Diff of /inference.py [000000] .. [7d53f6]

Switch to side-by-side view

--- a
+++ b/inference.py
@@ -0,0 +1,325 @@
+import os
+import sys
+import time
+import random
+import pickle
+import argparse
+import os.path as osp
+
+import torch
+import torch.utils.data
+from torch_geometric.loader import DataLoader
+
+import pandas as pd
+from tqdm import tqdm
+
+from rdkit import RDLogger, Chem
+from rdkit.Chem import QED, RDConfig
+
+sys.path.append(os.path.join(RDConfig.RDContribDir, 'SA_Score'))
+import sascorer
+
+from src.util.utils import *
+from src.model.models import Generator
+from src.data.dataset import DruggenDataset
+from src.data.utils import get_encoders_decoders, load_molecules
+from src.model.loss import generator_loss
+from src.util.smiles_cor import smi_correct
+
+
+class Inference(object):
+    """Inference class for DrugGEN."""
+
+    def __init__(self, config):
+        if config.set_seed:
+            np.random.seed(config.seed)
+            random.seed(config.seed)
+            torch.manual_seed(config.seed)
+            torch.cuda.manual_seed_all(config.seed)
+
+            torch.backends.cudnn.deterministic = True
+            torch.backends.cudnn.benchmark = False
+
+            os.environ["PYTHONHASHSEED"] = str(config.seed)
+
+            print(f'Using seed {config.seed}')
+
+        self.device = torch.device("cuda" if torch.cuda.is_available() else 'cpu')
+
+        # Initialize configurations
+        self.submodel = config.submodel
+        self.inference_model = config.inference_model
+        self.sample_num = config.sample_num
+        self.disable_correction = config.disable_correction
+
+        # Data loader.
+        self.inf_smiles = config.inf_smiles  # SMILES containing text file for first dataset. 
+                                         # Write the full path to file.
+        
+        inf_smiles_basename = osp.basename(self.inf_smiles)
+        
+        # Get the base name without extension and add max_atom to it
+        self.max_atom = config.max_atom  # Model is based on one-shot generation.
+        inf_smiles_base = os.path.splitext(inf_smiles_basename)[0]
+        
+        # Change extension from .smi to .pt and add max_atom to the filename
+        self.inf_dataset_file = f"{inf_smiles_base}{self.max_atom}.pt"
+
+        self.inf_batch_size = config.inf_batch_size
+        self.train_smiles = config.train_smiles
+        self.train_drug_smiles = config.train_drug_smiles
+        self.mol_data_dir = config.mol_data_dir  # Directory where the dataset files are stored.
+        self.dataset_name = self.inf_dataset_file.split(".")[0]
+        self.features = config.features  # Small model uses atom types as node features. (Boolean, False uses atom types only.)
+                                         # Additional node features can be added. Please check new_dataloarder.py Line 102.
+
+        # Get atom and bond encoders/decoders
+        self.atom_encoder, self.atom_decoder, self.bond_encoder, self.bond_decoder = get_encoders_decoders(
+            self.train_smiles,
+            self.train_drug_smiles,
+            self.max_atom
+        )
+
+        self.inf_dataset = DruggenDataset(self.mol_data_dir,
+                                      self.inf_dataset_file,
+                                      self.inf_smiles,
+                                      self.max_atom,
+                                      self.features,
+                                      atom_encoder=self.atom_encoder,
+                                      atom_decoder=self.atom_decoder,
+                                      bond_encoder=self.bond_encoder,
+                                      bond_decoder=self.bond_decoder)
+
+        self.inf_loader = DataLoader(self.inf_dataset,
+                                 shuffle=True,
+                                 batch_size=self.inf_batch_size,
+                                 drop_last=True)  # PyG dataloader for the first GAN.
+
+        self.m_dim = len(self.atom_decoder) if not self.features else int(self.inf_loader.dataset[0].x.shape[1]) # Atom type dimension.
+        self.b_dim = len(self.bond_decoder) # Bond type dimension.
+        self.vertexes = int(self.inf_loader.dataset[0].x.shape[0]) # Number of nodes in the graph.
+
+        # Model configurations.
+        self.act = config.act
+        self.dim = config.dim
+        self.depth = config.depth
+        self.heads = config.heads
+        self.mlp_ratio = config.mlp_ratio
+        self.dropout = config.dropout
+
+        self.build_model()
+
+    def build_model(self):
+        """Create generators and discriminators."""
+        self.G = Generator(self.act,
+                           self.vertexes,
+                           self.b_dim,
+                           self.m_dim,
+                           self.dropout,
+                           dim=self.dim,
+                           depth=self.depth,
+                           heads=self.heads,
+                           mlp_ratio=self.mlp_ratio)
+        self.G.to(self.device)
+        self.print_network(self.G, 'G')
+
+    def print_network(self, model, name):
+        """Print out the network information."""
