDqK+srKzu77OsrMzsckzFeGWt8Yo8rJUHAOeg2Yct5eTkNPrGIDU11Th48KDZ5QXcwYMHjdTU1EbfIOTk5AS9HvKwVh5AY2j2z2G8stZ4RR7WygOAs3AaP2ynoqJCXbp0afCdvoyMDC1btswy39kLNK/XqzFjxmjFihU+85OSkpSbm6vo6Oig1EEe51glD6ApX375Zd2pz2fOnFHr1q1Nrij4GK/Oscp4RR7nWCUPAM4TGqMoHCUzMzPk3xhIUlhYmJYtW6aMjAyf+YWFhcrMzAxaHeRxjlXyAE6dOqXt27dr3rx5GjJkiJKTkxUdHe3zHec2bdooOjpaycnJGjJkiH71q19p+/btOnXqlImVBx7j1TlWGa/I4xyr5AHAefhkH7aSn5+vG2+8UVVVVXXzUlNTtWPHjpB6Y/BNXq9Xffv21a5du+rmud1uHTp0KOD37SWPhszMA6Hrn//8p5YuXap3331Xhw8fvqxlderUSffee6/Gjh2r6667zk8Vmo/xqiGOH9bC8QOAv4XmaArbeumll3zeGISHh2vx4sUh+8ZAOveJwOLFixUeHl43r6qqSi+++GLA100eDZmZB0JLTU2NNm7cqH79+um73/2uXn755bpGv2PHjnrggQeUmZmprVu36vDhwyooKKh7bkFBgQ4fPqytW7cqMzNTDzzwgDp27ChJOnz4sF5++WV997vfVb9+/bRx48Ymr5BuJ4xXDXH8sBaOHwD8ztxLBgDN5/F4jLi4OJ8L2EyZMsXssixjypQpPtsmPj7e8Hg8AVsfeZxfsPNA6Pjqq6+M559/3mjXrl3d31dYWJgxaNAg45133jFKS0sbfV5zLtBXWlpqvPPOO8agQYOMsLCwut9v166d8cILLxiVlZWBfGkBw3h1fhw/rIXjBwB/4TR+2Mb27dvVr18/n3kFBQXq1KmTSRVZS0FBgTp37uwzb/v27frBD34QkPWRx/kFOw+Eht27d2vYsGHKzc2VJMXFxSkjI0OjRo1SYmLieZ9bXl6uVq1aSZLKysrUsmXL8/5+UVGRsrKytGLFCh0/flyS1KVLF61Zs0a9evXyw6sJHsar8+P4YS0cPwD4S+ieKwXbyc7O9pnu0aMHbwy+ITk5Wd27d/eZV3+b+RN5nF+w84CzVVZWatasWbr11luVm5urhIQErV27VkePHtXzzz9/wUb/UiQmJur555/X0aNHtXbtWiUkJCg3N1ff+973NHv2bFVWVvp9nYHCeHV+HD+sheMHAH+h2Ydt5OTk+Eynp6ebVIl11d8m9beZP5HHhQUzDzjX7t271b17d82bN09er1dDhw7VoUOH9Oijj8rtdgd8/W63W48++qgOHTqkoUOHyuv1KjMzUz169NDu3bsDvn5/YLy6MI4f1sLxA4A/0OzDFqqqqhrcnqf+KYCQ7r77bp/poqIinwsg+Qt5NE+w8oBzvfXWW7r99tv1j3/8QwkJCdq0aZPeeOMNxcbGBr2W2NhYvfHGG9q0aZPi4+OVm5ur22+/XRs2bAh6LReD8ap5OH5YC8cPAP5Asw9bOHz4sOpfXuLaa681qRrrSklJ8Zn2er06cuSI39dDHs0TrDzgTKtWrdKDDz4oj8ej++67T4cOHdKPf/xjs8vSj3/8Y+Xm5uq+++6Tx+PRkCFDtHr1arPLahLjVfNw/LAWjh8A/IFmH7aQl5fnM52QkKDWrVubVI11tWnTRvHx8T7z6m87fyCP5glWHnCe1atXa8SIEfJ6vRoxYoQ2bNhgyqf5TYmNjdWGDRvqahw+fLhlG37Gq+bh+GEtHD8A+APNPmwhPz/fZ7r+VWrxtfqfBgTizQF5NF8w8oCzbNiwQSNHjpQkTZ48WStWrPC577ZVhIeHa8WKFZo8ebIkaeTIkdq4caPJVTXEeNV8HD+sheMHgMtFsw9bOHHihM90hw4dTKrE+tq3b+8zXVpa6vd1kEfzBSMPOMfu3bv18MMPy+v1auTIkVqwYIFcLpfZZTXJ5XJpwYIFdZ/wP/TQQ/rb3/5mdlk+GK+aj+OHtXD8AHC5aPZhC/Vv8RQTE2NSJdZXf9sE4vZY5NF8wcgDzlBZWanHHnus7jv6y5Yts3SjX8vlcmn58uV13+F/7LHHLPV3znjVfBw/rIXjB4DLRbMPW6h/BdoWLVqYVIn11b8VVyDeHJBH8wUjDzjDM888U3fV/ddee82Sp+43JTw8XCtXrqy7Sv+zzz5rdkl1GK+aj+OHtXD8AHC5aPZhS2Fh/Ok2xYxtQx5NY9ugOXbv3q1f/epXkqRly5ZZ6mJ8zdW2bVstW7ZMkjRv3jzLnc5fi32yaRw/rIVtA+ByMYoAAGCiyspKDRs2TF6vV0OHDrXE7fUu1f333193zYHHHnuM+4IDAGAimn0AAEy0YMEC5ebmKiEhQa+88orZ5Vy2RYsWKSEhQbm5ufr1r39tdjkAAIQsmn0AAExSU1OjxYsXS5Lmz59vy9P364uNja37SsKSJUtUU1NjckUAAIQmmn0AAEzyzjvv6PPPP1d8fLyGDBlidjl+8+CDDyouLk7Hjh3Tu+++a3Y5AGzG4/Ho5MmTOnnypDwej9nlALZFsw8AgEmWLFkiSRo5cmSDK2/bmdvt1siRIyV9/RoB4Hz279+vSZMmqVevXmrVqpViY2MVGxurVq1aqVevXpo0aZI++eQTs8sEbIVmHwAAE3z66afavn27wsLCNGrUKLPL8bvRo0fL5XJp27Zt+uc//2l2OQAs6sCBA0pNTVW3bt20aNEi7dmzR9XV1XU/r66u1p49e7Ro0SLdcsstSk1N1YEDB0ysGLAPmn0AAExQe5u6gQMHKjEx0eRq/C8xMVEDBw6UJC1dutTkagBYjWEYyszMVM+ePbVr165mP2/Xrl3q2bOnMjMzZRhGACsE7I9mHwAAE9R+l732dHcnqn1t7733nsmVALASwzA0ceJEzZ49+5K+k+/xeDR79mxNnDiRhh84D8c3+7/97W81evRo9ezZU263Wy6XS2vWrDG7LNhEYWGhXC6XzyMyMlLt2rXTkCFDtGfPHknSwoUL5XK5NGzYsCaX9cEHHygsLEy9evXi6tSXiDzgFKdOndLhw4clSbfddpvJ1QRO7WsrKCjQF198YW4xQcZ4ZS3kYS3z5s2ruxPJ5Vi8eLHmzZvnh4oAZ4owu4BAe/LJJ1VUVKS2bdvq29/+toqKiswuCTaUnJysRx55RJJUXl6uvXv3Kjs7W2+//ba2bdumyZMna/PmzVqzZo0GDx6se++91+f5ZWVlGjZsmNxut9auXauICMfvegFFHrC7ffv2SZI6duyoq666yuRqAic2NlZJSUkqLCzUvn379IMf/MDskoKO8cpayMN8Bw4c0Jw5c/y2vDlz5uiee+5R165d/bZMwCkc/8n+ypUrVVhYqOPHj2vMmDFmlwOb6ty5s55++mk9/fTTmj9/vv74xz9q7ty58ng8euqpp+rOGGnTpo0yMjJUWlrq8/xp06apsLBQc+fO1fXXX2/Sq3AO8oDd1X6K2KNHD5MrCbyePXtK+vo1hxrGK2shD/NNmDDBr7fT83g8mjBhgt+WBziJ45v9fv36OfLCRzDfiBEjJEl79+6VdO5iVAsXLlRxcbHGjh1b93s5OTnKysrSnXfeqcmTJ5tSayggD9hJ7d9pbSPsZLX/oFH7msF4ZTXkETz79++/qIvxNdeuXbu4LR/QCMc3+0CgffMUvmHDhmnQoEHKzs7WunXr9MUXX2jkyJFq06aNVq9eLZfLZWKloYE8YAe1TUUofLJPs980xitrIY/AW7VqlS2XDdgVXzQCLtHKlSslSbfffrvP/KysLP35z3/W+PHjlZqaqmPHjmnVqlWcYRJg5AE7+fe//y3p3PeHna5z586Svn7NYLyyGvIIno8//tiWywbsimbfZgzDUEVFhdllBJ0/v9t1KfLz8/X0009L+vqCPjt27FBCQoLmz5/v87sJCQlavny50tLStHnzZg0aNOi8V/UNNI/Ho/Lycr8v00zkATvzer2qrKyUdG5MD9bfwzfXE8y/wdrbYn311Vf68ssvFRYW3JMKGa8uHccP5+cRTB6PRwcOHAjY8g8cOKDTp09z0cQAi4mJ4cwWOzFCyNy5cw1JxurVq80u5ZKVlZUZkkL+MW7cuKBs7yNHjjRZw9VXX23k5eU1+dzevXsbkozc3Nyg1Fpr3Lhx5NGIUMqDBw8eTT8Yr5rG8aNxoZQHDx4XepSVlQV1P8Dl4Tv7QDMMGDBAhmHIMAyVlJRo/vz5Kikp0aBBg1RWVtboc6Kjo33+C/8hDwB2wXhlLeQBIJRwnovNxMTENHkwcrKpU6dqxYoVZpchSYqLi9P06dN1+vRpPffcc3ryySe1cOFCs8tqUkZGhhYsWODXZZLHpQtEHrAXr9erNm3aSJIKCgqUkJAQlPWWl5fXrau4uFgtW7YMynqLi4vrrk1w5syZoJ/Gz3h16Th+WIvdjx8ej0cJCQmqrq4OyPLdbreKi4s5jT/AYmJizC4BF4G9wWZcLlfQ3qBZSWRkpNklNPDEE09o1apVWrJkiaZMmaKkpCSzS2pUZGSk3/9myOPSBSIP2E9UVJQqKytNG9NbtmwZtPXWfrczOjparVu3Dso6v4nx6tJx/LAWJxw/unbtqj179gRs2VdccUVAlg3YFafxA5coOjpaM2fOlMfj0S9/+Uuzywl55AE7ueaaaySd+2Tf6fLz8yV9/ZrBeGU15BE8t956qy2XDdiV45v9lStX6rHHHtNjjz2m7OzsBvNqb7cCXIpRo0bpmmuu0dq1a0PiTbvVkQfsIpTuPV/7GmtfM85hvLIW8giO4cOH23LZgF05vtn/05/+pN/85jf6zW9+o3379kmSPvroo7p5f/rTn0yuEHYWFRWl2bNnq6amRs8884zZ5YQ88oBd1Da+gTqd1Upo9hvHeGUt5BEct9xyi/r06eP35fbp00c333yz35cL2J3jv7O/Zs0arVmzxuwyYFNJSUl194huyoQJEzRhwoQG8z/44IMAVRW6yANO0bNnT0mh8cl+7T9o1L7mUMF4ZS3kYR2vvvqqevbsKY/H45flRUZGavHixX5ZFuA0jv9kHwAAq+nevbsk6ciRIzp58qTJ1QROaWmpCgsLJX39mgGEtq5du+rZZ5/12/KeffZZ3XTTTX5bHuAkNPsAAATZt771LXXq1EnSua+WOVXta0tOTtaVV15pbjEALGPmzJkaP378ZS9nwoQJmjlzph8qApyJZh8AABPce++9kuToC8XWvraBAweaXAkAK3G5XFq0aJHmzp17SbdjjIyM1Ny5c/XKK6/U3d4TQEM0+wAAmGDs2LGSpPfee09FRUUmV+N/hYWFeu+99yR9/VoBoJbL5dKsWbO0Z8+ei7poX58+fbR3717NmjWLRh+4AJp9AABMcN111+muu+6S1+tVVlaW2eX4XVZWlgzDUL9+/XTdddeZXQ4Ai+ratat27typ/fv3a9KkSerVq5datGhR93O3261evXpp0qRJ2r9/v3bu3Ml39IFmcvzV+AEAsKpx48Zp+/btWrlypebMmSO32212SX5RVVVVdwr/uHHjTK4GgB3cfPPNevnllyVJp0+frrvOR3Fxsa644goTKwPsi0/2AQAwyaBBg9SuXTuVlJRo/fr1ZpfjN7/73e90/PhxtW/fvu7aBADQXBEREY3+P4CLQ7MPAIBJIiIi6q5I/fOf/1ylpaUmV3T5SktLNWPGDEnnPtXnjToAAOag2QcAwESPP/64unTpouLiYk2aNMnsci7bxIkTVVxcrC5duujxxx83uxwAAEIWzT4AACZyu91avXq1wsLC9Oabb+rtt982u6RLtmnTJq1bt07h4eFas2aNY65BAACAHdHsw5a8Xq/ZJViWGduGPJrGtkFz9O7du+7U9zFjxtjydP4TJ05ozJgxkqQZM2aoV69eJlfUOPbJpnH8sBa2DYDLRbMPW6j/6VB1dbVJlVhfVVWVz3RUVJTf10EezReMPOAMv/jFL+pO5x8xYoTOnj1rdknNdvbsWY0cOVIlJSXq0qWLfvGLX5hdUh3Gq+bj+GEtHD8AXC6afdhC/QNcRUWFSZVYX/1tE4g3B+TRfMHIA84QFRWl1atXKzIyUps3b9bo0aNlGIbZZV2QYRgaPXq0Nm/erBYtWlju9H3Gq+bj+GEtHD8AXC6afdhC27ZtfaaPHj1qUiXWd+zYMZ/p2NhYv6+DPJovGHnAOXr37q1169YpLCxMr732mqZOnWrpht8wDE2dOlWvvfaawsLCtG7dOsudvs941XwcP6yF4weAy0WzD1vo3Lmzz3R+fr5JlVhfXl6ez3RKSorf10EezReMPOAsaWlpWrlypSTp5ZdfVkZGhiVP6a89df/ll1+WJL322msaPHiwyVU1xHjVfBw/rIXjB4DLRbMPW6h/gCsuLtaZM2dMqsa6zpw5o5KSEp95gXhzQB7NE6w84DzDhg3TqlWr6j7hT0tLs9RF+06cOKG0tLS6GlevXq3HHnvM7LIaxXjVPBw/rIXjBwB/oNmHLXTq1Ekul8tnXv1/8UbDbRIWFqaOHTv6fT3k0TzBygPONGzYMK1fv77uO/xdunTRpk2bzC5LmzZt0g033KDNmzcrMjJS2dnZlm30Jcar5uL4YS0cPwD4A80+bMHtdisxMdFn3rZt20yqxrq2bt3qM52YmBiQC2WRR/MEKw84V1pamv70pz/p+uuvV0lJiQYPHqyf/OQnpnzKX1paqqFDh2rw4MF1V93/6KOPLHnq/jcxXjUPxw9r4fgBwB9o9mEbAwYM8JnOzs42qRLrqr9N6m8zfyKPCwtmHnCu3r17a9++fZo1a5bCwsL05ptv6oYbbtDatWsb3JorEKqqqrR27VrdcMMNdRcPnD17tvbu3Wu5i/E1hfHqwjh+WAvHDwD+QLMP20hPT/eZ3rt3rw4fPmxSNdZTUFCgffv2+cyrv838iTzOL9h5wNmioqI0d+5c/eUvf1GXLl1UXFysn/3sZ+rQoYOeeOIJFRUV+X2dRUVFeuKJJ9ShQwf97Gc/U3Fxsbp06aK//OUveuGFF2x1GzDGq/Pj+GEtHD8A+AvNPmzjjjvuUFxcnM+8RYsWmVSN9bz66qs+0/Hx8UpNTQ3Y+sjj/IKdB0JDr169tHfvXr3wwgtq166djh8/rrlz56pTp04aNGiQ3nnnHZ08efKSl3/y5Em98847GjRokDp27Ki5c+fq+PHjat++vV544QXt27fPNp/mfxPj1flx/LAWjh8A/MVlWPkGvkA9Y8eO1bJly+qmw8PDtX//ft14440mVmW+gwcPqlu3bj635xozZoyWLl0a0PWSR+PMygOhpaamRu+++66WLFnS4DvPSUlJ6tmzp3r06KEePXqoc+fOMgxDycnJks59cuhyuZSfn6+9e/dq79692rNnjwoLC32W069fP40bN0733nuvIiIigvXSAoLxqnEcP6yF48c55eXlatWqlSSprKxMLVu2NLkiwJ5o9mErBQUFuuGGG3y+p5qamqodO3YoLCw0T1Txer3q27evdu3aVTfP7Xbr0KFDdW/sA4U8GjIzD4Suf/7zn1q6dKnee+89FRQUXNaykpOTNXDgQI0dO1bXXXednyo0H+NVQxw/rIXjx9do9gH/CM3RFLaVnJysGTNm+MzbuXOnxowZI6/Xa1JV5vF6vRozZozPGwNJmjlzZlDeGJCHL7PzQOi67rrrtHDhQuXn5+vUqVPavn275s2bpyFDhig5OVnR0dENnhMdHa3k5GQNGTJEv/rVr7R9+3adOnVK+fn5WrhwoaMafYnxqj6zxyvy8GV2HgCciU/2YTsVFRXq0qVLgwtSZWRkaNmyZSHziUDtG4MVK1b4zE9KSlJubm6jb+4DgTzOsUoeQFO8Xq+++OILSdKVV14ZMvvmNzFenWOV8Yo8zrFKHlbCJ/uAf4TGKApHiYmJUVZWVoPvj65YsUJ9+/bVwYMHTaoseA4ePKi+ffs2eGMQERGh5cuXB/WNAXlYKw+gKWFhYbrqqqt01VVXhUwTVR/jlbXGK/KwVh4AHMgAbGrjxo1GRESEIcnnER4ebkyZMsXIz883u0S/y8/PN6ZMmWKEh4c3eN0RERHGxo0bTauNPKyVB4CmMV5Za7wiD2vlYQVlZWV126OsrMzscgDb4jR+2NqmTZs0ZMgQ1dTUNPrz7t27Kz09XXfffbdSUlLUpk2bIFd4ec6cOaO8vDxt3bpV2dnZDe67WysiIkLr16/X/fffH+QKfZHHOVbJA0DTGK/Oscp4RR7nWCUPs3EaP+AfNPuwvS1btmj06NENbhnVmPj4eKWkpKh9+/aKiYmR2+22zOmsXq9XVVVVqqio0LFjx5SXl6eSkpILPi8pKUnLly9X//79g1DlhZGHtfIA0DTGK2uNV+RhrTzMRLMP+AfNPhzhq6++UmZmpubNm+dzGx8nc7vdmjlzpmbNmmW57/SRh7XyANA0xitrjVfkYa08zEKzD/gHzT4cpaCgQC+++KI2bNig48ePm11OQMTHx2vw4MGaPn265W/HQx4A7ILxylrII7TR7AP+QbMPR6qpqdHOnTuVnZ2tnJwcFRYWyq5/6i6XS0lJSRowYIDS09OVmpra4MrFVkceAOyC8cpayCM00ewD/kGzj5BQVVWlI0eOKC8vT3l5eSotLVVlZaUqKyvNLs1HVFSUoqKiFBsbq5SUFKWkpKhjx45yu91ml+ZX5AHALhivrIU8QgPNPuAfNPsAAAAALINmH/APa1y2FAAAAAAA+A3NPgAAAAAADkOzDwAAAACAw9DsAwAAAADgMDT7AAAAAAA4DM0+AAAAAAAOQ7MPAAAAAIDD0OwDAAAAAOAwNPsAAAAAADgMzT4AAAAAAA5Dsw8AAAAAgMPQ7AMAAAAA4DA0+wAAAAAAOAzNPgAAAAAADkOzDwAAAACAw9DsAwAAAADgMDT7AAAAAAA4DM0+AAAAAAAOQ7MPAAAAAIDDRJhdABAMVVVVOnz4sPLy8pSfn68TJ06osrJSVVVVZpfmw+12KyoqSm3btlXnzp2VkpKiTp06ye12m12aX5GHtZAHAACA89Dsw5Fqamr04YcfKjs7Wzk5OSoqKpJhGGaXdUlcLpcSExM1YMAApaen64477lBEhL12XfKwFvIAAABwPpdh13d4QCPy8/P10ksvacOGDTp+/LjZ5QREXFyc0tLSNH36dCUnJ5tdznmRh7WQBwDADsrLy9WqVStJUllZmVq2bGlyRYA90ezDESoqKpSZmal58+apurra7HKCwu12a8aMGZo1a5ZiYmLMLscHeZCH2aycBwDg/Gj2Af+g2YftbdmyRaNGjVJRUdEFfzchIUGdO3dWhw4dFBMToxYtWigszBrXqfR6vaqurlZFRYWOHj2q/Px8FRcXX/B5SUlJWr58ufr37x+EKi+MPMgjEJySBwDgwmj2Af+g2Yetbdq0SUOGDFFNTU2jP+/Ro4fS09PVr18/paSkqE2bNkGu8PKcOXNGeXl52rZtm9avX699+/Y1+nsRERFav3697r///iBX6Is8ziGP4LBbHgCA5qHZB/yDZh+21VQjEx4erokTJ2rixInq1KmTSdUFRkFBgV599VUtWrRIZ8+e9fmZ2Q0NeZCH2aycBwCg+Wj2Af+g2YctbdmyRT/60Y8aNDKpqalavHixbrzxRpMqC46///3vGj9+vHbu3OkzPyIiQr///e+DfsoyeZCHlVgtDwDAxaHZB/yDZh+2U1FRoS5dujT4DnJGRoaWLVtmme8YB5rX69WYMWO0YsUKn/lJSUnKzc1VdHR0UOogj3PIw1qskgcA4OLR7AP+ERrv+uAomZmZId/ISFJYWJiWLVumjIwMn/mFhYXKzMwMWh3kcQ55WItV8gAAADALn+zDVvLz83XjjTeqqqqqbl5qaqp27NgRUo3MN3m9XvXt21e7du2qm+d2u3Xo0KGA32ecPBoiD2sxMw8AwKXhk33AP0Lz3R9s66WXXvJpZMLDw7V48eKQbWSkc59gLl68WOHh4XXzqqqq9OKLLwZ83eTREHlYi5l5AAAAmCl03wHCdmpqarRhwwafeRMnTnT8xcaa46abbtLEiRN95m3cuLHJW675A3k0jTysxYw8AAAAzEazD9v48MMPdfz4cZ959d/Ah7IJEyb4TJeUlDS4Grk/kcf5kYe1BDsPAAAAs9Hswzays7N9pnv06OG4+4RfjuTkZHXv3t1nXv1t5k/kcX7kYS3BzgMAAMBsNPuwjZycHJ/p9PR0kyqxrvrbpP428yfyuDDysJZg5gEAAGA2mn3YQlVVVYPbifXr18+kaqzr7rvv9pkuKiryuWCbv5BH85CHtQQrDwAAACug2YctHD58WPXvEnnttdeaVI11paSk+Ex7vV4dOXLE7+shj+YhD2sJVh4AAABWQLMPW8jLy/OZTkhIUOvWrU2qxrratGmj+Ph4n3n1t50/kEfzkIe1BCsPAAAAK6DZhy3k5+f7THfu3NmkSqyv/qeXgWhmyKP5yMNagpEHAACAFdDswxZOnDjhM92hQweTKrG+9u3b+0yXlpb6fR3k0XzkYS3ByAMAAMAKaPZhC5WVlT7TMTExJlViffW3Tf1t5w/k0XzkYS3ByAMAAMAKaPZhC/WvmN2iRQuTKrE+t9vtMx2IZoY8mo88rCUYeQAAAFgBzT5sKSyMP92mmLFtyKNp5GEtbBsAABAqeNcDAAAAAIDD0OwDAAAAAOAwNPsAAAAAADhMhNkFAACAwPN4PPryyy8lSa1bt1ZkZKTJFQEAgEDik30AABxq//79mjRpknr16qVWrVopNjZWsbGxatWqlXr16qVJkybpk08+MbtMAAAQADT7AAA4zIEDB5Samqpu3bpp0aJF2rNnj6qrq+t+Xl1drT179mjRokW65ZZblJqaqgMHDphYMQAA8DeafQAAHMIwDGVmZqpnz57atWtXs5+3a9cu9ezZU5mZmTIMI4AVAgCAYKHZBwDAAQzD0MSJEzV79mx5PJ6Lfr7H49Hs2bM1ceJEGn4AABzA0c3+559/roULF6p///76zne+oxYtWujqq69WWlqa/vrXv5pdHmxq0aJFcrlc+ulPf9roz0+dOqV27dopJiZG//rXv4JcnbMVFhbK5XL5PCIjI9WuXTsNGTJEe/bskSQtXLhQLpdLw4YNa3JZH3zwgcLCwtSrVy/V1NQE6yU4CnlYy7x587R48eLLXs7ixYs1b948P1QEAADM5Oir8S9atEjz5s1TcnKy+vfvr7i4OOXl5entt9/W22+/rTfffFMPPvig2WXCZiZMmKCNGzfq9ddfV1pamu677z6fn48fP17//ve/9fLLL+vaa681qUpnS05O1iOPPCJJKi8v1969e5Wdna23335b27Zt0+TJk7V582atWbNGgwcP1r333uvz/LKyMg0bNkxut1tr165VRISjh8KAIw/zHThwQHPmzPHb8ubMmaN77rlHXbt29dsyAQBAcDn6HVXv3r31wQcf6I477vCZv2vXLt11110aO3asfvzjH8vtdptUIezI5XJp9erVuummmzRq1Cjddtttatu2rSTprbfe0rp163TnnXdq4sSJJlfqXJ07d9bTTz/tMy8zM1OzZ8/WU089pQ8//FBr1qxR165dlZGRoUOHDik2Nrbud6dNm6bCwkItWLBA119/fZCrdx7yMN+ECRMu6dT9png8Hk2YMEE7d+702zIBAEBwOfo0/sGDBzdo9CWpT58+uvPOO3Xq1CkdPHjQhMpgd0lJSXrppZdUUlKisWPHSpKKi4s1duxYtW7dWqtXr5bL5TK5ytAyYsQISdLevXslSYmJiVq4cGFdLrVycnKUlZWlO++8U5MnTzal1lBAHsGzf//+i7oYX3Pt2rWL2/IBAGBjjm72zycyMlKSOF0Ul2zUqFEaMGBA3af5o0aN0okTJ7Rw4UIlJiaaXV7I+uY+PWzYMA0aNEjZ2dlat26dvvjiC40cOVJt2rThH2SChDwCb9WqVbZcNgAACKyQ7HQ/++wzbdu2Td/+9rd10003mV0ObOy1117TjTfeqGHDhqmqqkoDBw7U8OHDzS4rJK1cuVKSdPvtt/vMz8rK0p///GeNHz9eqampOnbsmFatWsU/yAQYeQTPxx9/bMtlAwCAwAq5Zt/j8ejRRx9VVVWV5s2bp/DwcLNLuiiGYaiiosLsMoLOn99F9ad27dppwoQJeu655xQZGamsrCyzS2rA4/GovLzc78s0U35+ft13xGsvCLdjxw4lJCRo/vz5Pr+bkJCg5cuXKy0tTZs3b9agQYPOe1X4QCMP5+cRTB6PRwcOHAjY8g8cOKDTp09zFhyAoPrmuGznMdqJYmJiOBPPTowQcvbsWWPo0KGGJCMjI8Psci5JWVmZISnkH+PGjTM7CsMwDKO4uNiIi4urqysrK8vskoxx48Y5No8jR440WcPVV19t5OXlNfnc3r17G5KM3NzcoNRaizwaF0p58ODBgwcPHk55lJWVBfW4jcsTMt/Z93q9Gj58uN5880098sgjWrZsmdklwQHGjBmj48ePKzMzU23bttW0adP02WefmV2W4w0YMECGYcgwDJWUlGj+/PkqKSnRoEGDVFZW1uhzoqOjff4L/yEPAAAA6wmJ8/K8Xq+GDRumtWvX6uGHH9aaNWsUFmbPf+eIiYlp8s2zk02dOlUrVqwwuwwfr7/+ujZt2qSBAwdq5syZSkpK0kMPPaQRI0Zo69atZpdXJyMjQwsWLPDrMq2UR1xcnKZPn67Tp0/rueee05NPPqmFCxeaXVaTyMNaApFHMHk8HiUkJKi6ujogy3e73SouLuY0fgBBVV5eroSEBEnn7nbUsmVLkytCrZiYGLNLwEVw/NH7m43+gw8+qNdff91239P/JpfLFZIDXu3dE6zi888/16RJk3TVVVfVfU//wQcf1FtvvaW33npLy5cv1+jRo02u8pzIyEi//81YLQ9JeuKJJ7Rq1SotWbJEU6ZMUVJSktklNYo8rCUQeQRb165dtWfPnoAt+4orrgjIsgGgOVq2bGn7cRowiz0/3m6m2lP3165dq/T0dP32t7+1daMP6xgxYoS++OILvfrqq/r2t79dN3/JkiWKi4vTz3/+cxUVFZlYYeiJjo7WzJkz5fF49Mtf/tLsckIeeQTPrbfeastlAwCAwHJ0s//ss8/qN7/5jVq1aqVrr71Wzz33nJ5++mmfx/79+80uEzazfPly5eTk6IEHHtDDDz/s87O4uDgtXbpUX375pYYPHy7DMEyqMjSNGjVK11xzjdauXauCggKzywl55BEcgbzdJ7cSBQDAvhx9Gn9hYaEkqaysTM8//3yjv5OUlKRbbrkleEXB1o4cOaLp06crPj5eS5cubfR30tLS9PDDD2vdunVaunSpxo0bF+QqQ1dUVJRmz56tiRMn6plnntHatWvNLimkkUdw3HLLLerTp4927drl1+X26dNHN998s1+XCQAAgsfRzf6aNWu0Zs0as8uAg3Ts2FFffvnlBX/vzTff1JtvvhmEikJLUlLSBc+WmDBhgiZMmNBg/gcffBCgqkIXeVjHq6++qp49e8rj8fhleZGRkVq8eLFflgUAAMzh6NP4AQAIBV27dtWzzz7rt+U9++yzuummm/y2PAAAEHw0+wAAOMDMmTM1fvz4y17OhAkTNHPmTD9UBAAAzESzDwCAA7hcLi1atEhz5869pNsxRkZGau7cuXrllVfkcrkCUCEAAAgmmn0AABzC5XJp1qxZ2rNnj/r06dPs5/Xp00d79+7VrFmzaPQBAHAIR1+gDwCAUNS1a1ft3LlTn3zyiVatWqWPP/5Yn3zyiaqrqyVJbrdbXbt21a233qrhw4dz1X0AAByIZh8AAIe6+eab9fLLL0uSTp8+rSuvvFKSVFxcrCuuuMLEygAAQKBxGj8AACEgIiKi0f8HAADORLMPAAAAAIDD0OwDAAAAAOAwNPsAAAAAADgMzT5syev1ml2CZZmxbcijaeRhLWwbAAAQKmj2YQtut9tnuvb2UWioqqrKZzoqKsrv6yCP5iMPawlGHgAAAFZAsw9bqP+GvKKiwqRKrK/+tglEM0MezUce1hKMPAAAAKyAZh+20LZtW5/po0ePmlSJ9R07dsxnOjY21u/rII/mIw9rCUYeAAAAVkCzD1vo3Lmzz3R+fr5JlVhfXl6ez3RKSorf10EezUce1hKMPAAAAKyAZh+2UP8NeXFxsc6cOWNSNdZ15swZlZSU+MwLRDNDHs1DHtYSrDwAAACsgGYfttCpUye5XC6fefU/oUPDbRIWFqaOHTv6fT3k0TzkYS3BygMAAMAKaPZhC263W4mJiT7ztm3bZlI11rV161af6cTExAZXavcH8mge8rCWYOUBAABgBTT7sI0BAwb4TGdnZ5tUiXXV3yb1t5k/kceFkYe1BDMPAAAAs9HswzbS09N9pvfu3avDhw+bVI31FBQUaN++fT7z6m8zfyKP8yMPawl2HgAAAGaj2Ydt3HHHHYqLi/OZt2jRIpOqsZ5XX33VZzo+Pl6pqakBWx95nB95WEuw8wAAADAbzT5sIyIiQmlpaT7zFi1apL///e8mVWQdBw8ebNDYDR48WBEREQFbJ3k0jTysxYw8AAAAzOYyDMMwuwiguQoKCnTDDTeoqqqqbl5qaqp27NihsLDQ/Lcrr9ervn37ateuXXXz3G63Dh06pOTk5ICumzwaIg9rMTMPqykvL1erVq0kSWVlZWrZsqXJFQFA4xivAP8IzXd/sK3k5GTNmDHDZ97OnTs1ZswYeb1ek6oyj9fr1ZgxY3waGUmaOXNmUBoZ8vBFHtZidh4AAABm4pN92E5FRYW6dOmioqIin/kZGRlatmxZyHyCWdvIrFixwmd+UlKScnNzFR0dHZQ6yOMc8rAWq+RhJXxSBsAuGK8A/wiNd31wlJiYGGVlZTX4vu2KFSvUt29fHTx40KTKgufgwYPq27dvg0YmIiJCy5cvD2ojQx7kYTVWygMAAMAsNPuwpf79+2v9+vUNGppdu3apW7dumjp1qgoKCkyqLnAKCgo0depUdevWrcGpyREREVq/fr369+8f9LrIgzyswKp5AAAAmIHT+GFrmzZt0pAhQ1RTU9Poz7t376709HTdfffdSklJUZs2bYJc4eU5c+aM8vLytHXrVmVnZze4T3it2kbm/vvvD3KFvsjjHPIIDrvlYTZOiwVgF4xXgH/Q7MP2tmzZotGjR6uwsPCCvxsfH6+UlBS1b99eMTExcrvdlvkOs9frVVVVlSoqKnTs2DHl5eWppKTkgs9LSkrS8uXLLfOJJXmQRyA4JQ8z8eYZgF0wXgH+QbMPR/jqq6+UmZmpefPm+dx2zMncbrdmzpypWbNmWe47yORBHmazch5m4c0zALtgvAL8g2YfjlJQUKAXX3xRGzZs0PHjx80uJyDi4+M1ePBgTZ8+3fK3DyMPayGP0MabZwB2wXgF+AfNPhyppqZGO3fuVHZ2tnJyclRYWCi7/qm7XC4lJSVpwIABSk9PV2pqaoMLr1kdeVgLeYQm3jwDsAvGK8A/aPYREqqqqnTkyBHl5eUpLy9PpaWlqqysVGVlpdml+YiKilJUVJRiY2OVkpKilJQUdezYUW632+zS/Io8rIU8QgNvngHYBeMV4B80+wAAhADePAOwC8YrwD+scZllAAAAAADgNzT7AAAAAAA4DM0+AAAAAAAOQ7MPAAAAAIDD0OwDAAAAAOAwNPsAAAAAADgMzT4AAAAAAA5Dsw8AAAAAgMPQ7AMAAAAA4DA0+wAAAAAAOAzNPgAAAAAADkOzDwAAAACAw9DsAwAAAADgMDT7AAAAAAA4DM0+AAAAAAAOQ7MPAAAAAIDD0OwDAAAAAOAwNPsAAAAAADgMzT4AAAAAAA4TYXYBQDBUVVXp8OHDysvLU35+vk6cOKHKykpVVVWZXZoPt9utqKgotW3bVp07d1ZKSoo6deokt9ttdml+RR4A7ILxylrIA2ga+wfqo9mHI9XU1OjDDz9Udna2cnJyVFRUJMMwzC7rkrhcLiUmJmrAgAFKT0/XHXfcoYgIe+265AHALhivrIU8gKaxf+BCXIZd/yKARuTn5+ull17Shg0bdPz4cbPLCYi4uDilpaVp+vTpSk5ONruc8yIPwDrKy8vVqlUrSVJZWZlatmxpckXWwnhlLeQR2hivzo/9A81mAA5QXl5uPPXUU0aLFi0MSSHxcLvdxlNPPWWUl5ebvfkbIA/AesrKyur+XsvKyswuxzIYr6yFPGAYjFdNYf/AxeKTfdjeli1bNGrUKBUVFV3wdxMSEtS5c2d16NBBMTExatGihcLCrHGdSq/Xq+rqalVUVOjo0aPKz89XcXHxBZ+XlJSk5cuXq3///kGo8sLIw1p5ALX4pKwhxitrjVfkYa08zMR41ZDT9o+DBw/q//7v/+TxeNg/Asnsf20ALsfGjRuNiIiIJv81sEePHkZmZqaxZ88e4/Tp02aXe9FOnz5t7Nmzx8jMzDS6d+/e5OuMiIgwNm7caHa55GGxPIBv4pMyX4xX1hqvyMNaeZiN8cqXk/aPs2fPGjNnzjQk1f2ts38EDs0+bKupgS88PNyYMmWKUVBQYHaJfpefn29MmTLFCA8Pt9wASB7WygOojzfPX2O8stZ4RR7WysMKGK++5qT9o6KiwnjggQfqXsP//d//Nfp77B/+Q7MPW8rJyWl04EtNTTUOHjxodnkBd/DgQSM1NbXRATAnJyfo9ZCHtfIAGsOb53MYr6w1XpGHtfKwCsarc5y0f/znP/8xevfuXfcakpKSLvgc9o/LR7MP2ykvLzcSExMb7PgZGRnG2bNnzS4vaM6ePWtkZGQ02A5JSUlGRUVF0Oogj3OskgfQlDNnztT9XZ45c8bsckzBeHWOVcYr8jjHKnlYCeOVs/aPv//97w1ey8MPP9ys57J/XB6afdjOU0895YiBzx+aGgDnzJkTtBrI42tWyAM4efKksW3bNiMzM9NIT083OnXqZERFRTX4u4yKijI6depkpKenG/PmzTO2bdtmnDx50uzyA4rx6mtWGK/I42tWyMMMjFdNc8r+sXXrVqNNmzYNXssrr7zS7GWE6v7hDzT7sJW8vDzD7XY3OJXJbgOfP509e9bo06ePzzZxu91Gfn5+wNdNHg2ZmQdC16effmpMnjzZ6NSpU4M3Qxf76NSpkzF58mTj008/Nftl+RXjVUMcP6wlVI4fjFcX5pT9Y8WKFU1eWPBvf/vbRS0rVPYPf6PZh62MGTPGZycPDw+33XeWAuHAgQMNLmIyZsyYgK+XPBpnVh4ILR6Px9iwYYNx1113NXgT1bFjR+OBBx4wMjMzja1btxqHDx82CgoK6n5eUFBgHD582Ni6dauRmZlpPPDAA0bHjh0bLOeuu+4yNmzYYHg8HrNf7mVjvGocxw9rcerxg/Hq4th9/zh79qwxY8aMJv+RJjo62qiurr7o5Tp1/wgkmn3YhsfjMeLi4nx28ClTpphdlmVMmTLFZ9vEx8cH9IBHHucX7DwQOr766ivj+eefN9q1a1f39xUWFmYMGjTIeOedd4zS0tJGn9ecC16VlpYa77zzjjFo0CAjLCys7vfbtWtnvPDCC0ZlZWUgX1rAMF6dH8cPa3HS8YPx6uLZff+oqKgw0tLSzntGRp8+fS55+U7aP4KBZh+2sW3btgaDhZ1uNxJo+fn5DbbP9u3bA7Y+8ji/YOeB0PDXv/7V6NKlS93fVFxcnPHEE08YhYWFF3zuxV7durCw0HjiiSd83nR26dLF2L17tz9eSlAxXp0fxw9rccrxg/Hq0th5/6h/xf2mHjNmzLjkdThl/wiWMAE2kZ2d7TPdo0cPderUyaRqrCc5OVndu3f3mVd/m/kTeZxfsPOAs1VWVmrWrFm69dZblZubq4SEBK1du1ZHjx7V888/r8TERL+vMzExUc8//7yOHj2qtWvXKiEhQbm5ufre976n2bNnq7Ky0u/rDBTGq/Pj+GEtdj9+MF5dHrvuH4cOHdJ//dd/affu3T7zw8Iatpu33nrrJa/H7vtHsNHswzZycnJ8ptPT002qxLrqb5P628yfyOPCgpkHnGv37t3q3r275s2bJ6/Xq6FDh+rQoUN69NFH5Xa7A75+t9utRx99VIcOHdLQoUPl9XqVmZmpHj16NHhTZ1WMVxfG8cNa7Hr8YLy6fHbcP7Zu3arvf//7Kioq8pl/xRVX6MUXX2zw+9/73vcua3123T/MQLMPW6iqqmowgPTr18+kaqzr7rvv9pkuKipSVVWV39dDHs0TrDzgXG+99ZZuv/12/eMf/1BCQoI2bdqkN954Q7GxsUGvJTY2Vm+88YY2bdqk+Ph45ebm6vbbb9eGDRuCXsvFYLxqHo4f1mLH4wfj1eWz4/6xYsUK/fCHP9SZM2d85iclJenPf/6zYmJiGsy/+uqrL2uddtw/zEKzD1s4fPiwDMPwmXfttdeaVI11paSk+Ex7vV4dOXLE7+shj+YJVh5wplWrVunBBx+Ux+PRfffdp0OHDunHP/6x2WXpxz/+sXJzc3XffffJ4/FoyJAhWr16tdllNYnxqnk4fliL3Y4fjFf+Yaf9w+v1aubMmRo1apTOnj3r87P/+q//0l/+8hd16dJFH3/8sc/PLucU/lp22z/MRLMPW8jLy/OZTkhIUOvWrU2qxrratGmj+Ph4n3n1t50/kEfzBCsPOM/q1as1YsQIeb1ejRgxQhs2bDDl07GmxMbGasOGDXU1Dh8+3LJvoBmvmofjh7XY6fjBeOU/dtk/KioqNGTIEP3qV79q9Oevv/66EhISJCkgzb6d9g+z0ezDFvLz832mO3fubFIl1lf/XzsDMfiRR/MFIw84y4YNGzRy5EhJ0uTJk7VixQqFh4ebXFVD4eHhWrFihSZPnixJGjlypDZu3GhyVQ0xXjUfxw9rscPxg/HKv+yyf5w8eVJfffVVkz+/9tpr9cMf/lAnTpzQv/71L5+f+aPZl+yxf1gBzT5s4cSJEz7THTp0MKkS62vfvr3PdGlpqd/XQR7NF4w84By7d+/Www8/LK/Xq5EjR2rBggVyuVxml9Ukl8ulBQsW1H1i9tBDD+lvf/ub2WX5YLxqPo4f1mL14wfjlf/ZZf9o37693nvvPW3evFlJSUmN/s4f/vAHxcXF+cyLjo7WzTff7Lcavslq+4dV0OzDFurfMqX+xT7wtfrbJhC3myGP5gtGHnCGyspKPfbYY3XfeV22bJml3zjXcrlcWr58ed13Yh977DFL/Z0zXjUfxw9rsfLxg/EqMKy8f5w9e9bnu/kul0uDBg1Sbm6u5syZ06xl9OzZU5GRkX6px8r7h5XQ7MMW6l9hs0WLFiZVYn31b20TiMGPPJovGHnAGZ555pm6q1i/9tprljwVtinh4eFauXJl3VWvn332WbNLqsN41XwcP6zFyscPxqvAMHv/qK6u1t/+9jetXLlSEydOVGpqqmJjY9WiRQtFREQoIiJCLVq0UGxsrFJTUzVx4kS98cYb+s53vtOs5fvrFH7J2vuHlUSYXQBwKcLC+HeqppixbcijaWwbNMfu3bvrLnS0bNkyS13cqrnatm2rZcuWafDgwZo3b57uv/9+9erVy+yyGmCfbBrHD2ux6rZhvAqeYP0N7N+/X6tWrdIbb7yhkydPnvd3PR6PTp48qV27dmnXrl0XtR5/NvtW3T+shq0EAICJKisrNWzYMHm9Xg0dOtQSt6u6VPfff3/dd3gfe+wx7nsMOAzjlXPU1NRo+fLl6tatm7p166ZFixZdsNG/GD/60Y8afPr+ve99z2/LR/PQ7AMAYKIFCxYoNzdXCQkJeuWVV8wu57ItWrRICQkJys3N1a9//WuzywHgR4xXzvDxxx+rZ8+eGjNmjPbv3x+Qdfz+979Xx44d6z7NT0pK0tVXXx2QdaFpNPsAAJikpqZGixcvliTNnz/flqfD1hcbG1t3iu+SJUtUU1NjckUA/IHxyv5KS0uVkZGh73//+/rkk0+a/L1rr71W6enpeu655/Tuu+9q3759OnTokA4dOqR9+/bp3Xff1XPPPdfgk/v6Pv30U3388ce6++67df/99/v75aAZ+M4+AAAmeeedd/T5558rPj5eQ4YMMbscv3nwwQc1ffp0HTt2TO+++y5v8gAHYLyyt/3792vgwIH6/PPPG/15hw4d9Nhjj+lnP/uZkpOTz7usbt26KTY2Vk8++WSz1r1161bl5ubqpz/9qW655ZaLLR2XgU/2AQAwyZIlSyRJI0eOvOAnJHbidrs1cuRISV+/RgD2xnhlX3/4wx90++23N9ro33jjjXr//fd15MgRPfvssxds9CXJMAx9//vfbzB/wYIFev/993XjjTc2+Nnnn3+u22+/XX/4wx8u7UXgktDsAwBggk8//VTbt29XWFiYRo0aZXY5fjd69Gi5XC5t27ZN//znP80uB8BlYLyyr3fffVeDBg1SeXm5z/yWLVvqxRdf1L59+/Tf//3fF3X7xP/5n/9pdP6UKVP03//939q3b59efPFFtWzZ0ufn5eXluu+++/Tuu+9e/AvBJaHZBwDABMuWLZMkDRw4UImJiSZX43+JiYkaOHCgJGnp0qUmVwPgcjBe2dNHH32ktLQ0eTwen/l9+vTRP/7xD02bNk2RkZEXtcwvv/xSc+fObTD/H//4R93/R0ZGatq0afrHP/6h22+/3ef3qqurlZaWpo8++uii1otLQ7MPAIAJaj/ZqD191IlqX9t7771nciUALgfjlf2cOnVKQ4cObdDoP/zww9q6das6dOhwSctt7DT/bt266bvf/W6D+R06dNC2bdv08MMP+8z3eDwaOnSovvjii0uqAc3n6Ga/srJSjz/+uFJTU3XNNdcoKipKV199tW677TatXr26wR8/UF9hYaFcLpfPIzIyUu3atdOQIUO0Z88eSdLChQvlcrk0bNiwJpf1wQcfKCwsTL169XL81V4DhTzgFKdOndLhw4clSbfddpvJ1QRO7WsrKCgIuTd1jFfWQh6XjvHKfgzDUEZGhj777DOf+cOHD9frr79+yddc+Pjjj3X8+PEG8//yl780+Ry3263XX39dw4cP95n/2WefKSMjQ4ZhXFItaB5HX42/rKxMS5cuVe/evfWjH/1IcXFxOnXqlN5//30NHz5c//u//6v3339fYWGO/jcP+EFycrIeeeQRSee+b7R3715lZ2fr7bff1rZt2zR58mRt3rxZa9as0eDBg3Xvvff6PL+srEzDhg2T2+3W2rVrFRHh6F0v4MgDdrdv3z5JUseOHXXVVVeZXE3gxMbGKikpSYWFhdq3b59+8IMfmF1S0DFeWQt5XDzGK/tZsWKFNmzY4DOvb9++ysrKuqjv5n9TUxfle/nll9WiRYvzPjc8PFxZWVkqKCjQhx9+WDf/rbfe0sqVK5WRkXFJNeHCHD1CXXXVVTp9+nSDP8Camhrdfffd2rJli95//3396Ec/MqlC2EXnzp319NNP+8zLzMzU7Nmz9dRTT+nDDz/UmjVr1LVrV2VkZOjQoUM+95+dNm2aCgsLtWDBAl1//fVBrt55yAN2V/spYo8ePUyuJPB69uypwsJC7dmzx9Zvni8V45W1kMfFY7yyl4qKCs2ePdtn3lVXXaXf/va3l9zoS01flG/SpEnNen54eLh++9vf6uabb9bJkyfr5s+ePVs/+clPFBMTc8m1oWmO/kg7LCys0X9pioiIqLuHZn5+frDLgkOMGDFCkrR3715J5y7usnDhQhUXF2vs2LF1v5eTk6OsrCzdeeedmjx5sim1hgLygJ3U/p327NnT5EoCr7ZBqH3NYLyyGvI4P8Yre1mzZo1PMy1Jq1evVrt27S55mc25KF9ztG/fXqtWrfKZV1paqt/85jeXXBvOz9HNflO8Xm/dPR4buw8kcDG+eQrfsGHDNGjQIGVnZ2vdunX64osvNHLkSLVp00arV6+Wy+UysdLQQB6wg9o3kqHwSZkT3jwHCuOVtZBH4xiv7OPs2bP69a9/7TPvhz/8oQYNGnRZy72Yi/JdyH333acf/vCHPvN+/etf6+zZs5dcH5rm6NP4a1VXV+uFF16QYRgqLS3V9u3b9emnn2rYsGG66667zC4PNrVy5UpJanBLkaysLP35z3/W+PHjlZqaqmPHjmnVqlWOvFWNlZAH7OTf//63pMbfQDlN586dJX39msF4ZTXkcX6MV/axefNmFRQU+MybPn36ZS3zUi7KdyHTpk3T+++/Xzedn5+vd955p+7Ma/hPyDT7zzzzTN20y+XS9OnTGz0dxeoMw1BFRYXZZQSd2XdOyM/Pr/uOX+0FfXbs2KGEhATNnz/f53cTEhK0fPlypaWlafPmzRo0aNB5r+obaB6PR+Xl5X5fppnIA3bm9XpVWVkp6dyYHqy/h2+uJ5h/g7VXWv7qq6/05ZdfBv2iuIxXl47jh/PzuBDGK3uNV+vXr/eZ7tatm+68885LXt7lXJTvfH7wgx/olltu0f79++vm/e53v6PZDwQjhJw9e9Y4evSosWTJEuPKK680brvtNuP06dNml3VRysrKDEkh/xg3blxQtveRI0earOHqq6828vLymnxu7969DUlGbm5uUGqtNW7cOPJoRCjlwYMHj6YfjFdN4/jRuFDKg4e1Hhe7fyQmJvo8f+nSpZf1Nzh79uxG6/KHJUuW+CwzKSnpop5ff/8I1lhiNyH1nf2wsDC1b99eY8eOVVZWlj766CM9//zzZpcFGxgwYIAMw5BhGCopKdH8+fNVUlKiQYMGqaysrNHnREdH+/wX/kMeAOyC8cpayANO9Z///EdFRUU+8+p/NeVi+OuifE2pX1thYaGKi4v9smx8LSRO429M//79JUkffPCBuYVcpJiYmCYPRk42depUrVixwuwyJElxcXGaPn26Tp8+reeee05PPvmkFi5caHZZTcrIyNCCBQv8ukzyuHSByAP24vV61aZNG0lSQUGBEhISgrLe8vLyunUVFxerZcuWQVlvcXFx3Xd9z5w5E/TTYhmvLh3HD2sx4/jBeGWf8eqvf/2rz3Tr1q0v6/aQ/rwoX2O6dOmiVq1a+fQ1f/3rXy/7YoLwFbLNfu2FNyIjI02u5OK4XK6gDXhWYsWcnnjiCa1atUpLlizRlClTlJSUZHZJjYqMjPT73wx5XLpA5AH7iYqKUmVlpWljesuWLYO23tqrlkdHR6t169ZBWec3MV5dOo4f1mLW8YPxKnguZ//45JNPfKZ79eql8PDwS1pWIC7KV194eLh69eqlHTt21M3bv38/zb6fOfo0/tzc3EYvZldRUaHHH39cknTPPfcEuyw4RHR0tGbOnCmPx6Nf/vKXZpcT8sgDdnLNNddIUoOrJjtRfn6+pK9fMxivrIY8zo/xyh6+/PJLn+kOHTpc0nKMAF2UrzH1awzFs5cDzdHN/vr163X11Vfrnnvu0bhx4zRr1iw9+uij+s53vqM//OEP6tOnj6ZOnWp2mbCxUaNG6ZprrtHatWtD4iBodeQBu7D7vZwvRijdo/tiMF5ZC3k0jfHKHm6++WY99NBDuu+++9S/f3/ddNNNl7Sc//mf/2l0/qRJky6nvEZ17dpV/fv313333aeHHnpIN998s9/XEeoc3ewPHDhQDz30kD777DOtW7dOL730kt5//3117dpVy5cv1x//+EcutoLLEhUVpdmzZ6umpsbn9o4wB3nALmrfSO7Zs8fkSgLPzm+eA4nxylrIo2mMV/bwyCOPaN26dXr77beVk5OjadOmXfQyAn1RvvqmTZumnJwcvf3221q3bp1+8pOfBGQ9oczR39nv2bOnevbsaXYZsLGkpKS6e642ZcKECZowYUKD+Xa7+KMdkAecovbYFAqflNU2CKF2PGa8shbyuHSMV6Ej0BflQ/A5+pN9AACsqHv37pKkI0eO6OTJkyZXEzilpaUqLCyU9PVrBmAvjFehIRgX5UPw0ewDABBk3/rWt9SpUydJ0kcffWRyNYFT+9qSk5N15ZVXmlsMgEvCeOV8wbwoH4KLZh8AABPce++9kqSVK1eaXEng1L62gQMHmlwJgMvBeOVswbwoH4KLZh8AABOMHTtWkvTee++pqKjI5Gr8r7CwUO+9956kr18rAHtivHKuYF+UD8FFsw8AgAmuu+463XXXXfJ6vcrKyjK7HL/LysqSYRjq16+frrvuOrPLAXAZGK+ci4vyORvNPgAAJhk3bpykc6ePVlVVmVyN/1RVVdWdElv7GgHYG+OV83BRPuej2QcAwCSDBg1Su3btVFJSovXr15tdjt/87ne/0/Hjx9W+ffu67/oCsDfGK2fhonyhgWYfAACTREREaPz48ZKkn//85yotLTW5ostXWlqqGTNmSDr3KVlERITJFQHwB8YrZ+GifKGBZh8AABM9/vjj6tKli4qLix3xJmvixIkqLi5Wly5d9Pjjj5tdDgA/YrxyBi7KFzpo9gEAMJHb7dbq1asVFhamN998U2+//bbZJV2yTZs2ad26dQoPD9eaNWvkdrvNLgmAHzFeOQMX5QsdNPuwJa/Xa3YJlmXGtiGPprFt0By9e/euO5V0zJgxtjw99sSJExozZowkacaMGerVq5fJFTWOfbJpHD+sxarbhvEqeALxN/Dpp5864qJ8Vt0/rIZmH7ZQ/19bq6urTarE+upfITcqKsrv6yCP5gtGHnCGX/ziF3Wnx44YMUJnz541u6RmO3v2rEaOHKmSkhJ16dJFv/jFL8wuqQ7jVfNx/LAWKx8/GK8CI9D7h2EYmjJlSoP5drwon5X3Dyuh2Yct1N+BKyoqTKrE+upvm0AMfuTRfMHIA84QFRWl1atXKzIyUps3b9bo0aNlGIbZZV2QYRgaPXq0Nm/erBYtWljudFjGq+bj+GEtVj5+MF4FRqD3j5KSEv3zn//0mfetb33LltdfsPL+YSU0+7CFtm3b+kwfPXrUpEqs79ixYz7TsbGxfl8HeTRfMPKAc/Tu3Vvr1q1TWFiYXnvtNU2dOtXSb6ANw9DUqVP12muvKSwsTOvWrbPc6bCMV83H8cNarH78YLzyv0DvHwkJCcrNzdWcOXPkdrvVsmVLHThwwK/rCBar7x9WQbMPW+jcubPPdH5+vkmVWF9eXp7PdEpKit/XQR7NF4w84CxpaWlauXKlpHOnVmZkZFjyFNnaU2FffvllSdJrr72mwYMHm1xVQ4xXzcfxw1rscPxgvPKvYOwf0dHReuaZZ3To0CGtXbtW7du39/s6gsEO+4cV0OzDFurvwMXFxTpz5oxJ1VjXmTNnVFJS4jMvEIMfeTRPsPKA8wwbNkyrVq2q+8QsLS3NUhfBOnHihNLS0upqXL16tR577DGzy2oU41XzcPywFjsdPxiv/CeY+0dycrIl/8GjOey0f5iNZh+20KlTJ7lcLp959f9FDw23SVhYmDp27Oj39ZBH8wQrDzjTsGHDtH79+rrvxHbp0kWbNm0yuyxt2rRJN9xwgzZv3qzIyEhlZ2db9o2zxHjVXBw/rMVuxw/GK/9g/2geu+0fZqLZhy243W4lJib6zNu2bZtJ1VjX1q1bfaYTExMDcuEZ8mieYOUB50pLS9Of/vQnXX/99SopKdHgwYP1k5/8xJRPzUpLSzV06FANHjy47irWH330keU/GWK8ah6OH9Zix+MH49XlY/9oHjvuH2ah2YdtDBgwwGc6OzvbpEqsq/42qb/N/Ik8LiyYecC5evfurX379mnWrFkKCwvTm2++qRtuuEFr165tcOuhQKiqqtLatWt1ww031F2Ma/bs2dq7d6/lLm7VFMarC+P4YS12PX4wXl0+9o8Ls+v+YQoDsIlt27YZknweBQUFZpdlGfn5+Q22z/bt2wO2PvI4v2DngdCwe/duo0uXLnV/U3Fxccbs2bONwsLCCz63rKys7nllZWUX/P3CwkJj9uzZRlxcXN3zunTpYuzevdsfLyWoGK/Oj+OHtTjl+MF4dWnYP87PKftHsNDswzY8Ho/PIC7JmDJlitllWcaUKVN8tk18fLzh8XgCtj7yOL9g54HQ8dVXXxkvvPCC0a5du7q/r7CwMOPee+81Nm/ebJSWljb6vOa8eS4tLTU2b95s3HvvvYbL5ar7/fbt2xsvvPCCUVlZGciXFjCMV+fH8cNanHT8YLy6eOwf5+ek/SMYaPZhK2PGjPHZwcPDw42DBw+aXZbpDhw4YISHh/tsmzFjxgR8veTROLPyQGjxeDzGxo0bjX79+jX4lCMpKcl44IEHjLlz5xpbtmwxDh8+bBQUFPh8SnT48GFjy5Ytxty5c40HHnjASEpKarCcfv36GRs3bnTEGynGq8Zx/LAWpx4/GK8uDvtH45y6fwQSzT5sJT8/33C73T47eWpqqnH27FmzSzPN2bNnjT59+vhsE7fbbeTn5wd83eTRkJl5IHR9+umnxuTJk43k5OQGb4Av9pGcnGxMnjzZ+PTTT81+WX7FeNUQxw9rCZXjB+PVhbF/NBQq+4e/0ezDdp566qkGg31GRkZIDoBnz541MjIyGmyPOXPmBK0G8viaFfIATp06ZWzfvt2YN2+eMWTIECM5OdmIjo5u8HcZHR1tJCcnG0OGDDF+9atfGdu3bzdOnTpldvkBxXj1NSuMV+TxNSvkYQbGq6axf3wtVPcPf6DZh+2Ul5cbiYmJIT8ANjXwJSUlGRUVFUGrgzzOsUoeQFPOnj1rlJaWGqWlpSG1b34T49U5VhmvyOMcq+RhJYxX7B+12D8uD80+bCknJ8eIiIhosOP36dPHOHDggNnlBdyBAwcanMokyYiIiDBycnKCXg95WCsPAE1jvLLWeEUe1soD1sL+wf5xuWj2YVsbN25sdAAMDw83pkyZ4sjv8OTn5xtTpkxpcHGS2oFv48aNptVGHtbKA0DTGK+sNV6Rh7XygLWwf7B/XA6XYRiGAJvatGmThgwZopqamkZ/3r17d6Wnp+vuu+9WSkqK2rRpE+QKL8+ZM2eUl5enrVu3Kjs7W/v27Wv09yIiIrR+/Xrdf//9Qa7QF3mcY5U8ADSN8eocq4xX5HGOVfKAtbB/nMP+cfFo9mF7W7Zs0ejRo1VYWHjB342Pj1dKSorat2+vmJgYud1uhYWFBb7IZvB6vaqqqlJFRYWOHTumvLw8lZSUXPB5SUlJWr58ufr37x+EKi+MPKyVB4CmMV5Za7wiD2vlAWth/2D/uCTmnlgA+EdFRYUxZ86cBrcpcfLD7XYbc+bMseTFScgDgF0wXlkLeQBNY//AxeKTfThKQUGBXnzxRW3YsEHHjx83u5yAiI+P1+DBgzV9+nQlJyebXc55kQcAu2C8shbyAJrG/oHmotmHI9XU1Gjnzp3Kzs5WTk6OCgsLZdc/dZfLpaSkJA0YMEDp6elKTU1VRESE2WVdFPIAYBeMV9ZCHkDT2D9wITT7CAlVVVU6cuSI8vLylJeXp9LSUlVWVqqystLs0nxERUUpKipKsbGxSklJUUpKijp27Ci32212aX5FHgDsgvHKWsgDaBr7B+qj2QcAAAAAwGGscVlGAAAAAADgNzT7AAAAAAA4DM0+AAAAAAAOQ7MPAAAAAIDD0OwDAAAAAOAwNPsAAAAAADgMzT4AAAAAAA5Dsw8AAAAAgMPQ7AMAAAAA4DA0+wAAAAAAOAzNPgAAAAAADkOzDwAAAACAw9DsAwAAAADgMDT7AAAAAAA4DM0+AAAAAAAOQ7MPAAAAAIDD0OwDAAAAAOAwNPsAAAAAADgMzT4AAAAAAA5Dsw8AAAAAgMPQ7AMAAAAA4DA0+wAAAAAAOAzNPgAAAAAADkOzDwAAAACAw9DsAwAAAADgMDT7AAAAAAA4DM0+AAAAAAAOQ7MPAAAAAIDD0OwDAAAAAOAwNPsAAAAAADgMzT4AAAAAAA5Dsw8AAAAAgMPQ7AMAAAAA4DA0+wAAAAAAOAzNPgAAAAAADkOzDwAAAACAw9DsAwAAAADgMDT7AAAAAAA4DM0+AAAAAAAOQ7MPAAAAAIDD0OwDAAAAAOAwNPsAAAAAADgMzT4AAAAAAA5Dsw8AAAAAgMPQ7AMAAAAA4DA0+wAAAAAAOAzNPgAAAAAADkOzDwAAAACAw9DsAwAAAADgMDT7AAAAAAA4DM0+AAAAAAAOQ7MPAAAAAIDD0OwDAAAAAOAwNPsAAAAAADgMzT4AAAAAAA5Dsw8AAAAAgMPQ7AMAAAAA4DA0+wAAAAAAOAzNPgAAAAAADkOzDwAAAACAw9DsAwAAAADgMDT7AAAAAAA4DM0+AAAAAAAOQ7MPAAAAAIDD0OwDAAAAAOAwNPsAAAAAADgMzT4AAAAAAA5Dsw8AAAAAgMPQ7AMAAAAA4DD/DzF+zp8xtwkBAAAAAElFTkSuQmCC\n"
