|
a |
|
b/src/data/dataset.py |
|
|
1 |
import os |
|
|
2 |
import os.path as osp |
|
|
3 |
import re |
|
|
4 |
import pickle |
|
|
5 |
|
|
|
6 |
import numpy as np |
|
|
7 |
import pandas as pd |
|
|
8 |
from tqdm import tqdm |
|
|
9 |
|
|
|
10 |
import torch |
|
|
11 |
from torch_geometric.data import Data, InMemoryDataset |
|
|
12 |
|
|
|
13 |
from rdkit import Chem, RDLogger |
|
|
14 |
|
|
|
15 |
from src.data.utils import label2onehot |
|
|
16 |
|
|
|
17 |
RDLogger.DisableLog('rdApp.*') |
|
|
18 |
|
|
|
19 |
|
|
|
20 |
class DruggenDataset(InMemoryDataset): |
|
|
21 |
def __init__(self, root, dataset_file, raw_files, max_atom, features, |
|
|
22 |
atom_encoder, atom_decoder, bond_encoder, bond_decoder, |
|
|
23 |
transform=None, pre_transform=None, pre_filter=None): |
|
|
24 |
""" |
|
|
25 |
Initialize the DruggenDataset with pre-loaded encoder/decoder dictionaries. |
|
|
26 |
|
|
|
27 |
Parameters: |
|
|
28 |
root (str): Root directory. |
|
|
29 |
dataset_file (str): Name of the processed dataset file. |
|
|
30 |
raw_files (str): Path to the raw SMILES file. |
|
|
31 |
max_atom (int): Maximum number of atoms allowed in a molecule. |
|
|
32 |
features (bool): Whether to include additional node features. |
|
|
33 |
atom_encoder (dict): Pre-loaded atom encoder dictionary. |
|
|
34 |
atom_decoder (dict): Pre-loaded atom decoder dictionary. |
|
|
35 |
bond_encoder (dict): Pre-loaded bond encoder dictionary. |
|
|
36 |
bond_decoder (dict): Pre-loaded bond decoder dictionary. |
|
|
37 |
transform, pre_transform, pre_filter: See PyG InMemoryDataset. |
|
|
38 |
""" |
|
|
39 |
self.dataset_name = dataset_file.split(".")[0] |
|
|
40 |
self.dataset_file = dataset_file |
|
|
41 |
self.raw_files = raw_files |
|
|
42 |
self.max_atom = max_atom |
|
|
43 |
self.features = features |
|
|
44 |
|
|
|
45 |
# Use the provided encoder/decoder mappings. |
|
|
46 |
self.atom_encoder_m = atom_encoder |
|
|
47 |
self.atom_decoder_m = atom_decoder |
|
|
48 |
self.bond_encoder_m = bond_encoder |
|
|
49 |
self.bond_decoder_m = bond_decoder |
|
|
50 |
|
|
|
51 |
self.atom_num_types = len(atom_encoder) |
|
|
52 |
self.bond_num_types = len(bond_encoder) |
|
|
53 |
|
|
|
54 |
super().__init__(root, transform, pre_transform, pre_filter) |
|
|
55 |
path = osp.join(self.processed_dir, dataset_file) |
|
|
56 |
self.data, self.slices = torch.load(path) |
|
|
57 |
self.root = root |
|
|
58 |
|
|
|
59 |
@property |
|
|
60 |
def processed_dir(self): |
|
|
61 |
""" |
|
|
62 |
Returns the directory where processed dataset files are stored. |
|
|
63 |
""" |
|
|
64 |
return self.root |
|
|
65 |
|
|
|
66 |
@property |
|
|
67 |
def raw_file_names(self): |
|
|
68 |
""" |
|
|
69 |
Returns the raw SMILES file name. |
|
|
70 |
""" |
|
|
71 |
return self.raw_files |
|
|
72 |
|
|
|
73 |
@property |
|
|
74 |
def processed_file_names(self): |
|
|
75 |
""" |
|
|
76 |
Returns the name of the processed dataset file. |
|
|
77 |
""" |
|
|
78 |
return self.dataset_file |
|
|
79 |
|
|
|
80 |
def _filter_smiles(self, smiles_list): |
|
|
81 |
""" |
|
|
82 |
Filters the input list of SMILES strings to keep only valid molecules that: |
|
|
83 |
- Can be successfully parsed, |
|
|
84 |
- Have a number of atoms less than or equal to the maximum allowed (max_atom), |
|
|
85 |
- Contain only atoms present in the atom_encoder, |
|
|
86 |
- Contain only bonds present in the bond_encoder. |
|
|
87 |
|
|
|
88 |
Parameters: |
|
|
89 |
