|
a |
|
b/callbacks/eval.py |
|
|
1 |
''' |
|
|
2 |
@Author: your name |
|
|
3 |
@Date: 2020-01-06 14:04:27 |
|
|
4 |
@LastEditTime : 2020-01-06 17:28:15 |
|
|
5 |
@LastEditors : Please set LastEditors |
|
|
6 |
@Description: In User Settings Edit |
|
|
7 |
@FilePath: /KGCN_Keras-master/callbacks/eval.py |
|
|
8 |
''' |
|
|
9 |
# -*- coding: utf-8 -*- |
|
|
10 |
|
|
|
11 |
from collections import defaultdict |
|
|
12 |
|
|
|
13 |
import numpy as np |
|
|
14 |
from keras.callbacks import Callback |
|
|
15 |
from sklearn.metrics import roc_auc_score, accuracy_score, f1_score, average_precision_score,precision_recall_curve |
|
|
16 |
import sklearn.metrics as m |
|
|
17 |
from utils import write_log |
|
|
18 |
|
|
|
19 |
#添加指标:ACC, AUPR, AUC-ROC, F1 +std |
|
|
20 |
|
|
|
21 |
class KGCNMetric(Callback): |
|
|
22 |
def __init__(self, x_train, y_train, x_valid, y_valid,aggregator_type,dataset,K_fold): |
|
|
23 |
self.x_train = x_train |
|
|
24 |
self.y_train = y_train |
|
|
25 |
self.x_valid = x_valid |
|
|
26 |
self.y_valid = y_valid |
|
|
27 |
self.aggregator_type=aggregator_type |
|
|
28 |
self.dataset=dataset |
|
|
29 |
self.k=K_fold |
|
|
30 |
self.threshold=0.5 |
|
|
31 |
# self.user_list, self.train_record, self.valid_record, \ |
|
|
32 |
# self.item_set, self.k_list = self.topk_settings() |
|
|
33 |
|
|
|
34 |
super(KGCNMetric, self).__init__() |
|
|
35 |
|
|
|
36 |
def on_epoch_end(self, epoch, logs=None): |
|
|
37 |
y_pred = self.model.predict(self.x_valid).flatten() |
|
|
38 |
y_true = self.y_valid.flatten() |
|
|
39 |
auc = roc_auc_score(y_true=y_true, y_score=y_pred)# roc曲线的auc |
|
|
40 |
precision, recall, _thresholds = precision_recall_curve(y_true=y_true, probas_pred=y_pred) |
|
|
41 |
aupr=m.auc(recall,precision) |
|
|
42 |
y_pred = [1 if prob >= self.threshold else 0 for prob in y_pred] |
|
|
43 |
acc = accuracy_score(y_true=y_true, y_pred=y_pred) |
|
|
44 |
f1 = f1_score(y_true=y_true, y_pred=y_pred) |
|
|
45 |
|
|
|
46 |
print(type(aupr)) |
|
|
47 |
logs['val_aupr']=float(aupr) |
|
|
48 |
logs['val_auc'] = float(auc) |
|
|
49 |
logs['val_acc'] = float(acc) |
|
|
50 |
logs['val_f1'] = float(f1) |
|
|
51 |
|
|
|
52 |
logs['dataset']=self.dataset |
|
|
53 |
logs['aggregator_type']=self.aggregator_type |
|
|
54 |
logs['kfold']=self.k |
|
|
55 |
logs['epoch_count']=epoch+1 |
|
|
56 |
print(f'Logging Info - epoch: {epoch+1}, val_auc: {auc}, val_aupr: {aupr}, val_acc: {acc}, val_f1: {f1}') |
|
|
57 |
write_log('log/train_history.txt',logs,mode='a') |
|
|
58 |
|
|
|
59 |
@staticmethod |
|
|
60 |
def get_user_record(data, is_train): |
|
|
61 |
user_history_dict = defaultdict(set) |
|
|
62 |
for interaction in data: |
|
|
63 |
user = interaction[0] |
|
|
64 |
item = interaction[1] |
|
|
65 |
label = interaction[2] |
|
|
66 |
if is_train or label == 1: |
|
|
67 |
user_history_dict[user].add(item) |
|
|
68 |
return user_history_dict |
|
|
69 |
|