Diff of /src/model/loss.py [000000] .. [7d53f6]

Switch to side-by-side view

--- a
+++ b/src/model/loss.py
@@ -0,0 +1,85 @@
+import torch
+
+
+def gradient_penalty(discriminator, real_node, real_edge, fake_node, fake_edge, batch_size, device):
+    """
+    Calculate gradient penalty for WGAN-GP.
+    
+    Args:
+        discriminator: The discriminator model
+        real_node: Real node features
+        real_edge: Real edge features
+        fake_node: Generated node features
+        fake_edge: Generated edge features
+        batch_size: Batch size
+        device: Device to compute on
+        
+    Returns:
+        Gradient penalty term
+    """
+    # Generate random interpolation factors
+    eps_edge = torch.rand(batch_size, 1, 1, 1, device=device)
+    eps_node = torch.rand(batch_size, 1, 1, device=device)
+    
+    # Create interpolated samples
+    int_node = (eps_node * real_node + (1 - eps_node) * fake_node).requires_grad_(True)
+    int_edge = (eps_edge * real_edge + (1 - eps_edge) * fake_edge).requires_grad_(True)
+
+    logits_interpolated = discriminator(int_edge, int_node)
+
+    # Calculate gradients for both node and edge inputs
+    weight = torch.ones(logits_interpolated.size(), requires_grad=False).to(device)
+    gradients = torch.autograd.grad(
+        outputs=logits_interpolated,
+        inputs=[int_node, int_edge],
+        grad_outputs=weight,
+        create_graph=True,
+        retain_graph=True,
+        only_inputs=True
+    )
+
+    # Combine gradients from both inputs
+    gradients_node = gradients[0].view(batch_size, -1)
+    gradients_edge = gradients[1].view(batch_size, -1)
+    gradients = torch.cat([gradients_node, gradients_edge], dim=1)
+
+    # Calculate gradient penalty
+    gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean()
+    
+    return gradient_penalty
+
+
+def discriminator_loss(generator, discriminator, drug_adj, drug_annot, mol_adj, mol_annot, batch_size, device, lambda_gp):
+    # Compute loss for drugs
+    logits_real_disc = discriminator(drug_adj, drug_annot)
+
+    # Use mean reduction for more stable training
+    prediction_real = -torch.mean(logits_real_disc)
+
+    # Compute loss for generated molecules
+    node, edge, node_sample, edge_sample = generator(mol_adj, mol_annot)
+
+    logits_fake_disc = discriminator(edge_sample.detach(), node_sample.detach())
+
+    prediction_fake = torch.mean(logits_fake_disc)
+
+    # Compute gradient penalty using the new function
+    gp = gradient_penalty(discriminator, drug_annot, drug_adj, node_sample.detach(), edge_sample.detach(), batch_size, device)
+
+    # Calculate total discriminator loss
+    d_loss = prediction_fake + prediction_real + lambda_gp * gp
+
+    return node, edge, d_loss
+
+
+def generator_loss(generator, discriminator, mol_adj, mol_annot, batch_size):
+    # Generate fake molecules
+    node, edge, node_sample, edge_sample = generator(mol_adj, mol_annot)
+
+    # Compute logits for fake molecules
+    logits_fake_disc = discriminator(edge_sample, node_sample)
+
+    prediction_fake = -torch.mean(logits_fake_disc)
+    g_loss = prediction_fake
+
+    return g_loss, node, edge, node_sample, edge_sample
\ No newline at end of file