+          },
+          "metadata": {}
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "<Figure size 180x180 with 1 Axes>"
+            ],
+            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAKoAAACuCAYAAACm55aUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAJ+klEQVR4nO3af0hV9x/H8dfJaNry2k9cclOD2q2u4lWjH9Jts7ZcCmYUWRoZXRBxo7FBVCMqKPq16Mag/yrvXEvsx1Z/LPojsyL6YVJKKjpGGDJpMnV2Z8p2O+/9Ebvkt1Kv9/Z173o94ILe4+dzPufep+ecixoiIiD6jxsx3AsgGgyGSiowVFKBoZIKDJVUYKikAkMlFRgqqcBQSYWAQo2Pj4fNZoPD4fA/7t+/H/JF9fb2Yvz48airq+vzfFtbG95991389ttvrxy7fv16HD58OORrAoA7d+4gLS0No0ePRk5OzqDHXblyBQ6HI6B9DWUMAHg8noDWNpAPP/wQU6dOhcPhgN1uR2ZmZr+v/+sS8Bm1vLwcNTU1/kdiYmLIFxUeHo78/HyUlJT0eb60tBRLlixBdHR0yPc5GJMnT8bhw4fhdruHZf/Dxe12o6amBvX19YiLi8PBgwcDnuPp06dBrSEkl/6mpiZYrVY8ePAAAHDw4EF88sknME0THo8HixYtQnZ2NmbNmoWFCxeiubl5wDldLhdOnDiBv//+2/9cSUkJXC4XKioqMH/+fCQnJ8Nut+PYsWOhOIwBWa1WzJkzB++8884L26qrq5GZmRnQfD6fDxkZGZg9ezbsdjvy8vLQ3d3dZ/u6deuQkJCA1NRU1NTU+Ld99913mDt3LlJSUrBw4ULU1tYO+bgCWe+ff/6JcePGAQAePXqE9PR0pKamwm6347PPPoNpmgCendnT09OxYsUKJCYmoqqqCrt378bMmTP9V+OHDx8OfucSgLi4OHn//fclKSnJ/3jy5ImIiJw8eVJSU1OlsrJS4uPjpa2tTURESkpKZNSoUdLQ0CAiIvv375ePP/54UPtLSUmRH3/8UUREbt68KTExMeLz+aSjo0N8Pp+IiLS3t0tsbKy0tLSIiEhBQYG43e4B525sbOxzHM8/1q9f3+/YkpISWbZs2aCOQUSksrJSkpKSXnjeNE35/fff/V8XFRXJ3r17/WMAyKVLl0REpLy8XGw2m5imKdevX5elS5dKb2+viIhcu3ZNZs2aNeDaDhw48Mpj/uGHH1465oMPPpD4+HhJSkqSiRMnSmJiovzxxx8iItLT0yNer1dERHw+n2RlZUlZWZl/HREREdLY2CgiIh0dHRIVFeXvpbu7W3p6egb9Go4M9LeqvLz8pfdOa9asQWVlJTIyMlBRUYFJkyb5t6WlpWHmzJkAgMLCQmzbtg1Pnz5FWFhYv/tyuVw4fvw4cnJycPz4cRQUFCAsLAzt7e1wuVz4+eefMXLkSLS3t6Ourg5Wq3XQx2Gz2fqcoYaDiMDtduOnn36Cz+dDV1cX0tLS/Nvj4+OxePFiAMCqVatQWFiIlpYWnD9/HrW1tZg7d67/Zzs6OtDT09Pv/jZt2oRNmzYFvE63242cnByICHbu3IkNGzbg7NmzME0TmzdvxvXr1yEiaGtrQ0JCAlavXg3g2ftus9kAABaLBdOnT8fatWuxZMkSZGVlBfR+BRzqq/h8PtTV1WH8+PH49ddfQzJnXl4etmzZggcPHuDUqVOorq4GABQVFSEzMxNnz56FYRhISUlBb29vQHM3NTUhNzf3pduSk5NfuD9+HU6ePInLly/j6tWrsFgs+Oabb3D58uVX/rxhGDAMAyKCgoIC7NmzJ6D9ff311/j+++9fum3Hjh1Yvnx5v+MNw0Bubq7/HvXQoUNoa2vD7du3ER4eji+//LLP+zBmzBj/12FhYbh16xZu3LiBK1euYN68eSgrK4PT6RzU2kMW6pYtW2Cz2VBaWuq/b5k2bRoA4ObNm2hsbMSMGTNw9OhRpKenD3g2BYCxY8ciOzsbubm5cDgc/vk6OzsRFxcHwzBw7dq1Id2fhfqMWlVVha1bt6KiomLQYzo7OzFx4kRYLBZ4vV54PB7Exsb6tzc3N6OyshLp6ek4c+YMoqOjYbVakZ2djfz8fBQVFSE2NhamaeLu3buYPXt2v/sb6hn1eRUVFf6zZGdnJ9577z2Eh4fj0aNHOH36NFasWPHScV6vF16vF06nE06nE/X19bh3797rCzU3NxcRERH+791uN7q7u3Hx4kVUVVVh9OjROHToEFatWoUbN24AeHYJ2Lx5M3755RdMmDABpaWlAIDW1lZkZmb2G4zL5cKiRYv8YwBg3759KC4uxq5du+BwOPpcAp9XXV2N7du348KFC4Ee5ks1NTVh8eLFePLkCXp6emC1WvHVV1+huLgYzc3NfV6X/9XQ0NDnUjd//nwcPXoU58+fh81mw6RJk+B0Ovt8wLDb7fB4PNi4cSNGjRqFsrIyGIYBp9OJAwcOYPny5fD5fPjrr7+QlZU1YKhD9cUXX2Dnzp0wTRPjxo3Dt99+CwD4/PPPsXLlStjtdsTExOCjjz565RxdXV1YuXIluru7YRgGpk+fjoKCgkGvwRB5vf/h7/F4cO7cOZw7d+517mbYffrpp1izZg0WLFgw3Et5I4Xs0v+2O3LkyHAv4Y322s+oRKHAv/WTCgyVVGCopEJQH6ZM00RraysiIyNhGEao1kRvGBGB1+tFTEwMRowY2rkxqFBbW1sxZcqUYKagt0hLS0tAfzZ9XlChRkZG+hdgsViCmeqNEhUVNdxL+E/6t5ehCCrUfy/3FouFodKAgrk95IcpUoGhkgoMlVRgqKQCQyUVGCqpwFBJBYZKKjBUUoGhkgoMlVRgqKQCQyUVGCqpwFBJBYZKKjBUUoGhkgoMlVRgqKQCQyUVGCqpwFBJBYZKKjBUUoGhkgoMlVRgqKQCQyUVGCqpwFBJBYZKKjBUUoGhkgoMlVRgqKQCQyUVGCqpwFBJBYZKKjBUUoGhkgoMlVRgqKQCQyUVGCqpwFBJBYZKKjBUUoGhkgoMlVRgqKQCQyUVGCqpwFBJBYZKKjBUUoGhkgoMlVRgqKQCQyUVGCqpwFBJBYZKKjBUUoGhkgoMlVRgqKQCQyUVGCqpwFBJBYZKKjBUUoGhkgoMlVRgqKQCQyUVGCqpwFBJBYZKKjBUUoGhkgoMlVRgqKQCQyUVGCqpwFBJBYZKKjBUUoGhkgoMlVRgqKQCQyUVGCqpwFBJBYZKKjBUUoGhkgoMlVRgqKQCQyUVGCqpwFBJBYZKKjBUUoGhkgoMlVRgqKQCQyUVGCqpwFBJBYZKKjBUUoGhkgoMlVRgqKQCQyUVGCqpwFBJBYZKKjBUUoGhkgoMlVRgqKQCQyUVGCqpwFBJBYZKKjBUUoGhkgoMlVRgqKQCQyUVGCqpwFBJhZHBDBYRAMDjx49Dshh6s/3by1AEFarX6wUATJkyJZhp6C3h9XoRFRU1pLGGBJG5aZpobW1FZGQkDMMY6jT0hhMReL1exMTEYMSIod1tBhUq0f8LP0yRCgyVVGCopAJDJRUYKqnAUEkFhkoq/AMdSoZ5xVBGxAAAAABJRU5ErkJggg==\n"
+          },
+          "metadata": {}
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "<Figure size 1000x500 with 1 Axes>"
+            ],
+            "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/sAAAIHCAYAAADAX0zsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABqmElEQVR4nO3deXhU9d3//9dkYUJYtIYkVuBOIEQrKsr6rVWiVoS7FmMlBJVqK0sg7CBUlrtStSqhakERZBMotnKXCIjaywawKtTa0sCFoVDbLISCvZtAUDCJSSaZ8/uDXyKTBUKYmbPM83Fdc+k5mTnnPeeVz4d5Z86ccRmGYQgAAAAAADhGmNkFAAAAAAAA/6LZBwAAAADAYWj2AQAAAABwGJp9AAAAAAAchmYfAAAAAACHodkHAAAAAMBhaPYBAAAAAHAYmn0AAAAAAByGZh8AAAAAAIeh2QcAAAAAwGFo9gEAAAAAcBiafQAAAAAAHIZmHwAAAAAAh6HZBwAAAADAYWj2AQAAAABwGJp9AAAAAAAchmYfAAAAAACHodkHAAAAAMBhaPYBAAAAAHAYmn0AAAAAAByGZh8AAAAAAIeh2QcAAAAAwGFo9gEAAAAAcBiafQAAAAAAHIZmHwAAAAAAh6HZBwAAAADAYWj2AQAAAABwGJp9AAAAAAAchmYfAAAAAACHodkHAAAAAMBhaPYBAAAAAHAYmn0AAAAAAByGZh8AAAAAAIeh2QcAAAAAwGFo9gEAAAAAcBiafQAAAAAAHIZmHwAAAAAAh6HZBwAAAADAYWj2AQAAAABwGJp9AAAAAAAchmYfAAAAAACHodkHAAAAAMBhaPYBAAAAAHAYmn0AAAAAAByGZh8AAAAAAIeh2QcAAAAAwGFo9gEAAAAAcBiafQAAAAAAHIZmHwAAAAAAh6HZBwAAAADAYWj2AQAAAABwGJp9AAAAAAAchmYfAAAAAACHodkHAAAAAMBhaPYBAAAAAHAYmn0AAAAAAByGZh8AAAAAAIeh2QcAAAAAwGFo9gEAAAAAcBiafQAAAAAAHIZmHwAAAAAAh6HZBwAAAADAYWj2AQAAAABwGJp9AAAAAAAchmYfAAAAAACHodkHAAAAAMBhaPYBAAAAAHAYmn0AAAAAABwmwuwCgGCorq5WUVGR8vPzVVBQoJMnT6qqqkrV1dVml+bD7XYrKipKXbp0Ua9evZScnKyePXvK7XabXZpfkQcAAAAQWDT7cKTa2lp9+OGHys7OVk5Ojo4ePSrDMMwuq01cLpcSEhI0bNgwpaen67bbblNEhL2GLnkAAAAAweUy7PqKG2hGQUGBXnjhBW3ZskUnTpwwu5yAiI2NVVpamubMmaOkpCSzyzkv8gAAAADMQbMPR6isrFRWVpYWL16smpoas8sJCrfbrccee0zz5s1TdHS02eX4IA9r5QEAAIDQQ7MP29uxY4cmTJigo0ePXvC+8fHx6tWrl7p3767o6Gi1a9dOYWHWuE6l1+tVTU2NKisrdezYMRUUFKikpOSCj0tMTNSqVas0dOjQIFR5YeRhrTwAAAAQmmj2YWvbtm3TqFGjVFtb2+zP+/fvr/T0dA0ZMkTJycnq3LlzkCu8NGfOnFF+fr527dqlzZs3a//+/c3eLyIiQps3b9Z9990X5Ap9kcdZVskDAAAAoYtmH7bVUmMZHh6uadOmadq0aerZs6dJ1QVGYWGhXn75ZS1btkx1dXU+PzO7wSQPa+UBAACA0EazD1vasWOHvv/97zdpLFNSUrR8+XJdf/31JlUWHH/72980ZcoU7d6922d9RESEfve73wX9FHLysFYeAAAAAM0+bKeyslK9e/du8pnwjIwMrVy50jKf+Q40r9erzMxMrVmzxmd9YmKiDh8+rPbt2welDvI4yyp5AAAAAJIUGq/C4ShZWVkh31hKUlhYmFauXKmMjAyf9cXFxcrKygpaHeRxllXyAAAAACTe2YfNFBQU6Prrr1d1dXXDupSUFL3//vsh1Viey+v16vbbb9eePXsa1rndbh06dCjg3/tOHk2ZmQcAAABQLzRfjcO2XnjhBZ/GMjw8XMuXLw/ZxlI6+47y8uXLFR4e3rCuurpazz//fMD3TR5NmZkHAAAAUC90X5HDdmpra7VlyxafddOmTXP8xd9a44YbbtC0adN81m3durXFr8DzB/JomRl5AAAAAOei2YdtfPjhhzpx4oTPusYNVSibOnWqz3JpaWmTq8P7E3mcX7DzAAAAAM5Fsw/byM7O9lnu37+/4763/VIkJSWpX79+PusaHzN/Io/zC3YeAAAAwLlo9mEbOTk5Psvp6ekmVWJdjY9J42PmT+RxYcHMAwAAADgXzT5sobq6usnXuw0ZMsSkaqzrrrvu8lk+evSozwX0/IU8WidYeQAAAACN0ezDFoqKitT4WyKvvvpqk6qxruTkZJ9lr9erI0eO+H0/5NE6wcoDAAAAaIxmH7aQn5/vsxwfH69OnTqZVI11de7cWXFxcT7rGh87fyCP1glWHgAAAEBjNPuwhYKCAp/lXr16mVSJ9TV+NzkQzSV5tF4w8gAAAAAao9mHLZw8edJnuXv37iZVYn3dunXzWS4rK/P7Psij9YKRBwAAANAYzT5soaqqymc5OjrapEqsr/GxaXzs/IE8Wi8YeQAAAACN0ezDFhpfwbxdu3YmVWJ9brfbZzkQzSV5tF4w8gAAAAAao9mHLYWF8avbEjOODXm0jGMDAAAAM/AqFAAAAAAAh6HZBwAAAADAYWj2AQAAAABwmAizCwAAAIHn8Xj05ZdfSpI6deqkyMhIkysCAACBxDv7AAA41IEDBzR9+nQNHDhQHTt2VExMjGJiYtSxY0cNHDhQ06dP1yeffGJ2mQAAIABo9gEAcJi8vDylpKSob9++WrZsmXJzc1VTU9Pw85qaGuXm5mrZsmW66aablJKSory8PBMrBgAA/kazDwCAQxiGoaysLA0YMEB79uxp9eP27NmjAQMGKCsrS4ZhBLBCAAAQLDT7AAA4gGEYmjZtmubPny+Px3PRj/d4PJo/f76mTZtGww8AgAOERLP/17/+VXfffbcuv/xydejQQd/+9re1efNms8uCDRQXF8vlcvncIiMj1bVrV40aNUq5ubmSpKVLl8rlcmnMmDEtbuuDDz5QWFiYBg4cqNra2mA9BUchD6Blixcv1vLlyy95O8uXL9fixYv9UBEAADCT46/G//7772vYsGGKiorSAw88oE6dOmnLli26//77dezYMc2ePdvsEmEDSUlJeuihhyRJFRUV2rdvn7Kzs/Xmm29q165dmjFjhrZv364NGzZoxIgRuueee3weX15erjFjxsjtdmvjxo2KiHD80Aso8gB85eXlaeHChX7b3sKFC3X33XerT58+ftsmAAAILke/wq2trVVGRobCwsK0e/du3XTTTZLOvogZNGiQFixYoJEjRyohIcHcQmF5vXr10hNPPOGzLisrS/Pnz9fjjz+uDz/8UBs2bFCfPn2UkZGhQ4cOKSYmpuG+s2fPVnFxsZYsWaJrr702yNU7D3kAvqZOndqmU/db4vF4NHXqVO3evdtv2wQAAMHl6NP4//CHP6iwsFCjR49uaPQl6bLLLtOCBQtUU1OjX/3qV+YVCFsbN26cJGnfvn2SpISEBC1dulQlJSWaNGlSw/1ycnK0evVq3XHHHZoxY4YptYYC8kCoOnDgwEVdjK+19uzZw9fyAQBgY45u9j/44ANJ0tChQ5v8bNiwYZKkDz/8MJglwYHOPQV8zJgxSk1NVXZ2tjZt2qQvvvhC48ePV+fOnbV+/Xq5XC4TKw0N5IFQs27dOltuGwAABJajT+PPz8+XJCUnJzf52ZVXXqmOHTs23Ae4WGvXrpUk3XrrrT7rV69erT/96U+aMmWKUlJSdPz4ca1bt46PiwQYeSBUffzxx7bcNgAACCxHN/unT5+WdPa0/eZ07ty54T52YRiGKisrzS4j6Pz5WdS2KCgoaPiMeP0F4d5//33Fx8frueee87lvfHy8Vq1apbS0NG3fvl2pqannvSp8oHk8HlVUVPh9m2YiD+Asj8ejvLy8gG0/Ly9Pp0+f5iKWAABJUnR0NGdG2onhYHfddZchycjPz2/251dddZXRuXPnIFd1acrLyw1JIX+bPHlyUI73kSNHWqzhyiuvbPF3yzAMY9CgQYYk4/Dhw0Gptd7kyZPJoxmhlAc3bty4cePGjVsgbuXl5UF9HYVL4+jP7Ne/o9/Su/dnzpxp8V1/4FzDhg2TYRgyDEOlpaV67rnnVFpaqtTUVJWXlzf7mPbt2/v8F/5DHgAAAMD5Ofq8vPrP6ufn56t///4+P/vPf/6j8vJyDRo0yIzS2iw6OrrFZsbJZs2apTVr1phdhiQpNjZWc+bM0enTp/X000/rpz/9qZYuXWp2WS3KyMjQkiVL/LpN8mi7QOSB0OXxeBQfH6+ampqAbN/tdqukpITT+AEAks72IrAPR//rfdttt2nRokXasWOHHnjgAZ+f5eTkNNzHTlwulzp06GB2GUEXGRlpdglNLFiwQOvWrdOKFSs0c+ZMJSYmml1SsyIjI/3+O0MebReIPBDa+vTpo9zc3IBtmzPgAACwJ0efxn/nnXeqZ8+eev3113XgwIGG9adPn9azzz6rdu3a6Uc/+pF5BcLW2rdvr7lz58rj8ejnP/+52eWEPPJAqLr55pttuW0AABBYjm72IyIitHbtWnm9XqWkpGjChAmaPXu2brzxRv3zn//Us88+a9l3/2APEyZM0FVXXaWNGzeqsLDQ7HJCHnkgFI0dO9aW2wYAAIHl6GZfku644w798Y9/1C233KLf/va3euWVVxQfH6///d//1ezZs80uDzYXFRWl+fPnq7a2Vk8++aTZ5YQ88kAouummmzR48GC/b3fw4MG68cYb/b5dAAAQHI7+zH69QYMG6d133zW7DNhQYmKiDMM4732