smiles_list (list): List of SMILES strings. |
|
|
90 |
|
|
|
91 |
Returns: |
|
|
92 |
max_length (int): Maximum number of atoms found in the filtered molecules. |
|
|
93 |
filtered_smiles (list): List of valid SMILES strings. |
|
|
94 |
""" |
|
|
95 |
max_length = 0 |
|
|
96 |
filtered_smiles = [] |
|
|
97 |
for smiles in tqdm(smiles_list, desc="Filtering SMILES"): |
|
|
98 |
mol = Chem.MolFromSmiles(smiles) |
|
|
99 |
if mol is None: |
|
|
100 |
continue |
|
|
101 |
|
|
|
102 |
# Check molecule size |
|
|
103 |
molecule_size = mol.GetNumAtoms() |
|
|
104 |
if molecule_size > self.max_atom: |
|
|
105 |
continue |
|
|
106 |
|
|
|
107 |
# Filter out molecules with atoms not in the atom_encoder |
|
|
108 |
if not all(atom.GetAtomicNum() in self.atom_encoder_m for atom in mol.GetAtoms()): |
|
|
109 |
continue |
|
|
110 |
|
|
|
111 |
# Filter out molecules with bonds not in the bond_encoder |
|
|
112 |
if not all(bond.GetBondType() in self.bond_encoder_m for bond in mol.GetBonds()): |
|
|
113 |
continue |
|
|
114 |
|
|
|
115 |
filtered_smiles.append(smiles) |
|
|
116 |
max_length = max(max_length, molecule_size) |
|
|
117 |
return max_length, filtered_smiles |
|
|
118 |
|
|
|
119 |
def _genA(self, mol, connected=True, max_length=None): |
|
|
120 |
""" |
|
|
121 |
Generates the adjacency matrix for a molecule based on its bond structure. |
|
|
122 |
|
|
|
123 |
Parameters: |
|
|
124 |
mol (rdkit.Chem.Mol): The molecule. |
|
|
125 |
connected (bool): If True, ensures all atoms are connected. |
|
|
126 |
max_length (int, optional): The size of the matrix; if None, uses number of atoms in mol. |
|
|
127 |
|
|
|
128 |
Returns: |
|
|
129 |
np.array: Adjacency matrix with bond types as entries, or None if disconnected. |
|
|
130 |
""" |
|
|
131 |
max_length = max_length if max_length is not None else mol.GetNumAtoms() |
|
|
132 |
A = np.zeros((max_length, max_length)) |
|
|
133 |
begin = [b.GetBeginAtomIdx() for b in mol.GetBonds()] |
|
|
134 |
end = [b.GetEndAtomIdx() for b in mol.GetBonds()] |
|
|
135 |
bond_type = [self.bond_encoder_m[b.GetBondType()] for b in mol.GetBonds()] |
|
|
136 |
A[begin, end] = bond_type |
|
|
137 |
A[end, begin] = bond_type |
|
|
138 |
degree = np.sum(A[:mol.GetNumAtoms(), :mol.GetNumAtoms()], axis=-1) |
|
|
139 |
return A if connected and (degree > 0).all() else None |
|
|
140 |
|
|
|
141 |
def _genX(self, mol, max_length=None): |
|
|
142 |
""" |
|
|
143 |
Generates the feature vector for each atom in a molecule by encoding their atomic numbers. |
|
|
144 |
|
|
|
145 |
Parameters: |
|
|
146 |
mol (rdkit.Chem.Mol): The molecule. |
|
|
147 |
max_length (int, optional): Length of the feature vector; if None, uses number of atoms in mol. |
|
|
148 |
|
|
|
149 |
Returns: |
|
|
150 |
np.array: Array of atom feature indices, padded with zeros if necessary, or None on error. |
|
|
151 |
""" |
|
|
152 |
max_length = max_length if max_length is not None else mol.GetNumAtoms() |
|
|
153 |
try: |
|
|
154 |
return np.array([self.atom_encoder_m[atom.GetAtomicNum()] for atom in mol.GetAtoms()] + |
|
|
155 |
[0] * (max_length - mol.GetNumAtoms())) |
|
|
156 |
except KeyError as e: |
|
|
157 |
print(f"Skipping molecule with unsupported atom: {e}") |
|
|
158 |
print(f"Skipped SMILES: {Chem.MolToSmiles(mol)}") |
|
|
159 |
return None |
|
|
160 |
|
|
|
161 |
def _genF(self, mol, max_length=None): |
|
|
162 |
""" |
|
|
163 |
Generates additional node features for a molecule using various atomic properties. |
