--- a +++ b/src/data/dataset.py @@ -0,0 +1,317 @@ +import os +import os.path as osp +import re +import pickle + +import numpy as np +import pandas as pd +from tqdm import tqdm + +import torch +from torch_geometric.data import Data, InMemoryDataset + +from rdkit import Chem, RDLogger + +from src.data.utils import label2onehot + +RDLogger.DisableLog('rdApp.*') + + +class DruggenDataset(InMemoryDataset): + def __init__(self, root, dataset_file, raw_files, max_atom, features, + atom_encoder, atom_decoder, bond_encoder, bond_decoder, + transform=None, pre_transform=None, pre_filter=None): + """ + Initialize the DruggenDataset with pre-loaded encoder/decoder dictionaries. + + Parameters: + root (str): Root directory. + dataset_file (str): Name of the processed dataset file. + raw_files (str): Path to the raw SMILES file. + max_atom (int): Maximum number of atoms allowed in a molecule. + features (bool): Whether to include additional node features. + atom_encoder (dict): Pre-loaded atom encoder dictionary. + atom_decoder (dict): Pre-loaded atom decoder dictionary. + bond_encoder (dict): Pre-loaded bond encoder dictionary. + bond_decoder (dict): Pre-loaded bond decoder dictionary. + transform, pre_transform, pre_filter: See PyG InMemoryDataset. + """ + self.dataset_name = dataset_file.split(".")[0] + self.dataset_file = dataset_file + self.raw_files = raw_files + self.max_atom = max_atom + self.features = features + + # Use the provided encoder/decoder mappings. + self.atom_encoder_m = atom_encoder + self.atom_decoder_m = atom_decoder + self.bond_encoder_m = bond_encoder + self.bond_decoder_m = bond_decoder + + self.atom_num_types = len(atom_encoder) + self.bond_num_types = len(bond_encoder) + + super().__init__(root, transform, pre_transform, pre_filter) + path = osp.join(self.processed_dir, dataset_file) + self.data, self.slices = torch.load(path) + self.root = root + + @property + def processed_dir(self): + """ + Returns the directory where processed dataset files are stored. + """ + return self.root + + @property + def raw_file_names(self): + """ + Returns the raw SMILES file name. + """ + return self.raw_files + + @property + def processed_file_names(self): + """ + Returns the name of the processed dataset file. + """ + return self.dataset_file + + def _filter_smiles(self, smiles_list): + """ + Filters the input list of SMILES strings to keep only valid molecules that: + - Can be successfully parsed, + - Have a number of atoms less than or equal to the maximum allowed (max_atom), + - Contain only atoms present in the atom_encoder, + - Contain only bonds present in the bond_encoder. + + Parameters: + smiles_list (list): List of SMILES strings. + + Returns: + max_length (int): Maximum number of atoms found in the filtered molecules. + filtered_smiles (list): List of valid SMILES strings. + """ + max_length = 0 + filtered_smiles = [] + for smiles in tqdm(smiles_list, desc="Filtering SMILES"): + mol = Chem.MolFromSmiles(smiles) + if mol is None: + continue + + # Check molecule size + molecule_size = mol.GetNumAtoms() + if molecule_size > self.max_atom: + continue + + # Filter out molecules with atoms not in the atom_encoder + if not all(atom.GetAtomicNum() in self.atom_encoder_m for atom in mol.GetAtoms()): + continue + + # Filter out molecules with bonds not in the bond_encoder + if not all(bond.GetBondType() in self.bond_encoder_m for bond in mol.GetBonds()): + continue + + filtered_smiles.append(smiles) + max_length = max(max_length, molecule_size) + return max_length, filtered_smiles + + def _genA(self, mol, connected=True, max_length=None): + """ + Generates the adjacency matrix for a molecule based on its bond structure. + + Parameters: + mol (rdkit.Chem.Mol): The molecule. + connected (bool): If True, ensures all atoms are connected. + max_length (int, optional): The size of the matrix; if None, uses number of atoms in mol. + + Returns: + np.array: Adjacency matrix with bond types as entries, or None if disconnected. + """ + max_length = max_length if max_length is not None else mol.GetNumAtoms() + A = np.zeros((max_length, max_length)) + begin = [b.GetBeginAtomIdx() for b in mol.GetBonds()] + end = [b.GetEndAtomIdx() for b in mol.GetBonds()] + bond_type = [self.bond_encoder_m[b.GetBondType()] for b in mol.GetBonds()] + A[begin, end] = bond_type + A[end, begin] = bond_type + degree = np.sum(A[:mol.GetNumAtoms(), :mol.GetNumAtoms()], axis=-1) + return A if connected and (degree > 0).all() else None + + def _genX(self, mol, max_length=None): + """ + Generates the feature vector for each atom in a molecule by encoding their atomic numbers. + + Parameters: + mol (rdkit.Chem.Mol): The molecule. + max_length (int, optional): Length of the feature vector; if None, uses number of atoms in mol. + + Returns: + np.array: Array of atom feature indices, padded with zeros if necessary, or None on error. + """ + max_length = max_length if max_length is not None else mol.GetNumAtoms() + try: + return np.array([self.atom_encoder_m[atom.GetAtomicNum()] for atom in mol.GetAtoms()] + + [0] * (max_length - mol.GetNumAtoms())) + except KeyError as e: + print(f"Skipping molecule with unsupported atom: {e}") + print(f"Skipped SMILES: {Chem.MolToSmiles(mol)}") + return None + + def _genF(self, mol, max_length=None): + """ + Generates additional node features for a molecule using various