# -*- coding: utf-8 -*-
from keras.engine.topology import Layer
from keras import backend as K
# class AvgAggregator(Layer):
# def __init__(self, activation: str ='relu', initializer='glorot_normal', regularizer=None,
# **kwargs):
# super(AvgAggregator, self).__init__(**kwargs)
# if activation == 'relu':
# self.activation = K.relu
# elif activation == 'tanh':
# self.activation = K.tanh
# else:
# raise ValueError(f'`activation` not understood: {activation}')
# self.initializer = initializer
# self.regularizer = regularizer
# def build(self, input_shape):
# ent_embed_dim = input_shape[0][-1]
# self.w = self.add_weight(name=self.name+'_w', shape=(ent_embed_dim, ent_embed_dim),
# initializer=self.initializer, regularizer=self.regularizer)
# self.b = self.add_weight(name=self.name+'_b', shape=(ent_embed_dim,), initializer='zeros')
# super(SumAggregator, self).build(input_shape)
class SumAggregator(Layer):
def __init__(self, activation: str ='relu', initializer='glorot_normal', regularizer=None,
**kwargs):
super(SumAggregator, self).__init__(**kwargs)
if activation == 'relu':
self.activation = K.relu
elif activation == 'tanh':
self.activation = K.tanh
else:
raise ValueError(f'`activation` not understood: {activation}')
self.initializer = initializer
self.regularizer = regularizer
def build(self, input_shape):
ent_embed_dim = input_shape[0][-1]
self.w = self.add_weight(name=self.name+'_w', shape=(ent_embed_dim, ent_embed_dim),
initializer=self.initializer, regularizer=self.regularizer)
self.b = self.add_weight(name=self.name+'_b', shape=(ent_embed_dim,), initializer='zeros')
super(SumAggregator, self).build(input_shape)
def call(self, inputs, **kwargs):
entity, neighbor = inputs
return self.activation(K.dot((entity + neighbor), self.w) + self.b)
def compute_output_shape(self, input_shape):
return input_shape[0]
class ConcatAggregator(Layer):
def __init__(self, activation: str = 'relu', initializer='glorot_normal', regularizer=None,
**kwargs):
super(ConcatAggregator, self).__init__(**kwargs)
if activation == 'relu':
self.activation = K.relu
elif activation == 'tanh':
self.activation = K.tanh
else:
raise ValueError(f'`activation` not understood: {activation}')
self.initializer = initializer
self.regularizer = regularizer
def build(self, input_shape):
ent_embed_dim = input_shape[0][-1]
neighbor_embed_dim = input_shape[1][-1]
self.w = self.add_weight(name=self.name + '_w',
shape=(ent_embed_dim+neighbor_embed_dim, ent_embed_dim),
initializer=self.initializer, regularizer=self.regularizer)
self.b = self.add_weight(name=self.name + '_b', shape=(ent_embed_dim,),
initializer='zeros')
super(ConcatAggregator, self).build(input_shape)
def call(self, inputs, **kwargs):
entity, neighbor = inputs
return self.activation(K.dot(K.concatenate([entity, neighbor]), self.w) + self.b)
def compute_output_shape(self, input_shape):
return input_shape[0]
class NeighAggregator(Layer):
def __init__(self, activation: str = 'relu', initializer='glorot_normal', regularizer=None,
**kwargs):
super(NeighAggregator, self).__init__()
if activation == 'relu':
self.activation = K.relu
elif activation == 'tanh':
self.activation = K.tanh
else:
raise ValueError(f'`activation` not understood: {activation}')
self.initializer = initializer
self.regularizer = regularizer
def build(self, input_shape):
ent_embed_dim = input_shape[0][-1]
neighbor_embed_dim = input_shape[1][-1]
self.w = self.add_weight(name=self.name + '_w',
shape=(neighbor_embed_dim, ent_embed_dim),
initializer=self.initializer, regularizer=self.regularizer)
self.b = self.add_weight(name=self.name + '_b', shape=(ent_embed_dim,),
initializer='zeros')
super(NeighAggregator, self).build(input_shape)
def call(self, inputs, **kwargs):
entity, neighbor = inputs
return self.activation(K.dot(neighbor, self.w) + self.b)
def compute_output_shape(self, input_shape):
return input_shape[0]