|
|
164 |
|
|
|
165 |
Parameters: |
|
|
166 |
mol (rdkit.Chem.Mol): The molecule. |
|
|
167 |
max_length (int, optional): Number of rows in the features matrix; if None, uses number of atoms. |
|
|
168 |
|
|
|
169 |
Returns: |
|
|
170 |
np.array: Array of additional features for each atom, padded with zeros if necessary. |
|
|
171 |
""" |
|
|
172 |
max_length = max_length if max_length is not None else mol.GetNumAtoms() |
|
|
173 |
features = np.array([[*[a.GetDegree() == i for i in range(5)], |
|
|
174 |
*[a.GetExplicitValence() == i for i in range(9)], |
|
|
175 |
*[int(a.GetHybridization()) == i for i in range(1, 7)], |
|
|
176 |
*[a.GetImplicitValence() == i for i in range(9)], |
|
|
177 |
a.GetIsAromatic(), |
|
|
178 |
a.GetNoImplicit(), |
|
|
179 |
*[a.GetNumExplicitHs() == i for i in range(5)], |
|
|
180 |
*[a.GetNumImplicitHs() == i for i in range(5)], |
|
|
181 |
*[a.GetNumRadicalElectrons() == i for i in range(5)], |
|
|
182 |
a.IsInRing(), |
|
|
183 |
*[a.IsInRingSize(i) for i in range(2, 9)]] |
|
|
184 |
for a in mol.GetAtoms()], dtype=np.int32) |
|
|
185 |
return np.vstack((features, np.zeros((max_length - features.shape[0], features.shape[1])))) |
|
|
186 |
|
|
|
187 |
def decoder_load(self, dictionary_name, file): |
|
|
188 |
""" |
|
|
189 |
Returns the pre-loaded decoder dictionary based on the dictionary name. |
|
|
190 |
|
|
|
191 |
Parameters: |
|
|
192 |
dictionary_name (str): Name of the dictionary ("atom" or "bond"). |
|
|
193 |
file: Placeholder parameter for compatibility. |
|
|
194 |
|
|
|
195 |
Returns: |
|
|
196 |
dict: The corresponding decoder dictionary. |
|
|
197 |
""" |
|
|
198 |
if dictionary_name == "atom": |
|
|
199 |
return self.atom_decoder_m |
|
|
200 |
elif dictionary_name == "bond": |
|
|
201 |
return self.bond_decoder_m |
|
|
202 |
else: |
|
|
203 |
raise ValueError("Unknown dictionary name.") |
|
|
204 |
|
|
|
205 |
def matrices2mol(self, node_labels, edge_labels, strict=True, file_name=None): |
|
|
206 |
""" |
|
|
207 |
Converts graph representations (node labels and edge labels) back to an RDKit molecule. |
|
|
208 |
|
|
|
209 |
Parameters: |
|
|
210 |
node_labels (iterable): Encoded atom labels. |
|
|
211 |
edge_labels (np.array): Adjacency matrix with encoded bond types. |
|
|
212 |
strict (bool): If True, sanitizes the molecule and returns None on failure. |
|
|
213 |
file_name: Placeholder parameter for compatibility. |
|
|
214 |
|
|
|
215 |
Returns: |
|
|
216 |
rdkit.Chem.Mol: The resulting molecule, or None if sanitization fails. |
|
|
217 |
""" |
|
|
218 |
mol = Chem.RWMol() |
|
|
219 |
for node_label in node_labels: |
|
|
220 |
mol.AddAtom(Chem.Atom(self.atom_decoder_m[node_label])) |
|
|
221 |
for start, end in zip(*np.nonzero(edge_labels)): |
|
|
222 |
if start > end: |
|
|
223 |
mol.AddBond(int(start), int(end), self.bond_decoder_m[edge_labels[start, end]]) |
|
|
224 |
if strict: |
|
|
225 |
try: |
|
|
226 |
Chem.SanitizeMol(mol) |
|
|
227 |
except Exception: |
|
|
228 |
mol = None |
|
|
229 |
return mol |
|
|
230 |
|
|
|
231 |
def check_valency(self, mol): |
|
|
232 |
""" |
|
|
233 |
Checks that no atom in the molecule has exceeded its allowed valency. |
|
|
234 |
|
|
|
235 |
Parameters: |
|
|
236 |
mol (rdkit.Chem.Mol): The molecule. |
|
|
237 |
|
|
|
238 |
Returns: |
|
|
239 |
tuple: (True, None) if valid; (False, atomid_valence) if there is a valency issue. |
|
|
240 |
""" |
|
|
241 |
try: |
