--- a +++ b/train.py @@ -0,0 +1,462 @@ +import os +import time +import random +import pickle +import argparse +import os.path as osp + +import torch +import torch.utils.data +from torch import nn +from torch_geometric.loader import DataLoader + +import wandb +from rdkit import RDLogger + +torch.set_num_threads(5) +RDLogger.DisableLog('rdApp.*') + +from src.util.utils import * +from src.model.models import Generator, Discriminator, simple_disc +from src.data.dataset import DruggenDataset +from src.data.utils import get_encoders_decoders, load_molecules +from src.model.loss import discriminator_loss, generator_loss + +class Train(object): + """Trainer for DrugGEN.""" + + def __init__(self, config): + if config.set_seed: + np.random.seed(config.seed) + random.seed(config.seed) + torch.manual_seed(config.seed) + torch.cuda.manual_seed_all(config.seed) + + torch.backends.cudnn.deterministic = True + torch.backends.cudnn.benchmark = False + + os.environ["PYTHONHASHSEED"] = str(config.seed) + + print(f'Using seed {config.seed}') + + self.device = torch.device("cuda" if torch.cuda.is_available() else 'cpu') + + # Initialize configurations + self.submodel = config.submodel + + # Data loader. + self.raw_file = config.raw_file # SMILES containing text file for dataset. + # Write the full path to file. + self.drug_raw_file = config.drug_raw_file # SMILES containing text file for second dataset. + # Write the full path to file. + + # Automatically infer dataset file names from raw file names + raw_file_basename = osp.basename(self.raw_file) + drug_raw_file_basename = osp.basename(self.drug_raw_file) + + # Get the base name without extension and add max_atom to it + self.max_atom = config.max_atom # Model is based on one-shot generation. + raw_file_base = os.path.splitext(raw_file_basename)[0] + drug_raw_file_base = os.path.splitext(drug_raw_file_basename)[0] + + # Change extension from .smi to .pt and add max_atom to the filename + self.dataset_file = f"{raw_file_base}{self.max_atom}.pt" + self.drugs_dataset_file = f"{drug_raw_file_base}{self.max_atom}.pt" + + self.mol_data_dir = config.mol_data_dir # Directory where the dataset files are stored. + self.drug_data_dir = config.drug_data_dir # Directory where the drug dataset files are stored. + self.dataset_name = self.dataset_file.split(".")[0] + self.drugs_dataset_name = self.drugs_dataset_file.split(".")[0] + self.features = config.features # Small model uses atom types as node features. (Boolean, False uses atom types only.) + # Additional node features can be added. Please check new_dataloarder.py Line 102. + self.batch_size = config.batch_size # Batch size for training. + + self.parallel = config.parallel + + # Get atom and bond encoders/decoders + atom_encoder, atom_decoder, bond_encoder, bond_decoder = get_encoders_decoders( + self.raw_file, + self.drug_raw_file, + self.max_atom + ) + self.atom_encoder = atom_encoder + self.atom_decoder = atom_decoder + self.bond_encoder = bond_encoder + self.bond_decoder = bond_decoder + + self.dataset = DruggenDataset(self.mol_data_dir, + self.dataset_file, + self.raw_file, + self.max_atom, + self.features, + atom_encoder=atom_encoder, + atom_decoder=atom_decoder, + bond_encoder=bond_encoder, + bond_decoder=bond_decoder) + + self.loader = DataLoader(self.dataset, + shuffle=True, + batch_size=self.batch_size, + drop_last=True) # PyG dataloader for the GAN. + + self.drugs = DruggenDataset(self.drug_data_dir, + self.drugs_dataset_file, + self.drug_raw_file, + self.max_atom, + self.features, + atom_encoder=atom_encoder, + atom_decoder=atom_decoder, + bond_encoder=bond_encoder, + bond_decoder=bond_decoder) + + self.drugs_loader = DataLoader(self.drugs, + shuffle=True, + batch_size=self.batch_size, + drop_last=True) # PyG dataloader for the second GAN. + + self.m_dim = len(self.atom_decoder) if not self.features else int(self.loader.dataset[0].x.shape[1]) # Atom type dimension. + self.b_dim = len(self.bond_decoder) # Bond type dimension. + self.vertexes = int(self.loader.dataset[0].x.shape[0]) # Number of nodes in the graph. + + # Model configurations. + self.act = config.act + self.lambda_gp = config.lambda_gp + self.dim = config.dim + self.depth = config.depth + self.heads = config.heads + self.mlp_ratio = config.mlp_ratio + self.ddepth = config.ddepth + self.ddropout = config.ddropout + + # Training configurations. + self.epoch = config.epoch + self.g_lr = config.g_lr + self.d_lr = config.d_lr + self.dropout = config.dropout + self.beta1 = config.beta1 + self.beta2 = config.beta2 + + # Directories. + self.log_dir = config.log_dir + self.sample_dir = config.sample_dir + self.model_save_dir = config.model_save_dir + + # Step size. + self.log_step = config.log_sample_step + + # resume training + self.resume = config.resume + self.resume_epoch = config.resume_epoch + self.resume_iter = config.resume_iter + self.resume_directory = config.resume_directory + + # wandb configuration + self.use_wandb = config.use_wandb + self.online = config.online + self.exp_name = config.exp_name + + # Arguments for the model. + self.arguments = "{}_{}_glr{}_dlr{}_dim{}_depth{}_heads{}_batch{}_epoch{}_dataset{}_dropout{}".format(self.exp_name, self.submodel, self.g_lr, self.d_lr, self.dim, self.depth, self.heads, self.batch_size, self.epoch, self.dataset_name, self.dropout) + + self.build_model(self.model_save_dir, self.arguments) + + + def build_model(self, model_save_dir, arguments): + """Create generators and discriminators.""" + + ''' Generator is based on Transformer Encoder: + + @ g_conv_dim: Dimensions for MLP layers before Transformer Encoder + @ vertexes: maximum length of generated molecules (atom length) + @ b_dim: number of bond types + @ m_dim: number of atom types (or number of features used) + @ dropout: dropout possibility + @ dim: Hidden dimension of Transformer Encoder + @ depth: Transformer layer number + @ heads: Number of multihead-attention heads + @ mlp_ratio: Read-out layer dimension of Transformer + @ drop_rate: depricated + @ tra_conv: Whether module creates output for TransformerConv discriminator + ''' + self.G = Generator(self.act, + self.vertexes, + self.b_dim, + self.m_dim, + self.dropout, + dim=self.dim, + depth=self.depth, + heads=self.heads, + mlp_ratio=self.mlp_ratio) + + ''' Discriminator implementation with Transformer Encoder: + + @ act: Activation function for MLP + @ vertexes: maximum length of generated molecules (molecule length) + @ b_dim: number of bond types + @ m_dim: number of atom types (or number of features used) + @ dropout: dropout possibility + @ dim: Hidden dimension of Transformer Encoder + @ depth: Transformer layer number + @ heads: Number of multihead-attention heads + @ mlp_ratio: Read-out layer dimension of Transformer''' + + self.D = Discriminator(self.act, + self.vertexes, + self.b_dim, + self.m_dim, + self.ddropout, + dim=self.dim, + depth=self.ddepth, + heads=self.heads, + mlp_ratio=self.mlp_ratio) + + self.g_optimizer = torch.optim.AdamW(self.G.parameters(), self.g_lr, [self.beta1, self.beta2]) + self.d_optimizer = torch.optim.AdamW(self.D.parameters(), self.d_lr, [self.beta1, self.beta2]) + + network_path = os.path.join(model_save_dir, arguments) + self.print_network(self.G, 'G', network_path) + self.print_network(self.D, 'D', network_path) + + if self.parallel and torch.cuda.device_count() > 1: + print(f"Using {torch.cuda.device_count()} GPUs!") + self.G = nn.DataParallel(self.G) + self.D = nn.DataParallel(self.D) + + self.G.to(self.device) + self.D.to(self.device) + + def print_network(self, model, name, save_dir): + """Print out the network information.""" + num_params = 0 + for p in model.parameters(): + num_params += p.numel() + + if not os.path.exists(save_dir): + os.makedirs(save_dir) + + network_path = os.path.join(save_dir, "{}_modules.txt".format(name)) + with open(network_path, "w+") as file: + for module in model.modules(): + file.write(f"{module.__class__.__name__}:\n") + print(module.__class__.__name__) + for n, param in module.named_parameters(): + if param is not None: + file.write(f" - {n}: {param.size()}\n") + print(f" - {n}: {param.size()}") + break + file.write(f"Total number of parameters: {num_params}\n") + print(f"Total number of parameters: {num_params}\n\n") + + def restore_model(self, epoch, iteration, model_directory): + """Restore the trained generator and discriminator.""" + print('Loading the trained models from epoch / iteration {}-{}...'