mTp2qqVOnNln/wQcfBKiq0EUeQPNefvllDRgwQB6Pxy/bi4yM1PLly/2yLQAAYA7Hv7MPAIDT9enTR0899ZTftvfUU0/phhtu8Nv2AABA8NHsAwDgAHPnztWUKVMueTtTp07V3Llz/VARAAAwE80+AAAO4HK5tGzZMi1atKhNX48ZGRmpRYsW6aWXXpLL5QpAhQAAIJho9gEAcAiXy6V58+YpNzf3oi7aN3jwYO3bt0/z5s2j0QcAwCFC4gJ9AACEkj59+mj37t365JNPtG7dOn388cf65JNPVFNTI0lyu93q06ePbr75Zo0dO5ar7gMA4EA0+wAAONSNN96oF198UZJ0+vRpXX755ZKkkpISXXbZZSZWBgAAAo3T+AEACAERERHN/j8AAHAmmn0AAAAAAByGZh8AAAAAAIeh2QcAAAAAwGFo9mFLXq/X7BIsy4xjQx4t49gAAADADDT7sAW32+2zXP/1UWiqurraZzkqKsrv+yCP1gtGHgAAAEBjNPuwhcYNUmVlpUmVWF/jYxOI5pI8Wi8YeQAAAACN0ezDFrp06eKzfOzYMZMqsb7jx4/7LMfExPh9H+TResHIAwAAAGiMZh+20KtXL5/lgoICkyqxvvz8fJ/l5ORkv++DPFovGHkAAAAAjdHswxYaN0glJSU6c+aMSdVY15kzZ1RaWuqzLhDNJXm0TrDyAAAAABqj2Yct9OzZUy6Xy2dd43dM0fSYhIWFqUePHn7fD3m0TrDyAAAAABqj2YctuN1uJSQk+KzbtWuXSdVY186dO32WExISmlw53x/Io3WClQcAAADQGM0+bGPYsGE+y9nZ2SZVYl2Nj0njY+ZP5HFhwcwDAAAAOBfNPmwjPT3dZ3nfvn0qKioyqRrrKSws1P79+33WNT5m/kQe5xfsPAAAAIBz0ezDNm677TbFxsb6rFu2bJlJ1VjPyy+/7LMcFxenlJSUgO2PPM4v2HkAAAAA56LZh21EREQoLS3NZ92yZcv0t7/9zaSKrOPgwYNNGu0RI0YoIiIiYPskj5aZkQcAAABwLpdhGIbZRQCtVVhYqOuuu07V1dUN61JSUvT+++8rLCw0/3bl9Xp1++23a8+ePQ3r3G63Dh06pKSkpIDumzyaMjMP4HwqKirUsWNHSVJ5ebk6dOhgckUAACCQQvPVOGwrKSlJjz32mM+63bt3KzMzU16v16SqzOP1epWZmenTWErS3Llzg9JYkocvs/MAAAAA6vHOPmynsrJSvXv31tGjR33WZ2RkaOXKlSHzjnJ9Y7lmzRqf9YmJiTp8+LDat28flDrI4yyr5AG0hHf2AQAILaHxKhyOEh0drdWrVzf5/POaNWt0++236+DBgyZVFjwHDx7U7bff3qSxjIiI0KpVq4LaWJKHtfIAAAAAJJp92NTQoUO1efPmJg3mnj171LdvX82aNUuFhYUmVRc4hYWFmjVrlvr27dvkVPGIiAht3rxZQ4cODXpd5GGtPAAAAABO44etbdu2TaNGjVJtbW2zP+/Xr5/S09N11113KTk5WZ07dw5yhZfmzJkzys/P186dO5Wdnd3ke9vr1TeW9913X5Ar9EUeZ1klD+BcnMYPAEBoodmH7e3YsUMTJ05UcXHxBe8bFxen5ORkdevWTdHR0XK73Zb5TLnX61V1dbUqKyt1/Phx5efnq7S09IKPS0xM1KpVqyzzDjJ5WCsPoB7NPgAAoYVmH47w1VdfKSsrS4sXL/b5Gjgnc7vdmjt3rubNm2e5z4STh7XyACSafQAAQg3NPhylsLBQzz//vLZs2aITJ06YXU5AxMXFacSIEZozZ47lv86NPADroNkHACC00OzDkWpra7V7925lZ2crJydHxcXFsuuvusvlUmJiooYNG6b09HSlpKQ0uRCe1ZEHYD6afQAAQgvNPkJCdXW1jhw5ovz8fOXn56usrExVVVWqqqoyuzQfUVFRioqKUkxMjJKTk5WcnKwePXrI7XabXZpfkQcQfDT7AACEFpp9AABCAM0+AAChxRqXvQYAAAAAAH5Dsw8AAAAAgMPQ7AMAAAAA4DA0+wAAAAAAOAzNPgAAAAAADkOzDwAAAACAw9DsAwAAAADgMDT7AAAAAAA4DM0+AAAAAAAOQ7MPAAAAAIDD0OwDAAAAAOAwNPsAAAAAADgMzT4AAAAAAA5Dsw8AAAAAgMPQ7AMAAAAA4DA0+wAAAAAAOAzNPgAAAAAADkOzDwAAAACAw9DsAwAAAADgMBFmFwAEQ3V1tYqKipSfn6+CggKdPHlSVVVVqq6uNrs0H263W1FRUerSpYt69eql5ORk9ezZU2632+zS/Io8rIU8gJYxPqyFPACg9Wj24Ui1tbX68MMPlZ2drZycHB09elSGYZhdVpu4XC4lJCRo2LBhSk9P12233aaICHsNXfKwFvIAWsb4sBbyAIC2cxl2nTGBZhQUFOiFF17Qli1bdOLECbPLCYjY2FilpaVpzpw5SkpKMruc8yIPayGP0FZRUaGOHTtKksrLy9WhQweTK7IWxoe1kAcA+IEBOEBFRYXx+OOPG+3atTMkhcTN7XYbjz/+uFFRUWH24W+CPKyFPGAYhlFeXt5wfMrLy80uxzIYH9ZCHgDgP7yzD9vbsWOHJkyYoKNHj17wvvHx8erVq5e6d++u6OhotWvXTmFh1rhOpdfrVU1NjSorK3Xs2DEVFBSopKTkgo9LTEzUqlWrNHTo0CBUeWHkQR6B4JQ8zMQ7+00xPqw1PsjDWnkAsD+afdjatm3bNGrUKNXW1jb78/79+ys9PV1DhgxRcnKyOnfuHOQKL82ZM2eUn5+vXbt2afPmzdq/f3+z94uIiNDmzZt13333BblCX+RxFnkEh93yMBvNvi/Gx1lWGR/kcZZV8gDgEOaeWAC03datW42IiIgmp8OFh4cbM2fONAoLC80u0e8KCgqMmTNnGuHh4U2ed0REhLF161bTaiMP8jCblfOwAk7j/xrjw1rjgzyslQcA56DZhy3l5OQ0+8IgJSXFOHjwoNnlBdzBgweNlJSUZl8g5OTkBL0e8iAPK7FaHlZBs38W48Na44M8rJUHAGeh2YftVFRUGAkJCU3+YczIyDDq6urMLi9o6urqjIyMjCbHITEx0aisrAxaHeRxFnlYi1XysJIzZ840HIczZ86YXY4pGB9nWWV8kMdZVskDgPPQ7MN2Hn/88ZB/YVCvpRcICxcuDFoN5PE18rAWK+RhhlOnThm7du0ysrKyjPT0dKNnz55GVFRUk+MQFRVl9OzZ00hPTzcWL15s7Nq1yzh16pTZ5QcU4+NrVhgf5PE1K+QBwHm4QB9spaCgQNdff72qq6sb1qWkpOj999+3zFV4g83r9er222/Xnj17Gta53W4dOnQo4N/bSx5NkYe1mJlHMP3jH//QK6+8orfffltFRUWXtK2ePXvqnnvu0aRJk3TNNdf4qULzMT6aYr6yllCZrwAET2jOprCtF154weeFQXh4uJYvXx6yLwwkKSwsTMuXL1d4eHjDuurqaj3//PMB3zd5NEUe1mJmHoFWW1urrVu3asiQIfrWt76lF198saHR79Gjh0aOHKmsrCzt3LlTRUVFKiwsbHhsYWGhioqKtHPnTmVlZWnkyJHq0aOHJKmoqEgvvviivvWtb2nIkCHaunVri1dItxPGR1PMV9bi5PkKgEnMPrUAaC2Px2PExsb6nN42c+ZMs8uyjJkzZ/ocm7i4OMPj8QRsf+RxfuRhLcHOI5C++uor45lnnjG6du3a8HzCwsKM1NRU46233jLKysqafVxrLtBXVlZmvPXWW0ZqaqoRFhbWcP+uXbsazz77rFFVVRXIpxYwjI/zY76yFifNVwDMRbMP29i1a1eTz7I58et42qqgoKDJ8XnvvfcCtj/yOD/ysJZg5xEof/nLX4zevXs3PIfY2FhjwYIFRnFx8QUfe7FX4y8uLjYWLFjg05T17t3b2Lt3rz+eSlAxPs6P+cpanDJfATBf6J4rBdvJzs72We7fv7969uxpUjXWk5SUpH79+vmsa3zM/Ik8zo88rCXYefhbVVWV5s2bp5tvvlmHDx9WfHy8Nm7cqGPHjumZZ55RQkKC3/eZkJCgZ555RseOHdPGjRsVHx+vw4cP69vf/rbmz5+vqqoqv+8zUBgf58d8ZS12n68AWAfNPmwjJyfHZzk9Pd2kSqyr8TFpfMz8iTwujDysJZh5+NPevXvVr18/LV68WF6vV6NHj9ahQ4f08MMPy+12B3z/brdbDz/8sA4dOqTRo0fL6/UqKytL/fv31969ewO+f39gfFwY85W12HW+AmAtNPuwherqah09etRn3ZAhQ0yqxrruuusun+WjR4/6XADJX8ijdcjDWoKVhz+98cYbuvXWW/X3v/9d8fHx2rZtm37zm98oJiYm6LXExMToN7/5jbZt26a4uDgdPnxYt956q7Zs2RL0Wi4G46N1mK+sxY7zFQDrodmHLRQVFclo9C2RV199tUnVWFdycrLPstfr1ZEjR/y+H/JoHfKwlmDl4S/r1q3T/fffL4/Ho3vvvVeHDh3SD37wA7PL0g9+8AMdPnxY9957rzwej0aNGqX169ebXVaLGB+tw3xlLXabrwBYE80+bCE/P99nOT4+Xp06dTKpGuvq3Lmz4uLifNY1Pnb+QB6tQx7WEqw8/GH9+vUaN26cvF6vxo0bpy1btpjybn5LYmJitGXLloYax44da9mGn/HROsxX1mKn+QqAddHswxYKCgp8lnv16mVSJdbX+N2AQLw4II/WIw9rCUYel2rLli0aP368JGnGjBlas2aNz/duW0V4eLjWrFmjGTNmSJLGjx+vrVu3mlxVU4yP1mO+shY7zFcArI1mH7Zw8uRJn+Xu3bubVIn1devWzWe5rKzM7/sgj9YjD2sJRh6XYu/evXrwwQfl9Xo1fvx4LVmyRC6Xy+yyWuRyubRkyZKGd/gfeOAB/fWvfzW7LB+Mj9ZjvrIWq89XAKyPZh+20PgrnqKjo02qxPoaH5tAfD0WebQeeVhLMPJoq6qqKj3yyCMNn9FfuXKlpRv9ei6XS6tWrWr4DP8jjzxiueN6LsZHy5ivrMXK8xUAe6DZhy00vgJtu3btTKrE+hp/FVcgXhyQR+uRh7UEI4+2evLJJxuuuv/qq69a8tT9loSHh2vt2rUNV+l/6qmnzC6pAeOj9ZivrMXK8xUAe6DZhy2FhfGr2xIzjg15tIw8rMWqx2bv3r36xS9+IUlauXKlpS7G11pdunTRypUrJUmLFy+23On89az6O2AFzFfWwrEBcKmYRQAAMFFVVZXGjBkjr9er0aNHW+Lr9drqvvvua7jmwCOPPML3ggMAYCKafQAATLRkyRIdPnxY8fHxeumll8wu55ItW7ZM8fHxOnz4sH75y1+aXQ4AACGLZh8AAJPU1tZq+fLlkqTnnnvOlqfvNxYTE9PwkYQVK1aotrbW5IoAAAhNNPsAAJjkrbfe0meffaa4uDiNGjXK7HL85v7771dsbKyOHz+ut99+2+xyANiMx+PRqVOndOrUKXk8HrPLAWyLZh8AAJOsWLFCkjR+/PgmV962M7fbrfHjx0v6+jkCwPkcOHBA06dP18CBA9WxY0fFxMQoJiZGHTt21MCBAzV9+nR98sknZpcJ2ArNPgAAJvj000/13nvvKSwsTBMmTDC7HL+bOHGiXC6Xdu3apX/84x9mlwPAovLy8pSSkqK+fftq2bJlys3NVU1NTcPPa2pqlJubq2XLlummm25SSkqK8vLyTKwYsA+afQAATFD/NXXDhw9XQkKCydX4X0JCgoYPHy5JeuWVV0yuBoDVGIahrKwsDRgwQHv27Gn14/bs2aMBAwYoKytLhmEEsELA/mj2AQAwQf1n2etPd3ei+uf2zjvvmFwJACsxDEPTpk3T/Pnz2/SZfI/Ho/nz52vatGk0/MB5OL7Z//Wvf62JEydqwIABcrvdcrlc2rBhg9llwcaWLVsml8ulH/3oR83+/PPPP1fXrl0VHR2tf/7zn0GuztmKi4vlcrl8bpGRkeratatGjRql3NxcSdLSpUvlcrk0ZsyYFrf1wQcfKCwsTAMHDuRq4W1EHm33+eefq6ioSJJ0yy23mFxN4NQ/t8LCQn3xxRfmFhNkjA9rIQ9rWbx4ccM3kVyK5cuXa/HixX6oCHCmCLMLCLSf/vSnOnr0qLp06aJvfvObOnr0qNklweamTp2qrVu36rXXXlNaWpruvfden59PmTJF//73v/Xiiy/q6quvNqlKZ0tKStJDDz0kSaqoqNC+ffuUnZ2tN998U7t27dKMGTO0fft2bdiwQSNGjNA999zj8/jy8nKNGTNGbrdbGzduVESE46fCgCKPi7d//35JUo8ePXTFFVeYXE3gxMTEKDExUcXFxdq/f7+++93vml1S0DE+rIU8zJeXl6eFCxf6bXsLFy7U3XffrT59+vhtm4BTOP6d/bVr16q4uFgnTpxQZmam2eXAAVwul9avX6+OHTtqwoQJOnnyZMPP3njjDW3atEl33HGHpk2bZmKVztarVy898cQTeuKJJ/Tcc8/pD3/4gxYtWiSPx6PHH3+84Qyezp07KyMjQ2VlZT6Pnz17toqLi7Vo0SJde+21Jj0L5yCPi1f/LmL//v1NriTwBgwYIOnr5xxqGB/WQh7mmzp1ql+/Ts/j8Wjq1Kl+2x7gJI5v9ocMGeLICx/BXImJiXrhhRdUWlqqSZMmSZJKSko0adIkderUSevXr5fL5TK5ytAybtw4SdK+ffsknb042NKlSxtyqZeTk6PVq1frjjvu0IwZM0ypNRSQx/nVH5f6RtjJ6v+gUf+cwfiwGvIIngMHDlzUxfhaa8+ePXwtH9AMxzf7QKBMmDBBw4YNa3g3v/5d/qVLl/IHJhOde0rlmDFjlJqaquzsbG3atElffPGFxo8fr86dO/MHmSAhj+bVNxWh8M4+zX7LGB/WQh6Bt27dOltuG7ArPmgEXIJXX31V119/vcaMGaPq6moNHz5cY8eONbuskLR27VpJ0q233uqzfvXq1frTn/6kKVOmKCUlRcePH9e6dev4g0yAkcf5/fvf/5Z09vPDTterVy9JXz9nMD6shjyC5+OPP7bltgG7otm3GcMwVFlZaXYZQefPz3b5U9euXTV16lQ9/fTTioyM1OrVq80uqQmPx6OKigq/b9NMBQUFeuKJJyR9fYGl999/X/Hx8Xruued87hsfH69Vq1YpLS1N27dvV2pq6nmvshxo5OH8PC7E6/WqqqpK0tk5PVj7P3c/wXzO9V+L9dVXX+nLL79UWFhwTypkfLQd85Xz8wgmj8ejvLy8gG0/Ly9Pp0+f5qKJARYdHc2ZLXZihJBFixYZkoz169ebXUqblZeXG5JC/jZ58mSzozAMwzBKSkqM2NjYhrpWr15tdknG5MmTHZvHkSNHWqzhyiuvNPLz81t87KBBgwxJxuHDh4NSaz3yaF4o5cHNWjfGR8uYr5oXSnlw43ahW3l5eVDHAS4Nn9kHLkFmZqZOnDihrKwsdenSRbNnz9a//vUvs8tyvGHDhskwDBmGodLSUj333HMqLS1VamqqysvLm31M+/btff4L/yEPoGWMD2shDwChhPNcbCY6OrrFf4ycbNasWVqzZo3ZZfh47bXXtG3bNg0fPlxz585VYmKiHnjgAY0bN047d+40u7wGGRkZWrJkiV+3aaU8YmNjNWfOHJ0+fVpPP/20fvrTn2rp0qVml9Ui8rCWQORxIV6vV507d5YkFRYWKj4+Pij7raioaNhXSUmJOnToEJT9lpSUNFyb4MyZM0E/jZ/x0XbMV9ZixnzlTx6PR/Hx8aqpqQnI9t1ut0pKSjiNP8Cio6PNLgEXgdFgMy6XK2gv0KwkMjLS7BJ8fPbZZ5o+fbquuOKKhs/p33///XrjjTf0xhtvaNWqVZo4caLJVZ4VGRnp998Zq+UhSQsWLNC6deu0YsUKzZw5U4mJiWaX1CzysJZA5NEaUVFRqqqqMm1O79ChQ9D2W//Zzvbt26tTp05B2ee5GB9tx3xlLWbNV/7Up08f5ebmBmzbl112WUC2DdgVp/EDbTBu3Dh98cUXevnll/XNb36zYf2KFSsUGxurn/zkJzp69KiJFYae9u3ba+7cufJ4PPr5z39udjkhjzzO76qrrpJ09p19pysoKJD09XMG48NqyCN4br75ZltuG7Arxzf7a9eu1SOPPKJHHnlE2dnZTdbVf90K0FqrVq1STk6ORo4cqQcffNDnZ7GxsXrllVf05ZdfauzYsQ1XoUZwTJgwQVdddZU2btwYEk2U1ZFHy0Lpu+frn2P9c8ZZjA9rIY/gCOTXE/PVx0BTjm/2//jHP+pXv/qVfvWrX2n//v2SpI8++qhh3R//+EeTK4SdHDlyRHPmzFFcXJxeeeWVZu+TlpamBx98UH/4wx9avA8CIyoqSvPnz1dtba2efPJJs8sJeeTRsvrGN1Cns1oJzX7zGB/WQh7BcdNNN2nw4MF+3+7gwYN14403+n27gN05/jP7GzZs0IYNG8wuAw7Ro0cPffnllxe83+uvv67XX389CBWFlsTExAueLTF16lRNnTq1yfoPPvggQFWFLvJouwEDBkgKjXf26/+gUf+cQwXjw1rIwzpefvllDRgwQB6Pxy/bi4yM1PLly/2yLcBpHP/OPgAAVtOvXz9JZ88WOnXqlMnVBE5ZWZmKi4slff2cAYS2Pn366KmnnvLb9p566indcMMNftse4CQ0+wAABNk3vvEN9ezZU9LZj5Y5Vf1zS0pK0uWXX25uMQAsY+7cuZoyZcolb2fq1KmaO3euHyoCnIlmHwAAE9xzzz2S5OgLxdY/t+HDh5tcCQArcblcWrZsmRYtWtSmr2OMjIzUokWL9NJLLzV8vSeApmj2AQAwwaRJkyRJ77zzjiO/qrO4uFjvvPOOpK+fKwDUc7lcmjdvnnJzcy/qon2DBw/Wvn37NG/ePBp94AJo9gEAMME111yjO++8U16vV6tXrza7HL9bvXq1DMPQkCFDdM0115hdDgCL6tOnj3bv3q0DBw5o+vTpGjhwoNq1a9fwc7fbrYEDB2r69Ok6cOCAdu/ezWf0gVZy/NX4AQCwqsmTJ+u9997T2rVrtXDhQrndbrNL8ovq6uqGU/gnT55scjUA7ODGG2/Uiy++KEk6ffp0w3U+SkpKdNlll5lYGWBfvLMPAIBJUlNT1bVrV5WWlmrz5s1ml+M3v/3tb3XixAl169at4doEANBaERERzf4/gItDsw8AgEkiIiIarkj9k5/8RGVlZSZXdOnKysr02GOPSTr7rj4v1AEAMAfNPgAAJnr00UfVu3dvlZSUaPr06WaXc8mmTZumkpIS9e7dW48++qjZ5QAAELJo9gEAMJHb7db69esVFham119/XW+++abZJbXZtm3btGnTJoWHh2vDhg2OuQYBAAB2RLMPW/J6vWaXYFlmHBvyaBl5WItVj82gQYMaTn3PzMy05en8J0+eVGZmpiTpscce08CBA02uqHlW/R2wAuYra+HYALhUNPuwhcbvDtXU1JhUifVVV1f7LEdFRfl9H+TReuRhLcHIo61+9rOfNZzOP27cONXV1ZldUqvV1dVp/PjxKi0tVe/evfWzn/3M7JIaMD5aj/nKWqw8XwGwB5p92ELjf+AqKytNqsT6Gh+bQLw4II/WIw9rCUYebRUVFaX169crMjJS27dv18SJE2UYhtllXZBhGJo4caK2b9+udu3aWe70fcZH6zFfWYuV5ysA9kCzD1vo0qWLz/KxY8dMqsT6jh8/7rMcExPj932QR+uRh7UEI49LMWjQIG3atElhYWF69dVXNWvWLEs3/IZhaNasWXr11VcVFhamTZs2We70fcZH6zFfWYvV5ysA1kezD1vo1auXz3JBQYFJlVhffn6+z3JycrLf90EerUce1hKMPC5VWlqa1q5dK0l68cUXlZGRYclT+utP3X/xxRclSa+++qpGjBhhclVNMT5aj/nKWuwwXwGwNpp92ELjf+BKSkp05swZk6qxrjNnzqi0tNRnXSBeHJBH65CHtQQrD38YM2aM1q1b1/AOf1pamqUu2nfy5EmlpaU11Lh+/Xo98sgjZpfVLMZH6zBfWYud5isA1kWzD1vo2bOnXC6Xz7rGf/FG02MSFhamHj16+H0/5NE65GEtwcrDX8aMGaPNmzc3fIa/d+/e2rZtm9lladu2bbruuuu0fft2RUZGKjs727KNvsT4aC3mK2ux23wFwJpo9mELbrdbCQkJPut27dplUjXWtXPnTp/lhISEgFwoizxahzysJVh5+FNaWpr++Mc/6tprr1VpaalGjBihH/7wh6a8y19WVqbRo0drxIgRDVfd/+ijjyx56v65GB+tw3xlLXacrwBYD80+bGPYsGE+y9nZ2SZVYl2Nj0njY+ZP5HFh5GEtwczDnwYNGqT9+/dr3rx5CgsL0+uvv67rrrtOGzdubPLVXIFQXV2tjRs36rrrrmu4eOD8+fO1b98+y12MryWMjwtjvrIWu85XAKyFZh+2kZ6e7rO8b98+FRUVmVSN9RQWFmr//v0+6xofM38ij/MjD2sJdh7+FhUVpUWLFunPf/6zevfurZKSEv34xz9W9+7dtWDBAh09etTv+zx69KgWLFig7t2768c//rFKSkrUu3dv/fnPf9azzz5rq68BY3ycH/OVtdh9vgJgHTT7sI3bbrtNsbGxPuuWLVtmUjXW8/LLL/ssx8XFKSUlJWD7I4/zIw9rCXYegTJw4EDt27dPzz77rLp27aoTJ05o0aJF6tmzp1JTU/XWW2/p1KlTbd7+qVOn9NZbbyk1NVU9evTQokWLdOLECXXr1k3PPvus9u/fb5t388/F+Dg/5itrccp8BcACDMBGMjMzDUkNt/DwcOPgwYNml2W6vLw8Izw83OfYZGZmBny/5NE88rAWs/IINI/HY2zdutUYMmSIz3OTZCQmJhojR440Fi1aZOzYscMoKioyCgsLG35eWFhoFBUVGTt27DAWLVpkjBw50khMTGyynSFDhhhbt241PB6P2U/3kjE+msd8ZS1Ona8uVnl5ecPzLy8vN7scwLZchmEYgfpDAuBvhYWFuu6663w+p5qSkqL3339fYWGheaKK1+vV7bffrj179jSsc7vdOnTokJKSkgK6b/Joijysxcw8gukf//iHXnnlFb3zzjsqLCy8pG0lJSVp+PDhmjRpkq655ho/VWg+xkdTzFfWEirzVWtUVFSoY8eOkqTy8nJ16NDB5IoAewrN2RS2lZSUpMcee8xn3e7du5WZmSmv12tSVebxer3KzMz0eWEgSXPnzg3KCwPy8EUe1mJ2HsF0zTXXaOnSpSooKNDnn3+u9957T4sXL9aoUaOUlJSk9u3bN3lM+/btlZSUpFGjRukXv/iF3nvvPX3++ecqKCjQ0qVLHdXoS4yPxsweH+Thy+w8ADiU2acWABeroqLCSEhIaHK6aUZGhlFXV2d2eUFTV1dnZGRkNHv6bmVlZdDqII+zyMNarJKHldTV1RllZWVGWVlZSP0unIvxcZZVxgd5nGWVPKyE0/gB/6DZhy3l5OQYERERTf5hHDx4sJGXl2d2eQGXl5dnDB48uMnzj4iIMHJycoJeD3mQh5VYLQ9YC+PDWuODPKyVh1XQ7AP+QbMP29q6dWuzLxDCw8ONmTNnGgUFBWaX6HcFBQXGzJkzm1y8p/6FwdatW02rjTzIw2xWzgPWwviw1vggD2vlYQU0+4B/cIE+2Nq2bds0atQo1dbWNvvzfv36KT09XXfddZeSk5PVuXPnIFd4ac6cOaP8/Hzt3LlT2dnZTb53t15ERIQ2b96s++67L8gV+iKPs8gjOOyWB6yF8XGWVcYHeZxllTzMxgX6AP+g2Yft7dixQxMnTlRxcfEF7xsXF6fk5GR169ZN0dHRcrvdlrnqr9frVXV1tSorK3X8+HHl5+ertLT0go9LTEzUqlWrNHTo0CBUeWHkQR6B4JQ8YC2MD2uND/KwVh5motkH/MTcEwsA/6isrDQWLlxouN3uJqfDOfXmdruNhQsXWvLiPeRhLeQBtIzxYS3kAcPgNH7AX3hnH45SWFio559/Xlu2bNGJEyfMLicg4uLiNGLECM2ZM8fyX8dDHtZCHkDLGB/WQh6hjXf2Af+g2Ycj1dbWavfu3crOzlZOTo6Ki4tl1191l8ulxMREDRs2TOnp6UpJSVFERITZZV0U8rAW8gBaxviwFvIITTT7gH/Q7CMkVFdX68iRI8rPz1d+fr7KyspUVVWlqqoqs0vzERUVpaioKMXExCg5OVnJycnq0aOH3G632aX5FXlYC3kALWN8WAt5hAaafcA/aPYBAAAAWAbNPuAf1rhsKQAAAAAA8BuafQAAAAAAHIZmHwAAAAAAh6HZBwAAAADAYWj2AQAAAABwGJp9AAAAAAAchmYfAAAAAACHodkHAAAAAMBhaPYBAAAAAHAYmn0AAAAAAByGZh8AAAAAAIeh2QcAAAAAwGFo9gEAAAAAcBiafQAAAAAAHIZmHwAAAAAAh6HZBwAAAADAYWj2AQAAAABwGJp9AAAAAAAchmYfAAAAAACHiTC7ACAYqqurVVRUpPz8fBUUFOjkyZOqqqpSdXW12aX5cLvdioqKUpcuXdSrVy8lJyerZ8+ecrvdZpfmV+QBAAAABBbNPhyptrZWH374obKzs5WTk6OjR4/KMAyzy2oTl8ulhIQEDRs2TOnp6brtttsUEWGvoUseAAAAQHC5DLu+4gaaUVBQoBdeeEFbtmzRiRMnzC4nIGJjY5WWlqY5c+YoKSnJ7HLOizwAAMDFqqioUMeOHSVJ5eXl6tChg8kVAfZEsw9HqKysVFZWlhYvXqyamhqzywkKt9utxx57TPPmzVN0dLTZ5fggD2vlAQCAndDsA/5Bsw/b27FjhyZMmKCjR49e8L7x8fHq1auXunfvrujoaLVr105hYda4TqXX61VNTY0qKyt17NgxFRQUqKSk5IKPS0xM1KpVqzR06NAgVHlh5GGtPAAAsBuafcA/aPZha9u2bdOoUaNUW1vb7M/79++v9PR0DRkyRMnJyercuXOQK7w0Z86cUX5+vnbt2qXNmzdr//79zd4vIiJCmzdv1n333RfkCn2Rx1lWyQMAADui2Qf8g2YfttVSYxkeHq5p06Zp2rRp6tmzp0nVBUZhYaFefvllLVu2THV1dT4/M7vBJA9r5QEAgF3R7AP+QbMPW9qxY4e+//3vN2ksU1JStHz5cl1//fUmVRYcf/vb3zRlyhTt3r3bZ31ERIR+97vfBf0UcvKwVh4AANgZzT7gHzT7sJ3Kykr17t27yWfCMzIytHLlSst85jvQvF6vMjMztWbNGp/1iYmJOnz4sNq3bx+UOsjjLKvkAQCA3dHsA/4RGq/C4ShZWVkh31hKUlhYmFauXKmMjAyf9cXFxcrKygpaHeRxllXyAAAAACTe2YfNFBQU6Prrr1d1dXXDupSUFL3//vsh1Viey+v16vbbb9eePXsa1rndbh06dCjg3/tOHk2ZmQcAAE7AO/uAf4Tmq3HY1gsvvODTWIaHh2v58uUh21hKZ99RXr58ucLDwxvWVVdX6/nnnw/4vsmjKTPzAAAAAOqF7ity2E5tba22bNnis27atGmOv/hba9xwww2aNm2az7qtW7e2+BV4/kAeLTMjDwAAAOBcNPuwjQ8//FAnTpzwWde4oQplU6dO9VkuLS1tcnV4fyKP8wt2HgAAAMC5aPZhG9nZ2T7L/fv3d9z3tl+KpKQk9evXz2dd42PmT+RxfsHOAwAAADgXzT5sIycnx2c5PT3dpEqsq/ExaXzM/Ik8LiyYeQAAAADnotmHLVRXVzf5erchQ4aYVI113XXXXT7LR48e9bmAnr+QR+sEKw8AAACgMZp92EJRUZEaf0vk1VdfbVI11pWcnOyz7PV6deTIEb/vhzxaJ1h5AAAAAI3R7MMW8vPzfZbj4+PVqVMnk6qxrs6dOysuLs5nXeNj5w/k0TrBygMAAABojGYftlBQUOCz3KtXL5Mqsb7G7yYHorkkj9YLRh4AAABAYzT7sIWTJ0/6LHfv3t2kSqyvW7duPstlZWV+3wd5tF4w8gAAAAAao9mHLVRVVfksR0dHm1SJ9TU+No2PnT+QR+sFIw8AAACgMZp92ELjK5i3a9fOpEqsz+12+ywHorkkj9YLRh4AAABAYzT7sKWwMH51W2LGsSGPlnFsAAAAYAZehQIAAAAA4DA0+wAAAAAAOAzNPgAAAAAADhNhdgEAACDwPB6PvvzyS0lSp06dFBkZaXJFAAAgkHhnHwAAhzpw4ICmT5+ugQMHqmPHjoqJiVFMTIw6duyogQMHavr06frkk0/MLhMAAAQAzT4AAA6Tl5enlJQU9e3bV8uWLVNubq5qamoafl5TU6Pc3FwtW7ZMN910k1JSUpSXl2dixQAAwN9o9gEAcAjDMJSVlaUBAwZoz549rX7cnj17NGDAAGVlZckwjABWCAAAgoVmHwAABzAMQ9OmTdP8+fPl8Xgu+vEej0fz58/XtGnTaPgBAHAARzf7n332mZYuXaqhQ4fqv/7rv9SuXTtdeeWVSktL01/+8hezy4MNFBcXy+Vy+dwiIyPVtWtXjRo1Srm5uZKkpUuXyuVyacyYMS1u64MPPlBYWJgGDhyo2traYD0FRyEPoGWLFy/W8uXLL3k7y5cv1+LFi/1QEQAAMJOjr8a/bNkyLV68WElJSRo6dKhiY2OVn5+vN998U2+++aZef/113X///WaXCRtISkrSQw89JEmqqKjQvn37lJ2drTfffFO7du3SjBkztH37dm3YsEEjRozQPffc4/P48vJyjRkzRm63Wxs3blREhKOHXsCRB+ArLy9PCxcu9Nv2Fi5cqLvvvlt9+vTx2zYBAEBwOfoV7qBBg/TBBx/otttu81m/Z88e3XnnnZo0aZJ+8IMfyO12m1Qh7KJXr1564oknfNZlZWVp/vz5evzxx/Xhhx9qw4YN6tOnjzIyMnTo0CHFxMQ03Hf27NkqLi7WkiVLdO211wa5euchD8DX1KlT23Tqfks8Ho+mTp2q3bt3+22bAAAguBx9Gv+IESOaNPqSNHjwYN1xxx36/PPPdfDgQRMqgxOMGzdOkrRv3z5JUkJCgpYuXaqSkhJNmjSp4X45OTlavXq17rjjDs2YMcOUWkMBeSBUHThw4KIuxtdae/bs4Wv5AACwMUc3++cTGRkpSZy+i0t27u/QmDFjlJqaquzsbG3atElffPGFxo8fr86dO2v9+vVyuVwmVhoayAOhZt26dbbcNgAACKyQ7HT/9a9/adeuXfrmN7+pG264wexyYFNr166VJN16660+61evXq0//elPmjJlilJSUnT8+HGtW7dOCQkJZpQZMsgDoerjjz+25bYBAEBghVyz7/F49PDDD6u6ulqLFy9WeHi42SVdFMMwVFlZaXYZQefPz6K2RUFBQcNnxOsvCPf+++8rPj5ezz33nM994+PjtWrVKqWlpWn79u1KTU0971XhA83j8aiiosLv2zQTeQBneTwe5eXlBWz7eXl5On36NGfBAQiqc/+d5N9Ma4mOjubMSDsxQkhdXZ0xevRoQ5KRkZFhdjltUl5ebkgK+dvkyZODcryPHDnSYg1XXnmlkZ+f3+JjBw0aZEgyDh8+HJRa602ePJk8mhFKeXDjxo0bN27cuAXiVl5eHtTXUbg0IfOZfa/Xq7Fjx+r111/XQw89pJUrV5pdEmxk2LBhMgxDhmGotLRUzz33nEpLS5Wamqry8vJmH9O+fXuf/8J/yAMAAAA4v5A4L8/r9WrMmDHauHGjHnzwQW3YsEFhYfb8O0d0dHSLzYyTzZo1S2vWrDG7DElSbGys5syZo9OnT+vpp5/WT3/6Uy1dutTsslqUkZGhJUuW+HWb5NF2gcgDocvj8Sg+Pl41NTUB2b7b7VZJSQmn8QMIqoqKCsXHx0uSSkpK1KFDB5MrQr3o6GizS8BFcPy/3uc2+vfff79ee+01231O/1wulyskJ7z6b0+wkgULFmjdunVasWKFZs6cqcTERLNLalZkZKTff2fIo+0CkQdCW58+fZSbmxuwbV922WUB2TYAtEaHDh34dxNoI3u+vd1K9afub9y4Uenp6fr1r39t60Yf1tK+fXvNnTtXHo9HP//5z80uJ+SRB0LVzTffbMttAwCAwHJ0s//UU0/pV7/6lTp27Kirr75aTz/9tJ544gmf24EDB8wuEzY2YcIEXXXVVdq4caMKCwvNLifkkQdC0dixY225bQAAEFiOPo2/uLhYklReXq5nnnmm2fskJibqpptuCl5RcJSoqCjNnz9f06ZN05NPPqmNGzeaXVJIIw+EoptuukmDBw/Wnj17/LrdwYMH68Ybb/TrNgEAQPA4utnfsGGDNmzYYHYZsLHExEQZhnHe+0ydOlVTp05tsv6DDz4IUFWhizyA5r388ssaMGCAPB6PX7YXGRmp5cuX+2VbAADAHI4+jR8AgFDQp08fPfXUU37b3lNPPaUbbrjBb9sDAADBR7MPAIADzJ07V1OmTLnk7UydOlVz5871Q0UAAMBMNPsAADiAy+XSsmXLtGjRojZ9PWZkZKQWLVqkl156SS6XKwAVAgCAYKLZBwDAIVwul+bNm6fc3FwNHjy41Y8bPHiw9u3bp3nz5tHoAwDgEI6+QB8AAKGoT58+2r17tz755BOtW7dOH3/8sT755BPV1NRIktxut/r06aObb75ZY8eO5ar7AAA4EM0+AAAOdeONN+rFF1+UJJ0+fVqXX365JKmkpESXXXaZiZUBAIBA4zR+AABCQERERLP/DwAAnIlmHwAAAAAAh6HZBwAAAADAYWj2AQAAAABwGJp92JLX6zW7BMsy49iQR8s4NgAAADADzT5swe12+yzXf30UmqqurvZZjoqK8vs+yKP1gpEHAAAA0BjNPmyhcYNUWVlpUiXW1/jYBKK5JI/WC0YeAAAAQGM0+7CFLl26+CwfO3bMpEqs7/jx4z7LMTExft8HebReMPIAAAAAGqPZhy306tXLZ7mgoMCkSqwvPz/fZzk5Odnv+yCP1gtGHgAAAEBjNPuwhcYNUklJic6cOWNSNdZ15swZlZaW+qwLRHNJHq0TrDwAAACAxmj2YQs9e/aUy+XyWdf4HVM0PSZhYWHq0aOH3/dDHq0TrDwAAACAxmj2YQtut1sJCQk+63bt2mVSNda1c+dOn+WEhIQmV873B/JonWDlAQAAADRGsw/bGDZsmM9ydna2SZVYV+Nj0viY+RN5XFgw8wAAAADORbMP20hPT/dZ3rdvn4qKikyqxnoKCwu1f/9+n3WNj5k/kcf5BTsPAAAA4Fw0+7CN2267TbGxsT7rli1bZlI11vPyyy/7LMfFxSklJSVg+yOP8wt2HgAAAMC5aPZhGxEREUpLS/NZt2zZMv3tb38zqSLrOHjwYJNGe8SIEYqIiAjYPsmjZWbkAQAAAJyLZh+2MmfOHJ8LnNXV1WnKlCnyer0mVmUur9erKVOmqK6urmGd2+3WnDlzAr5v8mjKzDwAAACAejT7sJWkpCQ99thjPut2796tzMzMkGwwvV6vMjMztWfPHp/1c+fOVVJSUsD3Tx6+zM4DAAAAqOcyDMMwuwjgYlRWVqp37946evSoz/qMjAytXLlSYWGh8Tes+sZyzZo1PusTExN1+PBhtW/fPih1kMdZVskDaElFRYU6duwoSSovL1eHDh1MrggAmsd8BfhHaLwKh6NER0dr9erVTT7/vGbNGt1+++06ePCgSZUFz8GDB3X77bc3aSwjIiK0atWqoDaW5GGtPAAAAACJZh82NXToUG3evLlJg7lnzx717dtXs2bNUmFhoUnVBU5hYaFmzZqlvn37NjlVPCIiQps3b9bQoUODXhd5WCsPAAAAgNP4YWvbtm3TqFGjVFtb2+zP+/Xrp/T0dN11111KTk5W586dg1zhpTlz5ozy8/O1c+dOZWdnN/ne9nr1jeV9990X5Ap9kcdZVskDOBenxQKwC+YrwD9o9mF7O3bs0MSJE1VcXHzB+8bFxSk5OVndunVTdHS03G63ZT5T7vV6VV1drcrKSh0/flz5+fkqLS294OMSExO1atUqy7yDTB7WygOox4tnAHbBfAX4B80+HOGrr75SVlaWFi9erOrqarPLCQq32625c+dq3rx5lvtMOHlYKw9A4sUzAPtgvgL8g2YfjlJYWKjnn39eW7Zs0YkTJ8wuJyDi4uI0YsQIzZkzx/Jf50YegHXw4hmAXTBfAf5Bsw9Hqq2t1e7du5Wdna2cnBwVFxfLrr/qLpdLiYmJGjZsmNLT05WSktLkQnhWRx6A+XjxDMAumK8A/6DZR0iorq7WkSNHlJ+fr/z8fJWVlamqqkpVVVVml+YjKipKUVFRiomJUXJyspKTk9WjRw+53W6zS/Mr8gCCjxfPAOyC+QrwD5p9AABCAC+eAdgF8xXgH9a47DUAAAAAAPAbmn0AAAAAAByGZh8AAAAAAIeh2QcAAAAAwGFo9gEAAAAAcBiafQAAAAAAHIZmHwAAAAAAh6HZBwAAAADAYWj2AQAAAABwGJp9AAAAAAAchmYfAAAAAACHodkHAAAAAMBhaPYBAAAAAHAYmn0AAAAAAByGZh8AAAAAAIeh2QcAAAAAwGFo9gEAAAAAcBiafQAAAAAAHIZmHwAAAAAAh4kwuwAgGKqrq1VUVKT8/HwVFBTo5MmTqqqqUnV1tdml+XC73YqKilKXLl3Uq1cvJScnq2fPnnK73WaX5lfkYS3kAbSM8WEt5AG0jPGBxmj24Ui1tbX68MMPlZ2drZycHB09elSGYZhdVpu4XC4lJCRo2LBhSk9P12233aaICHsNXfKwFvIAWsb4sBbyAFrG+MAFGYCD5OfnG5mZmUZsbKwhyZG32NhYIzMz0ygoKDD7cF8QeVgLeYS28vLyhuNUXl5udjmWw/iwFvIIbcxX58f4QGvR7MMRKioqjMcff9xo166d6ZNTsG5ut9t4/PHHjYqKCrMPfxPkYS3kAcPgxXNLGB/WQh4wDOarljA+cLFchmHTcz2A/9+OHTs0YcIEHT169IL3jY+PV69evdS9e3dFR0erXbt2CguzxnUqvV6vampqVFlZqWPHjqmgoEAlJSUXfFxiYqJWrVqloUOHBqHKCyMP8ggEp+RhpoqKCnXs2FGSVF5erg4dOphckfkYH9YaH+RhrTzMxHzVlNPGx8GDB/V///d/8ng8jI9AMvuvDcCl2Lp1qxEREdHiXwP79+9vZGVlGbm5ucbp06fNLveinT592sjNzTWysrKMfv36tfg8IyIijK1bt5pdLnmQR1DZLQ+z8U6ZL8aHtcYHeVgrD7MxX/ly0vioq6sz5s6da0hq+F1nfAQOzT5sq6WJLzw83Jg5c6ZRWFhodol+V1BQYMycOdMIDw+33ARIHuRhNivnYQW8eP4a48Na44M8rJWHFTBffc1J46OystIYOXJkw3P4v//7v2bvx/jwH5p92FJOTk6zE19KSopx8OBBs8sLuIMHDxopKSnNToA5OTlBr4c8yMNKrJaHVfDi+SzGh7XGB3lYKw+rYL46y0nj4z//+Y8xaNCghueQmJh4wccwPi4dzT5sp6KiwkhISGgy8DMyMoy6ujqzywuauro6IyMjo8lxSExMNCorK4NWB3mcRR7WYpU8rOTMmTMNx+HMmTNml2MKxsdZVhkf5HGWVfKwEuYrZ42Pv/3tb02ey4MPPtiqxzI+Lg3NPmzn8ccfd8TE5w8tTYALFy4MWg3k8TXysBYr5GGGU6dOGbt27TKysrKM9PR0o2fPnkZUVFST4xAVFWX07NnTSE9PNxYvXmzs2rXLOHXqlNnlBxTj42tWGB/k8TUr5GEG5quWOWV87Ny50+jcuXOT5/LSSy+1ehuhOj78gWYftpKfn2+43e4mpzLZbeLzp7q6OmPw4ME+x8Ttdgfle0nJoynysBYz8wimTz/91JgxY4bRs2fPJi+GLvbWs2dPY8aMGcann35q9tPyK8ZHU8xX1sJ8xXxVzynjY82aNS1eWPCvf/3rRW0rVMaHv9Hsw1YyMzN9Bnl4eLjtPrMUCHl5eU0uYpKZmRnw/ZJH88jDWszKI9A8Ho+xZcsW484772zyIqpHjx7GyJEjjaysLGPnzp1GUVGRUVhY2PDzwsJCo6ioyNi5c6eRlZVljBw50ujRo0eT7dx5553Gli1bDI/HY/bTvWSMj+YxX1kL8xXzlWHYf3zU1dUZjz32WIt/pGnfvr1RU1Nz0dt16vgIJJp92IbH4zFiY2N9BvjMmTPNLssyZs6c6XNs4uLiAvoPHnmcH3lYS7DzCKSvvvrKeOaZZ4yuXbs2PJ+wsDAjNTXVeOutt4yysrJmH9eaC16VlZUZb731lpGammqEhYU13L9r167Gs88+a1RVVQXyqQUM4+P8mK+shfmK+crO46OystJIS0s77xkZgwcPbvP2nTQ+goFmH7axa9euJpOFnb5uJNAKCgqaHJ/33nsvYPsjj/MjD2sJdh6B8pe//MXo3bt3w3OIjY01FixYYBQXF1/wsRd7devi4mJjwYIFPi86e/fubezdu9cfTyWoGB/nx3xlLcxXzFd2HR+Nr7jf0u2xxx5r8z6cMj6ChWYftjFx4kSfgd2/f3+zS7Kcfv36+RyjQJ7aRB4XRh7WEsw8/O2rr74y5s6d2/DuVXx8vLFx48aLeueqrV9lVVVVZWzcuNGIj49veFdu3rx5xldffdWWp2IKxseFMV9ZC/MV85XdxkdzV9yvz6Dxum3btl3Svuw8PoItTIBN5OTk+Cynp6ebVIl1NT4mjY+ZP5HHhZGHtQQzD3/au3ev+vXrp8WLF8vr9Wr06NE6dOiQHn74Ybnd7oDv3+126+GHH9ahQ4c0evRoeb1eZWVlqX///tq7d2/A9+8PjI8LY76yFuartmG+MsfOnTv1ne98R0ePHvVZf9lll+n5559vcv9vf/vbl7Q/u44PU5j91wagNaqqqgyXy+XzV7zc3Fyzy7Kc3NzcJn9NDcRn1sijdcjDWoKVhz9lZ2cbkZGRDe+OXcq7IW19p6yxbdu2GXFxcYYkIzIy0njjjTfavK1gYHy0DvOVtTBfMV/ZZXysXr26yUXzJBmJiYnGoUOHjJUrVzZZf6nsOD7Mwjv7sIWioiIZhuGz7uqrrzapGutKTk72WfZ6vTpy5Ijf90MerUMe1hKsPPxl3bp1uv/+++XxeHTvvffq0KFD+sEPfmB2WfrBD36gw4cP695775XH49GoUaO0fv16s8tqEeOjdZivrIX5yj+YrwLH6/Vq7ty5mjBhgurq6nx+9v/+3//Tn//8Z/Xu3Vsff/yxz89uvvnmS9633caHmWj2YQv5+fk+y/Hx8erUqZNJ1VhX586dFRcX57Ou8bHzB/JoHfKwlmDl4Q/r16/XuHHj5PV6NW7cOG3ZskUxMTFml9UgJiZGW7Zsaahx7Nixln0BzfhoHeYra2G+8h/mK/+rrKzUqFGj9Itf/KLZn7/22muKj4+XpIA0+3YaH2aj2YctFBQU+Cz36tXLpEqsr/FfOwMx+ZFH65GHtQQjj0u1ZcsWjR8/XpI0Y8YMrVmzRuHh4SZX1VR4eLjWrFmjGTNmSJLGjx+vrVu3mlxVU4yP1mO+shbmK/9hvvKvU6dO6auvvmrx51dffbW+973v6eTJk/rnP//p8zN/NPuSPcaHFdDswxZOnjzps9y9e3eTKrG+bt26+SyXlZX5fR/k0XrkYS3ByONS7N27Vw8++KC8Xq/Gjx+vJUuWyOVymV1Wi1wul5YsWdLwjtkDDzygv/71r2aX5YPx0XrMV9bCfOVfzFf+061bN73zzjvavn27EhMTm73P73//e8XGxvqsa9++vW688Ua/1XAuq40Pq6DZhy1UVVX5LEdHR5tUifU1PjaNj50/kEfrkYe1BCOPtqqqqtIjjzzS8JnXlStXWvqFcz2Xy6VVq1Y1fCb2kUcesdxxPRfjo2XMV9bCfOV/zFdtV1dX5/PZfJfLpdTUVB0+fFgLFy5s1TYGDBigyMhIv9Rj5fFhJTT7sIXq6mqf5Xbt2plUifU1/mqbQEx+5NF65GEtwcijrZ588kn9/e9/V3x8vF599VVLngrbkvDwcK1du1ZxcXE6fPiwnnrqKbNLasD4aD3mK2thvgoM5quW1dTU6K9//avWrl2radOmKSUlRTExMWrXrp0iIiIUERGhdu3aKSYmRikpKZo2bZp+85vf6L/+679atX1/ncIvWXt8WEmE2QUAbREWxt+pWmLGsSGPlpGHtVj12Ozdu7fhQkcrV6601MWtWqtLly5auXKlRowYocWLF+u+++7TwIEDzS6rCav+DlgB85W1WPXYMF8FT7B+Bw4cOKB169bpN7/5jU6dOnXe+3o8Hp06dUp79uzRnj17Lmo//mz2rTo+rIajBACAiaqqqjRmzBh5vV6NHj3aEl9X1Vb33Xdfw2d4H3nkkSbvUgGwN+Yr56itrdWqVavUt29f9e3bV8uWLbtgo38xvv/97zd59/3b3/6237aP1qHZBwDAREuWLNHhw4cVHx+vl156yexyLtmyZcsUHx+vw4cP65e//KXZ5QDwI+YrZ/j44481YMAAZWZm6sCBAwHZx+9+9zv16NGj4d38xMREXXnllQHZF1pGsw8AgElqa2u1fPlySdJzzz1ny9NhG4uJiWk4xXfFihWqra01uSIA/sB8ZX9lZWXKyMjQd77zHX3yySct3u/qq69Wenq6nn76ab399tvav3+/Dh06pEOHDmn//v16++239fTTTzd5576xTz/9VB9//LHuuusu3Xffff5+OmgFPrMPAIBJ3nrrLX322WeKi4vTqFGjzC7Hb+6//37NmTNHx48f19tvv82LPMABmK/s7cCBAxo+fLg+++yzZn/evXt3PfLII/rxj3+spKSk826rb9++iomJ0U9/+tNW7Xvnzp06fPiwfvSjH+mmm2662NJxCXhnHwAAk6xYsUKSNH78+Au+Q2Inbrdb48ePl/T1cwRgb8xX9vX73/9et956a7ON/vXXX693331XR44c0VNPPXXBRl+SDMPQd77znSbrlyxZonfffVfXX399k5999tlnuvXWW/X73/++bU8CbUKzDwCACT799FO99957CgsL04QJE8wux+8mTpwol8ulXbt26R//+IfZ5QC4BMxX9vX2228rNTVVFRUVPus7dOig559/Xvv379d///d/X9TXJ/7P//xPs+tnzpyp//7v/9b+/fv1/PPPq0OHDj4/r6io0L333qu333774p8I2oRmHwAAE6xcuVKSNHz4cCUkJJhcjf8lJCRo+PDhkqRXXnnF5GoAXArmK3v66KOPlJaWJo/H47N+8ODB+vvf/67Zs2crMjLyorb55ZdfatGiRU3W//3vf2/4/8jISM2ePVt///vfdeutt/rcr6amRmlpafroo48uar9oG5p9AABMUP/ORv3po05U/9zeeecdkysBcCmYr+zn888/1+jRo5s0+g8++KB27typ7t27t2m7zZ3m37dvX33rW99qsr579+7atWuXHnzwQZ/1Ho9Ho0eP1hdffNGmGtB6jm72q6qq9OijjyolJUVXXXWVoqKidOWVV+qWW27R+vXrm/zyA62xbNkyuVwu/ehHP2r2559//rm6du2q6Oho/fOf/wxydc5WXFwsl8vlc4uMjFTXrl01atQo5ebmSpKWLl0ql8ulMWPGtLitDz74QGFhYRo4cKDjr74bKOTRdp9//rmKiookSbfccovJ1QRO/XMrLCwMuRd1jA9rIY+2Y76yH8MwlJGRoX/9618+68eOHavXXnutzddc+Pjjj3XixIkm6//85z+3+Bi3263XXntNY8eO9Vn/r3/9SxkZGTIMo021oHUcfTX+8vJyvfLKKxo0aJC+//3vKzY2Vp9//rneffddjR07Vv/7v/+rd999V2Fhjv6bB/xs6tSp2rp1q1577TWlpaXp3nvv9fn5lClT9O9//1svvviirr76apOqdLakpCQ99NBDks5+/mvfvn3Kzs7Wm2++qV27dmnGjBnavn27NmzYoBEjRuiee+7xeXx5ebnGjBkjt9utjRs3KiLC0VNhwJHHxdu/f78kqUePHrriiitMriZwYmJilJiYqOLiYu3fv1/f/e53zS4p6Bgf1kIeF4/5yn7WrFmjLVu2+Ky7/fbbtXr16ov6bP65Wroo34svvqh27dqd97Hh4eFavXq1CgsL9eGHHzasf+ONN7R27VplZGS0qSZcmKNnqCuuuEKnT59u8gtYW1uru+66Szt27NC7776r73//+yZVCDtyuVxav369brjhBk2YMEG33HKLunTpIunspLVp0ybdcccdmjZtmsmVOlevXr30xBNP+KzLysrS/Pnz9fjjj+vDDz/Uhg0b1KdPH2VkZOjQoUM+3wc8e/ZsFRcXa8mSJbr22muDXL3zkMfFq38XsX///iZXEngDBgxQcXGxcnNzbf3iua0YH9ZCHheP+cpeKisrNX/+fJ91V1xxhX7961+3udGXWr4o3/Tp01v1+PDwcP3617/WjTfeqFOnTjWsnz9/vn74wx8qOjq6zbWhZY5+SzssLKzZvzRFREQ0fIdmQUFBsMuCAyQmJuqFF15QaWmpJk2aJEkqKSnRpEmT1KlTJ61fv14ul8vkKkPLuHHjJEn79u2TdPZiO0uXLm3IpV5OTo5Wr16tO+64QzNmzDCl1lBAHudXf1wGDBhgciWBV98g1D9nMD6shjzOj/nKXjZs2ODTTEvS+vXr1bVr1zZvszUX5WuNbt26ad26dT7rysrK9Ktf/arNteH8HN3st8Tr9TZ8x2Nz3wMJtMaECRM0bNiwhnfzJ0yYoJMnT2rp0qWOvFKtXZx7SuWYMWOUmpqq7Oxsbdq0SV988YXGjx+vzp078weZICGP5tW/kAyFd8qc8OI5UBgf1kIezWO+so+6ujr98pe/9Fn3ve99T6mpqZe03Yu5KN+F3Hvvvfre977ns+6Xv/yl6urq2lwfWubo0/jr1dTU6Nlnn5VhGCorK9N7772nTz/9VGPGjNGdd95pdnmwsVdffVXXX3+9xowZo+rqag0fPrzJBUgQHGvXrpWkJl/xsnr1av3pT3/SlClTlJKSouPHj2vdunX8QSbAyOP8/v3vf0tq/gWU0/Tq1UvS188ZjA+rIY/zY76yj+3bt6uwsNBn3Zw5cy5pm225KN+FzJ49W++++27DckFBgd56662GM6/hPyHT7D/55JMNyy6XS3PmzGn2dBSrMwxDlZWVZpcRdFb95oSuXbtq6tSpevrppxUZGanVq1ebXVITHo9HFRUVft+mmQoKCho+c1l/gaX3339f8fHxeu6553zuGx8fr1WrViktLU3bt29Xamrqea+yHGjk4fw8LsTr9aqqqkrS2Tk9WPs/dz/BfM71V1r+6quv9OWXXwb9oriMj7ZjvnJ+HhfCfGWv+Wrz5s0+y3379tUdd9zR5u1dykX5zue73/2ubrrpJh04cKBh3W9/+1ua/UAwQkhdXZ1x7NgxY8WKFcbll19u3HLLLcbp06fNLuuilJeXG5JC/jZ58mSzozAMwzBKSkqM2NjYhrpWr15tdknG5MmTHZvHkSNHWqzhyiuvNPLz81t87KBBgwxJxuHDh4NSaz3yaF4o5cHNWjfGR8uYr5oXSnlws9btYsdHQkKCz+NfeeWVS/odnD9/frN1+cOKFSt8tpmYmHhRj288PqzSG1hNSH1mPywsTN26ddOkSZO0evVqffTRR3rmmWfMLgs2lpmZqRMnTigrK0tdunTR7Nmzm3ynKfxv2LBhMgxDhmGotLRUzz33nEpLS5Wamqry8vJmH9O+fXuf/8J/yANoGePDWsgDTvWf//xHR48e9VnX+KMpF8NfF+VrSePaiouLVVJS4pdt42shcRp/c4YOHSpJ+uCDD8wt5CJFR0e3+I+Rk82aNUtr1qwxuwwfr732mrZt26bhw4dr7ty5SkxM1AMPPKBx48Zp586dZpfXICMjQ0uWLPHrNq2UR2xsrObMmaPTp0/r6aef1k9/+lMtXbrU7LJaRB7WEog8LsTr9apz586SpMLCQsXHxwdlvxUVFQ37KikpUYcOHYKy35KSkobP+p45cybop8UyPtqO+cpamK8Cz87z1V/+8hef5U6dOl3S10P686J8zendu7c6duzo09f85S9/ueSLCcJXyDb79RfeiIyMNLmSi+NyuYI24VmJ1XL67LPPNH36dF1xxRUNn9O///779cYbb+iNN97QqlWrNHHiRJOrPCsyMtLvvzNWy0OSFixYoHXr1mnFihWaOXOmEhMTzS6pWeRhLYHIozWioqJUVVVl2pzeoUOHoO23/qrl7du3V6dOnYKyz3MxPtqO+cpamK8Cz87z1SeffOKzPHDgQIWHh7dpW4G4KF9j4eHhGjhwoN5///2GdQcOHKDZ9zNHn8Z/+PDhZi9mV1lZqUcffVSSdPfddwe7LDjAuHHj9MUXX+jll1/WN7/5zYb1K1asUGxsrH7yk580OZUKgdW+fXvNnTtXHo9HP//5z80uJ+SRx/ldddVVktTkqslOVFBQIOnr5wzGh9WQx/kxX9nDl19+6bPcvXv3Nm3HCNBF+ZrTuMZQPHs50Bzd7G/evFlXXnml7r77bk2ePFnz5s3Tww8/rP/6r//S73//ew0ePFizZs0yu0zYzKpVq5STk6ORI0fqwQcf9PlZbGysXnnlFX355ZcaO3Zsw1VdERwTJkzQVVddpY0bN4bEixKrI4+W2f27nC9GKH1H98VgfFgLebSM+coebrzxRj3wwAO69957NXToUN1www1t2s7//M//NLt++vTpl1Jes/r06aOhQ4fq3nvv1QMPPKAbb7zR7/sIdY5u9ocPH64HHnhA//rXv7Rp0ya98MILevfdd9WnTx+tWrVKf/jDH7jYCi7KkSNHNGfOHMXFxemVV15p9j5paWl68MEH9Yc//KHF+yAwoqKiNH/+fNXW1vp83SbMQR4tq38hmZuba3IlgWfnF8+BxPiwFvJoGfOVPTz00EPatGmT3nzzTeXk5Gj27NkXvY1AX5SvsdmzZysnJ0dvvvmmNm3apB/+8IcB2U8oc/Rn9gcMGKABAwaYXQYcpEePHk1Ok2rO66+/rtdffz0IFYWWxMTEC54tMXXqVE2dOrXJertdjNMOyKPt6v9tCoV3yuobhFD795jxYS3k0XbMV6Ej0BflQ/A5+p19AACsqF+/fpLOni106tQpk6sJnLKyMhUXF0v6+jkDsBfmq9AQjIvyIfho9gEACLJvfOMb6tmzpyTpo48+MrmawKl/bklJSbr88svNLQZAmzBfOV8wL8qH4KLZBwDABPfcc48kae3atSZXEjj1z2348OEmVwLgUjBfOVswL8qH4KLZBwDABJMmTZIkvfPOO478qs7i4mK98847kr5+rgDsifnKuYJ9UT4EF80+AAAmuOaaa3TnnXfK6/Vq9erVZpfjd6tXr5ZhGBoyZIiuueYas8sBcAmYr5yLi/I5G80+AAAmmTx5sqSzp49WV1ebXI3/VFdXN5wSW/8cAdgb85XzcFE+56PZBwDAJKmpqeratatKS0u1efNms8vxm9/+9rc6ceKEunXr1vBZXwD2xnzlLFyULzTQ7AMAYJKIiAhNmTJFkvSTn/xEZWVlJld06crKyvTYY49JOvsuWUREhMkVAfAH5itn4aJ8oYFmHwAAEz366KPq3bu3SkpKHPEia9q0aSopKVHv3r316KOPml0OAD9ivnIGLsoXOmj2AQAwkdvt1vr16xUWFqbXX39db775ptkltdm2bdu0adMmhYeHa8OGDXK73WaXBMCPmK+cgYvyhQ6afdiS1+s1uwTLMuPYkEfLyMNarHpsBg0a1HAqaWZmpi1Pjz158qQyMzMlSY899pgGDhxockXNs+rvgBUwX1mLVY8N81XwBOJ34NNPP3XERfmsOj6shmYfttD4r601NTUmVWJ9ja+QGxUV5fd9kEfrkYe1BCOPtvrZz37WcHrsuHHjVFdXZ3ZJrVZXV6fx48ertLRUvXv31s9+9jOzS2rA+Gg95itrYb4KjFCerwzD0MyZM5ust+NF+aw8PqyEZh+20HgAV1ZWmlSJ9TU+NoGY/Mij9cjDWoKRR1tFRUVp/fr1ioyM1Pbt2zVx4kQZhmF2WRdkGIYmTpyo7du3q127dpY7HZbx0XrMV9bCfOV/oT5flZaW6h//+IfPum984xu2vP6ClceHldDswxa6dOnis3zs2DGTKrG+48eP+yzHxMT4fR/k0XrkYS3ByONSDBo0SJs2bVJYWJheffVVzZo1y9IvoA3D0KxZs/Tqq68qLCxMmzZtstzpsIyP1mO+shbmK/9ivpLi4+N1+PBhLVy4UG63Wx06dFBeXp5f9xEsVh8fVkGzD1vo1auXz3JBQYFJlVhffn6+z3JycrLf90EerUce1hKMPC5VWlqa1q5dK+nsqZUZGRmWPEW2/lTYF198UZL06quvasSIESZX1RTjo/WYr6yF+cp/mK++1r59ez355JM6dOiQNm7cqG7duvl9H8Fgh/FhBTT7sIXGA7ikpERnzpwxqRrrOnPmjEpLS33WBWLyI4/WIQ9rCVYe/jBmzBitW7eu4R2ztLQ0S10E6+TJk0pLS2uocf369XrkkUfMLqtZjI/WYb6yFuYr/2G+al5SUpIl/+DRGnYaH2aj2Yct9OzZUy6Xy2dd47/ooekxCQsLU48ePfy+H/JoHfKwlmDl4S9jxozR5s2bGz4T27t3b23bts3ssrRt2zZdd9112r59uyIjI5WdnW3ZF84S46O1mK+shfnKP5ivnMlu48NMNPuwBbfbrYSEBJ91u3btMqka69q5c6fPckJCQkAuPEMerUMe1hKsPPwpLS1Nf/zjH3XttdeqtLRUI0aM0A9/+ENT3jUrKyvT6NGjNWLEiIarWH/00UeWf2eI8dE6zFfWwnx1aZivnM2O48MsNPuwjWHDhvksZ2dnm1SJdTU+Jo2PmT+Rx4WRh7UEMw9/GjRokPbv36958+YpLCxMr7/+uq677jpt3LixyVcPBUJ1dbU2btyo6667ruFiXPPnz9e+ffssd3GrljA+Loz5ylqYr9qG+So02HV8mMIAbGLXrl2GJJ9bYWGh2WVZRkFBQZPj89577wVsf+RxfuRhLcHOI1D27t1r9O7du+E5xMbGGvPnzzeKi4sv+Njy8vKGx5WXl1/w/sXFxcb8+fON2NjYhsf17t3b2Lt3rz+eSlAxPs6P+cpamK+YrxgfLXPK+AgWmn3Yhsfj8ZnEJRkzZ840uyzLmDlzps+xiYuLMzweT8D2Rx7nRx7WEuw8Aumrr74ynn32WaNr164NzycsLMy45557jO3btxtlZWXNPq41L57LysqM7du3G/fcc4/hcrka7t+tWzfj2WefNaqqqgL51AKG8XF+zFfWwnzFfMX4aJmTxkcw0OzDVjIzM30GeHh4uHHw4EGzyzJdXl6eER4e7nNsMjMzA75f8mgeeViLWXkEmsfjMbZu3WoMGTKkybsciYmJxsiRI41FixYZO3bsMIqKiozCwkKfd4mKioqMHTt2GIsWLTJGjhxpJCYmNtnOkCFDjK1btzrihRTjo3nMV9bCfMV8ZRiMj5Y4dXwEEs0+bKWgoMBwu90+gzwlJcWoq6szuzTT1NXVGYMHD/Y5Jm632ygoKAj4vsmjKfKwFjPzCKZPP/3UmDFjhpGUlNTkBfDF3pKSkowZM2YYn376qdlPy68YH00xX1kL8xXzVT3GR1OhMj78jWYftvP44483mewzMjJCcgKsq6szMjIymhyPhQsXBq0G8vgaeViLFfIww+eff2689957xuLFi41Ro0YZSUlJRvv27Zsch/bt2xtJSUnGqFGjjF/84hfGe++9Z3z++edmlx9QjI+vWWF8kMfXrJCHGZivWsb4+Fqojg9/oNmH7VRUVBgJCQkhPwG2NPElJiYalZWVQauDPM4iD2uxSh5WUldXZ5SVlRllZWUh9btwLsbHWVYZH+RxllXysBLmK8ZHPcbHpaHZhy3l5OQYERERTQb+4MGDjby8PLPLC7i8vLwmpzJJMiIiIoycnJyg10Me5GElVssD1sL4sNb4IA9r5QFrYXwwPi4VzT5sa+vWrc1OgOHh4cbMmTMd+RmegoICY+bMmU0uTlI/8W3dutW02siDPMxm5TxgLYwPa40P8rBWHrAWxgfj41LQ7MPWWpoA62/9+vUzFi1aZOTm5hqnT582u9yLdvr0aSM3N9dYtGiR0a9fvxafp1UmPvIgj2CyWx6wFsaHtcYHeVgrD1gL44Px0VYuwzAMATa2Y8cOTZw4UcXFxRe8b1xcnJKTk9WtWzdFR0fL7XYrLCws8EW2gtfrVXV1tSorK3X8+HHl5+ertLT0go9LTEzUqlWrNHTo0CBUeWHkQR6B4JQ8YC2MD2uND/KwVh6wFsYH46NNzP5rA+APlZWVxsKFC5t8TYmTb26321i4cKElL05CHtZCHkDLGB/WQh5AyxgfuFg0+3CUgoICIzMz04iNjTV9cgrULS4uzsjMzLTFZ7TIw1rIA2gZ48NayANoGeMDrcVp/HCk2tpa7d69W9nZ2crJyVFxcbHs+qvucrmUmJioYcOGKT09XSkpKYqIiDC7rItCHtZCHkDLGB/WQh5AyxgfuBCafYSE6upqHTlyRPn5+crPz1dZWZmqqqpUVVVldmk+oqKiFBUVpZiYGCUnJys5OVk9evSQ2+02uzS/Ig9rIQ+gZYwPayEPoGWMDzRGsw8AAAAAgMNY47KMAAAAAADAb2j2AQAAAABwGJp9AAAAAAAchmYfAAAAAACHodkHAAAAAMBhaPYBAAAAAHAYmn0AAAAAAByGZh8AAAAAAIeh2QcAAAAAwGFo9gEAAAAAcBiafQAAAAAAHIZmHwAAAAAAh6HZBwAAAADAYWj2AQAAAABwGJp9AAAAAAAchmYfAAAAAACHodkHAAAAAMBhaPYBAAAAAHAYmn0AAAAAAByGZh8AAAAAAIeh2QcAAAAAwGFo9gEAAAAAcBiafQAAAAAAHIZmHwAAAAAAh6HZBwAAAADAYWj2AQAAAABwGJp9AAAAAAAchmYfAAAAAACHodkHAAAAAMBhaPYBAAAAAHAYmn0AAAAAAByGZh8AAAAAAIeh2QcAAAAAwGFo9gEAAAAAcBiafQAAAAAAHIZmHwAAAAAAh6HZBwAAAADAYWj2AQAAAABwGJp9AAAAAAAchmYfAAAAAACHodkHAAAAAMBhaPYBAAAAAHAYmn0AAAAAAByGZh8AAAAAAIeh2QcAAAAAwGFo9gEAAAAAcBiafQAAAAAAHIZmHwAAAAAAh6HZBwAAAADAYWj2AQAAAABwGJp9AAAAAAAchmYfAAAAAACHodkHAAAAAMBhaPYBAAAAAHAYmn0AAAAAAByGZh8AAAAAAIeh2QcAAAAAwGFo9gEAAAAAcBiafQAAAAAAHIZmHwAAAAAAh6HZBwAAAADAYWj2AQAAAABwGJp9AAAAAAAchmYfAAAAAACHodkHAAAAAMBhaPYBAAAAAHAYmn0AAAAAAByGZh8AAAAAAIeh2QcAAAAAwGH+Pw0H1IMvLMYAAAAAAElFTkSuQmCC\n"
+          },
+          "metadata": {}
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "<Figure size 180x180 with 1 Axes>"
+            ],
+            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAKoAAACuCAYAAACm55aUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAKAUlEQVR4nO3af0xV9R/H8dcRZ6iBSTCMXX60SVe5MK7gIlnXQksNNoTBILAJ626MWavV5rTWiq3WD3Ne19Z/JjdKGRoFf9T8QwSdEyNWsNCBa4zGYsYCghvC9HLe3z/a906+IXC5ly++6fXY7gb38Dmfz7n3yTnnDgwRERDd51Ys9QKI5oOhkgoMlVRgqKQCQyUVGCqpwFBJBYZKKjBUUsGvUBMSEmC1WmG3232Pn3/+OeiLmpycREREBLq6uqY9Pzg4iLVr1+L333+/59jy8nIcP3486GsCgB9++AGZmZlYs2YN8vLy5j2upaUFdrvdr7kWMgYA3G63X2uby9NPP41HH30UdrsdNpsN2dnZs77+i8XvM2pdXR06Ojp8j5SUlKAvKjQ0FPv27UN1dfW052tqarBr1y5ER0cHfc75eOSRR3D8+HG4XK4lmX+puFwudHR04Nq1a4iPj8fRo0f93sfU1FRAawjKpb+npwcWiwW9vb0AgKNHj2LPnj0wTRNutxs7duxAbm4ukpKSsH37dvT19c25T6fTiS+//BJ37tzxPVddXQ2n04mmpiZs27YNW7Zsgc1mw2effRaMw5iTxWLB448/jgceeOAf29rb25Gdne3X/rxeL3bv3o2tW7fCZrOhtLQU4+Pj07bv378fycnJSE9PR0dHh2/bF198gYyMDKSlpWH79u3o7Oxc8HH5s96//voL69evBwDcvHkTWVlZSE9Ph81mw8svvwzTNAH8fWbPyspCQUEBUlJS0NbWhvfeew+bN2/2XY1//fXX+U8ufoiPj5fHHntMUlNTfY9bt26JiMjp06clPT1dmpubJSEhQQYHB0VEpLq6WlatWiXXr18XEZGPPvpInn322XnNl5aWJt98842IiLS2tkpMTIx4vV4ZHh4Wr9crIiJDQ0MSFxcn/f39IiJSVlYmLpdrzn13d3dPO467H+Xl5bOOra6ulr17987rGEREmpubJTU19R/Pm6Ypf/zxh+/ryspK+eCDD3xjAMj58+dFRKSurk6sVquYpimXL1+W5557TiYnJ0VE5NKlS5KUlDTn2o4cOXLPY/76669nHPPUU09JQkKCpKamSmRkpKSkpMiff/4pIiITExPi8XhERMTr9UpOTo7U1tb61rF69Wrp7u4WEZHh4WFZt26dr5fx8XGZmJiY92u40t/fqrq6uhnvnUpKStDc3Izdu3ejqakJUVFRvm2ZmZnYvHkzAKCiogJvvfUWpqamEBISMutcTqcTJ0+eRF5eHk6ePImysjKEhIRgaGgITqcTN27cwMqVKzE0NISuri5YLJZ5H4fVap12hloKIgKXy4Vvv/0WXq8Xo6OjyMzM9G1PSEjAzp07AQBFRUWoqKhAf38/Ghsb0dnZiYyMDN/PDg8PY2JiYtb5Dh48iIMHD/q9TpfLhby8PIgIqqqq8OKLL6K+vh6maeLQoUO4fPkyRASDg4NITk7G888/D+Dv991qtQIAwsPDkZiYiBdeeAG7du1CTk6OX++X36Hei9frRVdXFyIiIvDbb78FZZ+lpaU4fPgwent7cebMGbS3twMAKisrkZ2djfr6ehiGgbS0NExOTvq1756eHhQXF8+4bcuWLf+4P14Mp0+fxoULF3Dx4kWEh4fjk08+wYULF+7584ZhwDAMiAjKysrw/vvv+zXfxx9/jFOnTs247Z133kF+fv6s4w3DQHFxse8e9dixYxgcHMT333+P0NBQvP7669PehwcffND3dUhICK5evYorV66gpaUFTzzxBGpra+FwOOa19qCFevjwYVitVtTU1PjuWzZu3AgAaG1tRXd3NzZt2oQTJ04gKytrzrMpADz00EPIzc1FcXEx7Ha7b38jIyOIj4+HYRi4dOnSgu7Pgn1GbWtrwxtvvIGmpqZ5jxkZGUFkZCTCw8Ph8XjgdrsRFxfn297X14fm5mZkZWXhq6++QnR0NCwWC3Jzc7Fv3z5UVlYiLi4Opmnixx9/xNatW2edb6Fn1Ls1NTX5zpIjIyPYsGEDQkNDcfPmTZw9exYFBQUzjvN4PPB4PHA4HHA4HLh27Rp++umnxQu1uLgYq1ev9n3vcrkwPj6Oc+fOoa2tDWvWrMGxY8dQVFSEK1euAPj7EnDo0CH88ssvePjhh1FTUwMAGBgYQHZ29qzBOJ1O7NixwzcGAD788EMcOHAA7777Lux2+7RL4N3a29vx9ttv47vvvvP3MGfU09ODnTt34tatW5iYmIDFYsGbb76JAwcOoK+vb9rr8r+uX78+7VK3bds2nDhxAo2NjbBarYiKioLD4Zj2AcNms8HtduOVV17BqlWrUFtbC8Mw4HA4cOTIEeTn58Pr9eL27dvIycmZM9SFeu2111BVVQXTNLF+/Xp8/vnnAIBXX30VhYWFsNlsiImJwTPPPHPPfYyOjqKwsBDj4+MwDAOJiYkoKyub9xoMkcX9D3+3242GhgY0NDQs5jRL7qWXXkJJSQmefPLJpV7KshS0S/+/3aeffrrUS1jWFv2MShQM/Fs/qcBQSQWGSioE9GHKNE0MDAwgLCwMhmEEa020zIgIPB4PYmJisGLFws6NAYU6MDCA2NjYQHZB/yL9/f1+/dn0bgGFGhYWFsjwZWt0dHSpl3BfGRsbQ2xsbEC9BBQqL/czCw8PX+ol3JcC6YUfpkgFhkoqMFRSgaGSCgyVVGCopAJDJRUYKqnAUEkFhkoqMFRSgaGSCgyVVGCopAJDJRUYKqnAUEkFhkoqMFRSgaGSCgyVVGCopAJDJRUYKqnAUEkFhkoqMFRSgaGSCgyVVGCopAJDJRUYKqnAUEkFhkoqMFRSgaGSCgyVVGCopAJDJRUYKqnAUEkFhkoqMFRSgaGSCgyVVGCopAJDJRUYKqnAUEkFhkoqMFRSgaGSCgyVVGCopAJDJRUYKqnAUEkFhkoqMFRSgaGSCgyVVGCopAJDJRUYKqnAUEkFhkoqMFRSgaGSCgyVVGCopAJDJRUYKqnAUEkFhkoqMFRSgaGSCgyVVGCopAJDJRUYKqnAUEkFhkoqMFRSgaGSCgyVVGCopAJDJRUYKqnAUEkFhkoqMFRSgaGSCgyVVGCopAJDJRUYKqnAUEkFhkoqMFRSgaGSCgyVVGCopAJDJRUYKqnAUEkFhkoqMFRSgaGSCgyVVGCopAJDJRUYKqnAUEkFhkoqMFRSgaGSCgyVVGCopAJDJRUYKqnAUEkFhkoqMFRSgaGSCgyVVGCopAJDJRUYKqnAUEkFhkoqMFRSgaGSCgyVVGCopAJDJRVWBjJYRIK1jmVlbGxsqZdwX/nv6xFILwGF6vF4Ahm+bK1bt26pl3Bf8ng8C35tDAkgc9M0MTAwgLCwMBiGsdDd0DInIvB4PIiJicGKFQu72wwoVKL/F36YIhUYKqnAUEkFhkoqMFRSgaGSCgyVVPgPfOuL+z0/2KIAAAAASUVORK5CYII=\n"
+          },
+          "metadata": {}
+        }
+      ],
+      "source": [
+        "for image in BAS:\n",
+        "    fig, ax = qml.draw_mpl(circuit, expansion_strategy=\"device\")(image, params)\n",
+        "    plt.figure(figsize=[1.8, 1.8])\n",
+        "    plt.imshow(np.reshape(image, [2, 2]), cmap=\"gray\")\n",
+        "    plt.title(\n",
+        "        f\"Exp. Val. = {circuit(image,params):.0f};\"\n",
+        "        + f\" Label = {'Bars' if circuit(image,params)>0 else 'Stripes'}\",\n",
+        "        fontsize=8,\n",
+        "    )\n",
+        "    plt.xticks([])\n",
+        "    plt.yticks([])"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "1Rl2lHItqtzK"
+      },
+      "source": [
+        "The resulting labels are all correct. For images with stripes, the\n",
+        "circuit outputs an expectation value of minus one, corresponding to\n",
+        "stripes and for images with bars the circuit outputs an expectation\n",
+        "value of positive one, corresponding to bars.\n",
+        "\n",
+        "References {#tn_circuits_references}\n",
+        "==========\n",
+        "\n",
+        "About the authors\n",
+        "=================\n"
+      ]
+    }
+  ],
+  "metadata": {
+    "kernelspec": {
+      "display_name": "Python 3",
+      "language": "python",
+      "name": "python3"
+    },
+    "language_info": {
+      "codemirror_mode": {
+        "name": "ipython",
+        "version": 3
+      },
+      "file_extension": ".py",
+      "mimetype": "text/x-python",
+      "name": "python",
+      "nbconvert_exporter": "python",
+      "pygments_lexer": "ipython3",
+      "version": "3.9.17"
+    },
+    "colab": {
+      "provenance": []
+    }
+  },
+  "nbformat": 4,
+  "nbformat_minor": 0
+}