atomic properties. + + Parameters: + mol (rdkit.Chem.Mol): The molecule. + max_length (int, optional): Number of rows in the features matrix; if None, uses number of atoms. + + Returns: + np.array: Array of additional features for each atom, padded with zeros if necessary. + """ + max_length = max_length if max_length is not None else mol.GetNumAtoms() + features = np.array([[*[a.GetDegree() == i for i in range(5)], + *[a.GetExplicitValence() == i for i in range(9)], + *[int(a.GetHybridization()) == i for i in range(1, 7)], + *[a.GetImplicitValence() == i for i in range(9)], + a.GetIsAromatic(), + a.GetNoImplicit(), + *[a.GetNumExplicitHs() == i for i in range(5)], + *[a.GetNumImplicitHs() == i for i in range(5)], + *[a.GetNumRadicalElectrons() == i for i in range(5)], + a.IsInRing(), + *[a.IsInRingSize(i) for i in range(2, 9)]] + for a in mol.GetAtoms()], dtype=np.int32) + return np.vstack((features, np.zeros((max_length - features.shape[0], features.shape[1])))) + + def decoder_load(self, dictionary_name, file): + """ + Returns the pre-loaded decoder dictionary based on the dictionary name. + + Parameters: + dictionary_name (str): Name of the dictionary ("atom" or "bond"). + file: Placeholder parameter for compatibility. + + Returns: + dict: The corresponding decoder dictionary. + """ + if dictionary_name == "atom": + return self.atom_decoder_m + elif dictionary_name == "bond": + return self.bond_decoder_m + else: + raise ValueError("Unknown dictionary name.") + + def matrices2mol(self, node_labels, edge_labels, strict=True, file_name=None): + """ + Converts graph representations (node labels and edge labels) back to an RDKit molecule. + + Parameters: + node_labels (iterable): Encoded atom labels. + edge_labels (np.array): Adjacency matrix with encoded bond types. + strict (bool): If True, sanitizes the molecule and returns None on failure. + file_name: Placeholder parameter for compatibility. + + Returns: + rdkit.Chem.Mol: The resulting molecule, or None if sanitization fails. + """ + mol = Chem.RWMol() + for node_label in node_labels: + mol.AddAtom(Chem.Atom(self.atom_decoder_m[node_label])) + for start, end in zip(*np.nonzero(edge_labels)): + if start > end: + mol.AddBond(int(start), int(end), self.bond_decoder_m[edge_labels[start, end]]) + if strict: + try: + Chem.SanitizeMol(mol) + except Exception: + mol = None + return mol + + def check_valency(self, mol): + """ + Checks that no atom in the molecule has exceeded its allowed valency. + + Parameters: + mol (rdkit.Chem.Mol): The molecule. + + Returns: + tuple: (True, None) if valid; (False, atomid_valence) if there is a valency issue. + """ + try: + Chem.SanitizeMol(mol, sanitizeOps=Chem.SanitizeFlags.SANITIZE_PROPERTIES) + return True, None + except ValueError as e: + e = str(e) + p = e.find('#') + e_sub = e[p:] + atomid_valence = list(map(int, re.findall(r'\d+', e_sub))) + return False, atomid_valence + + def correct_mol(self, mol): + """ + Corrects a molecule by removing bonds until all atoms satisfy their valency limits. + + Parameters: + mol (rdkit.Chem.Mol): The molecule. + + Returns: + rdkit.Chem.Mol: The corrected molecule. + """ + while True: + flag, atomid_valence = self.check_valency(mol) + if flag: + break + else: + # Expecting two numbers: atom index and its valence. + assert len(atomid_valence) == 2 + idx = atomid_valence[0] + queue = [] + for b in mol.GetAtomWithIdx(idx).GetBonds(): + queue.append((b.GetIdx(), int(b.GetBondType()), b.GetBeginAtomIdx(), b.GetEndAtomIdx())) + queue.sort(key=lambda tup: tup[1], reverse=True) + if queue: + start = queue[0][2] + end = queue[0][3] + mol.RemoveBond(start, end) + return mol + + + def process(self, size=None): + """ + Processes the raw SMILES file by filtering and converting each valid SMILES into a PyTorch Geometric Data object. + The resulting dataset is saved to disk. + + Parameters: + size (optional): Placeholder parameter for compatibility. + + Side Effects: + Saves the processed dataset as a file in the processed directory. + """ + # Read raw SMILES from file (assuming CSV with no header) + smiles_list = pd.read_csv(self.raw_files, header=None)[0].tolist() + max_length, filtered_smiles = self._filter_smiles(smiles_list) + data_list = [] + self.m_dim = len(self.atom_decoder_m) + for smiles in tqdm(filtered_smiles, desc='Processing dataset', total=len(filtered_smiles)): + mol = Chem.MolFromSmiles(smiles) + A = self._genA(mol, connected=True, max_length=max_length) + if A is not None: + x_array = self._genX(mol, max_length=max_length) + if x_array is None: + continue + x = torch.from_numpy(x_array).to(torch.long).view(1, -1) + x = label2onehot(x, self.m_dim).squeeze() + if self.features: + f = torch.from_numpy(self._genF(mol, max_length=max_length)).to(torch.long).view(x.shape[0], -1) + x = torch.concat((x, f), dim=-1) + adjacency = torch.from_numpy(A) + edge_index = adjacency.nonzero(as_tuple=False).t().contiguous() + edge_attr = adjacency[edge_index[0], edge_index[1]].to(torch.long) + data = Data(x=x, edge_index=edge_index, edge_attr=edge_attr, smiles=smiles) + if self.pre_filter is not None and not self.pre_filter(data): + continue + if self.pre_transform is not None: + data = self.pre_transform(data) + data_list.append(data) + torch.save(self.collate(data_list), osp.join(self.processed_dir, self.dataset_file)) \ No newline at end of file