.format(epoch, iteration)) + + G_path = os.path.join(model_directory, '{}-{}-G.ckpt'.format(epoch, iteration)) + D_path = os.path.join(model_directory, '{}-{}-D.ckpt'.format(epoch, iteration)) + self.G.load_state_dict(torch.load(G_path, map_location=lambda storage, loc: storage)) + self.D.load_state_dict(torch.load(D_path, map_location=lambda storage, loc: storage)) + + def save_model(self, model_directory, idx,i): + G_path = os.path.join(model_directory, '{}-{}-G.ckpt'.format(idx+1,i+1)) + D_path = os.path.join(model_directory, '{}-{}-D.ckpt'.format(idx+1,i+1)) + torch.save(self.G.state_dict(), G_path) + torch.save(self.D.state_dict(), D_path) + + def reset_grad(self): + """Reset the gradient buffers.""" + self.g_optimizer.zero_grad() + self.d_optimizer.zero_grad() + + def train(self, config): + ''' Training Script starts from here''' + if self.use_wandb: + mode = 'online' if self.online else 'offline' + else: + mode = 'disabled' + kwargs = {'name': self.exp_name, 'project': 'druggen', 'config': config, + 'settings': wandb.Settings(_disable_stats=True), 'reinit': True, 'mode': mode, 'save_code': True} + wandb.init(**kwargs) + + wandb.save(os.path.join(self.model_save_dir, self.arguments, "G_modules.txt")) + wandb.save(os.path.join(self.model_save_dir, self.arguments, "D_modules.txt")) + + self.model_directory = os.path.join(self.model_save_dir, self.arguments) + self.sample_directory = os.path.join(self.sample_dir, self.arguments) + self.log_path = os.path.join(self.log_dir, "{}.txt".format(self.arguments)) + if not os.path.exists(self.model_directory): + os.makedirs(self.model_directory) + if not os.path.exists(self.sample_directory): + os.makedirs(self.sample_directory) + + # smiles data for metrics calculation. + drug_smiles = [line for line in open(self.drug_raw_file, 'r').read().splitlines()] + drug_mols = [Chem.MolFromSmiles(smi) for smi in drug_smiles] + drug_vecs = [AllChem.GetMorganFingerprintAsBitVect(x, 2, nBits=1024) for x in drug_mols if x is not None] + + if self.resume: + self.restore_model(self.resume_epoch, self.resume_iter, self.resume_directory) + + # Start training. + print('Start training...') + self.start_time = time.time() + for idx in range(self.epoch): + # =================================================================================== # + # 1. Preprocess input data # + # =================================================================================== # + # Load the data + dataloader_iterator = iter(self.drugs_loader) + + wandb.log({"epoch": idx}) + + for i, data in enumerate(self.loader): + try: + drugs = next(dataloader_iterator) + except StopIteration: + dataloader_iterator = iter(self.drugs_loader) + drugs = next(dataloader_iterator) + + wandb.log({"iter": i}) + + # Preprocess both dataset + real_graphs, a_tensor, x_tensor = load_molecules( + data=data, + batch_size=self.batch_size, + device=self.device, + b_dim=self.b_dim, + m_dim=self.m_dim, + ) + + drug_graphs, drugs_a_tensor, drugs_x_tensor = load_molecules( + data=drugs, + batch_size=self.batch_size, + device=self.device, + b_dim=self.b_dim, + m_dim=self.m_dim, + ) + + # Training configuration. + GEN_node = x_tensor # Generator input node features (annotation matrix of real molecules) + GEN_edge = a_tensor # Generator input edge features (adjacency matrix of real molecules) + if self.submodel == "DrugGEN": + DISC_node = drugs_x_tensor # Discriminator input node features (annotation matrix of drug molecules) + DISC_edge = drugs_a_tensor # Discriminator input edge features (adjacency matrix of drug molecules) + elif self.submodel == "NoTarget": + DISC_node = x_tensor # Discriminator input node features (annotation matrix of real molecules) + DISC_edge = a_tensor # Discriminator input edge features (adjacency matrix of real molecules) + + # =================================================================================== # + # 2. Train the GAN # + # =================================================================================== # + + loss = {} + self.reset_grad() + # Compute discriminator loss. + node, edge, d_loss = discriminator_loss(self.G, + self.D, + DISC_edge, + DISC_node, + GEN_edge, + GEN_node, + self.batch_size, + self.device, + self.lambda_gp) + d_total = d_loss + wandb.log({"d_loss": d_total.item()}) + + loss["d_total"] = d_total.item() + d_total.backward() + self.d_optimizer.step() + + self.reset_grad() + + # Compute generator loss. + generator_output = generator_loss(self.G, + self.D, + GEN_edge, + GEN_node, + self.batch_size) + g_loss, node, edge, node_sample, edge_sample = generator_output + g_total = g_loss + wandb.log({"g_loss": g_total.item()}) + + loss["g_total"] = g_total.item() + g_total.backward() + self.g_optimizer.step() + + # Logging. + if (i+1) % self.log_step == 0: + logging(self.log_path, self.start_time, i, idx, loss, self.sample_directory, + drug_smiles,edge_sample, node_sample, self.dataset.matrices2mol, + self.dataset_name, a_tensor, x_tensor, drug_vecs) + + mol_sample(self.sample_directory, edge_sample.detach(), node_sample.detach(), + idx, i, self.dataset.matrices2mol, self.dataset_name) + print("samples