|
|
242 |
Chem.SanitizeMol(mol, sanitizeOps=Chem.SanitizeFlags.SANITIZE_PROPERTIES) |
|
|
243 |
return True, None |
|
|
244 |
except ValueError as e: |
|
|
245 |
e = str(e) |
|
|
246 |
p = e.find('#') |
|
|
247 |
e_sub = e[p:] |
|
|
248 |
atomid_valence = list(map(int, re.findall(r'\d+', e_sub))) |
|
|
249 |
return False, atomid_valence |
|
|
250 |
|
|
|
251 |
def correct_mol(self, mol): |
|
|
252 |
""" |
|
|
253 |
Corrects a molecule by removing bonds until all atoms satisfy their valency limits. |
|
|
254 |
|
|
|
255 |
Parameters: |
|
|
256 |
mol (rdkit.Chem.Mol): The molecule. |
|
|
257 |
|
|
|
258 |
Returns: |
|
|
259 |
rdkit.Chem.Mol: The corrected molecule. |
|
|
260 |
""" |
|
|
261 |
while True: |
|
|
262 |
flag, atomid_valence = self.check_valency(mol) |
|
|
263 |
if flag: |
|
|
264 |
break |
|
|
265 |
else: |
|
|
266 |
# Expecting two numbers: atom index and its valence. |
|
|
267 |
assert len(atomid_valence) == 2 |
|
|
268 |
idx = atomid_valence[0] |
|
|
269 |
queue = [] |
|
|
270 |
for b in mol.GetAtomWithIdx(idx).GetBonds(): |
|
|
271 |
queue.append((b.GetIdx(), int(b.GetBondType()), b.GetBeginAtomIdx(), b.GetEndAtomIdx())) |
|
|
272 |
queue.sort(key=lambda tup: tup[1], reverse=True) |
|
|
273 |
if queue: |
|
|
274 |
start = queue[0][2] |
|
|
275 |
end = queue[0][3] |
|
|
276 |
mol.RemoveBond(start, end) |
|
|
277 |
return mol |
|
|
278 |
|
|
|
279 |
|
|
|
280 |
def process(self, size=None): |
|
|
281 |
""" |
|
|
282 |
Processes the raw SMILES file by filtering and converting each valid SMILES into a PyTorch Geometric Data object. |
|
|
283 |
The resulting dataset is saved to disk. |
|
|
284 |
|
|
|
285 |
Parameters: |
|
|
286 |
size (optional): Placeholder parameter for compatibility. |
|
|
287 |
|
|
|
288 |
Side Effects: |
|
|
289 |
Saves the processed dataset as a file in the processed directory. |
|
|
290 |
""" |
|
|
291 |
# Read raw SMILES from file (assuming CSV with no header) |
|
|
292 |
smiles_list = pd.read_csv(self.raw_files, header=None)[0].tolist() |
|
|
293 |
max_length, filtered_smiles = self._filter_smiles(smiles_list) |
|
|
294 |
data_list = [] |
|
|
295 |
self.m_dim = len(self.atom_decoder_m) |
|
|
296 |
for smiles in tqdm(filtered_smiles, desc='Processing dataset', total=len(filtered_smiles)): |
|
|
297 |
mol = Chem.MolFromSmiles(smiles) |
|
|
298 |
A = self._genA(mol, connected=True, max_length=max_length) |
|
|
299 |
if A is not None: |
|
|
300 |
x_array = self._genX(mol, max_length=max_length) |
|
|
301 |
if x_array is None: |
|
|
302 |
continue |
|
|
303 |
x = torch.from_numpy(x_array).to(torch.long).view(1, -1) |
|
|
304 |
x = label2onehot(x, self.m_dim).squeeze() |
|
|
305 |
if self.features: |
|
|
306 |
f = torch.from_numpy(self._genF(mol, max_length=max_length)).to(torch.long).view(x.shape[0], -1) |
|
|
307 |
x = torch.concat((x, f), dim=-1) |
|
|
308 |
adjacency = torch.from_numpy(A) |
|
|
309 |
edge_index = adjacency.nonzero(as_tuple=False).t().contiguous() |
|
|
310 |
edge_attr = adjacency[edge_index[0], edge_index[1]].to(torch.long) |
|
|
311 |
data = Data(x=x, edge_index=edge_index, edge_attr=edge_attr, smiles=smiles) |
|
|
312 |
if self.pre_filter is not None and not self.pre_filter(data): |
|
|
313 |
continue |
|
|
314 |
if self.pre_transform is not None: |
|
|
315 |
data = self.pre_transform(data) |
|
|
316 |
data_list.append(data) |
|
|
317 |
torch.save(self.collate(data_list), osp.join(self.processed_dir, self.dataset_file)) |