[21b321]: / layers / aggregator.py

Download this file

115 lines (96 with data), 4.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
# -*- coding: utf-8 -*-
from keras.engine.topology import Layer
from keras import backend as K
# class AvgAggregator(Layer):
# def __init__(self, activation: str ='relu', initializer='glorot_normal', regularizer=None,
# **kwargs):
# super(AvgAggregator, self).__init__(**kwargs)
# if activation == 'relu':
# self.activation = K.relu
# elif activation == 'tanh':
# self.activation = K.tanh
# else:
# raise ValueError(f'`activation` not understood: {activation}')
# self.initializer = initializer
# self.regularizer = regularizer
# def build(self, input_shape):
# ent_embed_dim = input_shape[0][-1]
# self.w = self.add_weight(name=self.name+'_w', shape=(ent_embed_dim, ent_embed_dim),
# initializer=self.initializer, regularizer=self.regularizer)
# self.b = self.add_weight(name=self.name+'_b', shape=(ent_embed_dim,), initializer='zeros')
# super(SumAggregator, self).build(input_shape)
class SumAggregator(Layer):
def __init__(self, activation: str ='relu', initializer='glorot_normal', regularizer=None,
**kwargs):
super(SumAggregator, self).__init__(**kwargs)
if activation == 'relu':
self.activation = K.relu
elif activation == 'tanh':
self.activation = K.tanh
else:
raise ValueError(f'`activation` not understood: {activation}')
self.initializer = initializer
self.regularizer = regularizer
def build(self, input_shape):
ent_embed_dim = input_shape[0][-1]
self.w = self.add_weight(name=self.name+'_w', shape=(ent_embed_dim, ent_embed_dim),
initializer=self.initializer, regularizer=self.regularizer)
self.b = self.add_weight(name=self.name+'_b', shape=(ent_embed_dim,), initializer='zeros')
super(SumAggregator, self).build(input_shape)
def call(self, inputs, **kwargs):
entity, neighbor = inputs
return self.activation(K.dot((entity + neighbor), self.w) + self.b)
def compute_output_shape(self, input_shape):
return input_shape[0]
class ConcatAggregator(Layer):
def __init__(self, activation: str = 'relu', initializer='glorot_normal', regularizer=None,
**kwargs):
super(ConcatAggregator, self).__init__(**kwargs)
if activation == 'relu':
self.activation = K.relu
elif activation == 'tanh':
self.activation = K.tanh
else:
raise ValueError(f'`activation` not understood: {activation}')
self.initializer = initializer
self.regularizer = regularizer
def build(self, input_shape):
ent_embed_dim = input_shape[0][-1]
neighbor_embed_dim = input_shape[1][-1]
self.w = self.add_weight(name=self.name + '_w',
shape=(ent_embed_dim+neighbor_embed_dim, ent_embed_dim),
initializer=self.initializer, regularizer=self.regularizer)
self.b = self.add_weight(name=self.name + '_b', shape=(ent_embed_dim,),
initializer='zeros')
super(ConcatAggregator, self).build(input_shape)
def call(self, inputs, **kwargs):
entity, neighbor = inputs
return self.activation(K.dot(K.concatenate([entity, neighbor]), self.w) + self.b)
def compute_output_shape(self, input_shape):
return input_shape[0]
class NeighAggregator(Layer):
def __init__(self, activation: str = 'relu', initializer='glorot_normal', regularizer=None,
**kwargs):
super(NeighAggregator, self).__init__()
if activation == 'relu':
self.activation = K.relu
elif activation == 'tanh':
self.activation = K.tanh
else:
raise ValueError(f'`activation` not understood: {activation}')
self.initializer = initializer
self.regularizer = regularizer
def build(self, input_shape):
ent_embed_dim = input_shape[0][-1]
neighbor_embed_dim = input_shape[1][-1]
self.w = self.add_weight(name=self.name + '_w',
shape=(neighbor_embed_dim, ent_embed_dim),
initializer=self.initializer, regularizer=self.regularizer)
self.b = self.add_weight(name=self.name + '_b', shape=(ent_embed_dim,),
initializer='zeros')
super(NeighAggregator, self).build(input_shape)
def call(self, inputs, **kwargs):
entity, neighbor = inputs
return self.activation(K.dot(neighbor, self.w) + self.b)
def compute_output_shape(self, input_shape):
return input_shape[0]