saved at epoch {} and iteration {}".format(idx,i)) + + self.save_model(self.model_directory, idx, i) + print("model saved at epoch {} and iteration {}".format(idx,i)) + + +if __name__ == '__main__': + parser = argparse.ArgumentParser() + + # Data configuration. + parser.add_argument('--raw_file', type=str, required=True) + parser.add_argument('--drug_raw_file', type=str, required=False, help='Required for DrugGEN model, optional for NoTarget') + parser.add_argument('--drug_data_dir', type=str, default='data') + parser.add_argument('--mol_data_dir', type=str, default='data') + parser.add_argument('--features', action='store_true', help='features dimension for nodes') + + # Model configuration. + parser.add_argument('--submodel', type=str, default="DrugGEN", help="Chose model subtype: DrugGEN, NoTarget", choices=['DrugGEN', 'NoTarget']) + parser.add_argument('--act', type=str, default="relu", help="Activation function for the model.", choices=['relu', 'tanh', 'leaky', 'sigmoid']) + parser.add_argument('--max_atom', type=int, default=45, help='Max atom number for molecules must be specified.') + parser.add_argument('--dim', type=int, default=128, help='Dimension of the Transformer Encoder model for the GAN.') + parser.add_argument('--depth', type=int, default=1, help='Depth of the Transformer model from the GAN.') + parser.add_argument('--ddepth', type=int, default=1, help='Depth of the Transformer model from the discriminator.') + parser.add_argument('--heads', type=int, default=8, help='Number of heads for the MultiHeadAttention module from the GAN.') + parser.add_argument('--mlp_ratio', type=int, default=3, help='MLP ratio for the Transformer.') + parser.add_argument('--dropout', type=float, default=0., help='dropout rate') + parser.add_argument('--ddropout', type=float, default=0., help='dropout rate for the discriminator') + parser.add_argument('--lambda_gp', type=float, default=10, help='Gradient penalty lambda multiplier for the GAN.') + + # Training configuration. + parser.add_argument('--batch_size', type=int, default=128, help='Batch size for the training.') + parser.add_argument('--epoch', type=int, default=10, help='Epoch number for Training.') + parser.add_argument('--g_lr', type=float, default=0.00001, help='learning rate for G') + parser.add_argument('--d_lr', type=float, default=0.00001, help='learning rate for D') + parser.add_argument('--beta1', type=float, default=0.9, help='beta1 for Adam optimizer') + parser.add_argument('--beta2', type=float, default=0.999, help='beta2 for Adam optimizer') + parser.add_argument('--log_dir', type=str, default='experiments/logs') + parser.add_argument('--sample_dir', type=str, default='experiments/samples') + parser.add_argument('--model_save_dir', type=str, default='experiments/models') + parser.add_argument('--log_sample_step', type=int, default=1000, help='step size for sampling during training') + + # Resume training. + parser.add_argument('--resume', type=bool, default=False, help='resume training') + parser.add_argument('--resume_epoch', type=int, default=None, help='resume training from this epoch') + parser.add_argument('--resume_iter', type=int, default=None, help='resume training from this step') + parser.add_argument('--resume_directory', type=str, default=None, help='load pretrained weights from this directory') + + # Seed configuration. + parser.add_argument('--set_seed', action='store_true', help='set seed for reproducibility') + parser.add_argument('--seed', type=int, default=1, help='seed for reproducibility') + + # wandb configuration. + parser.add_argument('--use_wandb', action='store_true', help='use wandb for logging') + parser.add_argument('--online', action='store_true', help='use wandb online') + parser.add_argument('--exp_name', type=str, default='druggen', help='experiment name') + parser.add_argument('--parallel', action='store_true', help='Parallelize training') + + config = parser.parse_args() + + # Check if drug_raw_file is provided when using DrugGEN model + if config.submodel == "DrugGEN" and not config.drug_raw_file: + parser.error("--drug_raw_file is required when using DrugGEN model") + + # If using NoTarget model and drug_raw_file is not provided, use a dummy file + if config.submodel == "NoTarget" and not config.drug_raw_file: + config.drug_raw_file = "data/akt_train.smi" # Use a reference file for NoTarget model (AKT) (not used for training for ease of use and encoder/decoder's) + + trainer = Train(config) + trainer.train(config)