+        num_params = 0
+        for p in model.parameters():
+            num_params += p.numel() 
+        print(model)
+        print(name)
+        print("The number of parameters: {}".format(num_params))
+
+    def restore_model(self, submodel, model_directory):
+        """Restore the trained generator and discriminator."""
+        print('Loading the model...')
+        G_path = os.path.join(model_directory, '{}-G.ckpt'.format(submodel))
+        self.G.load_state_dict(torch.load(G_path, map_location=lambda storage, loc: storage))
+
+    def inference(self):
+        # Load the trained generator.
+        self.restore_model(self.submodel, self.inference_model)
+
+        # smiles data for metrics calculation.
+        chembl_smiles = [line for line in open(self.train_smiles, 'r').read().splitlines()]
+        chembl_test = [line for line in open(self.inf_smiles, 'r').read().splitlines()]
+        drug_smiles = [line for line in open(self.train_drug_smiles, 'r').read().splitlines()]
+        drug_mols = [Chem.MolFromSmiles(smi) for smi in drug_smiles]
+        drug_vecs = [AllChem.GetMorganFingerprintAsBitVect(x, 2, nBits=1024) for x in drug_mols if x is not None]
+
+
+        # Make directories if not exist.
+        if not os.path.exists("experiments/inference/{}".format(self.submodel)):
+            os.makedirs("experiments/inference/{}".format(self.submodel))
+
+        if not self.disable_correction:
+            correct = smi_correct(self.submodel, "experiments/inference/{}".format(self.submodel))
+
+        search_res = pd.DataFrame(columns=["submodel", "validity",
+                                           "uniqueness", "novelty",
+                                           "novelty_test", "drug_novelty",
+                                           "max_len", "mean_atom_type",
+                                           "snn_chembl", "snn_drug", "IntDiv", "qed", "sa"])
+
+        self.G.eval()
+
+        start_time = time.time()
+        metric_calc_dr = []
+        uniqueness_calc = []
+        real_smiles_snn = []
+        nodes_sample = torch.Tensor(size=[1, self.vertexes, 1]).to(self.device)
+        f = open("experiments/inference/{}/inference_drugs.txt".format(self.submodel), "w")
+        f.write("SMILES")
+        f.write("\n")
+        val_counter = 0
+        none_counter = 0
+
+        # Inference mode
+        with torch.inference_mode():
+            pbar = tqdm(range(self.sample_num))
+            pbar.set_description('Inference mode for {} model started'.format(self.submodel))
+            for i, data in enumerate(self.inf_loader):
+
+                val_counter += 1
+                # Preprocess dataset 
+                _, a_tensor, x_tensor = load_molecules(
+                    data=data, 
+                    batch_size=self.inf_batch_size,
+                    device=self.device,
+                    b_dim=self.b_dim,
+                    m_dim=self.m_dim,
+                )
+
+                _, _, node_sample, edge_sample = self.G(a_tensor, x_tensor)
+
+                g_edges_hat_sample = torch.max(edge_sample, -1)[1]
+                g_nodes_hat_sample = torch.max(node_sample, -1)[1]
+
+                fake_mol_g = [self.inf_dataset.matrices2mol(n_.data.cpu().numpy(), e_.data.cpu().numpy(), strict=False, file_name=self.dataset_name) 
+                        for e_, n_ in zip(g_edges_hat_sample, g_nodes_hat_sample)]
+
+                a_tensor_sample = torch.max(a_tensor, -1)[1]
+                x_tensor_sample = torch.max(x_tensor, -1)[1]
+                real_mols = [self.inf_dataset.matrices2mol(n_.data.cpu().numpy(), e_.data.cpu().numpy(), strict=True, file_name=self.dataset_name) 
+                        for e_, n_ in zip(a_tensor_sample, x_tensor_sample)]
+
+                inference_drugs = [None if line is None else Chem.MolToSmiles(line) for line in fake_mol_g]
+                inference_drugs = [None if x is None else max(x.split('.'), key=len) for x in inference_drugs]
+
+                for molecules in inference_drugs:
+                            if molecules is None:
+                                none_counter += 1
+
+                for molecules in inference_drugs:
+                    if molecules is not None:
+                        molecules = molecules.replace("*", "C") 
+                        f.write(molecules)
+                        f.write("\n")
+                        uniqueness_calc.append(molecules)
+                        nodes_sample = torch.cat((nodes_sample, g_nodes_hat_sample.view(1, self.vertexes, 1)), 0)
+                        pbar.update(1)
+                    metric_calc_dr.append(molecules)
+
+                real_smiles_snn.append(real_mols[0])
+                generation_number = len([x for x in metric_calc_dr if x is not None])
+                if generation_number == self.sample_num or none_counter == self.sample_num:
+                    break
+
+        f.close()
+        print("Inference completed, starting metrics calculation.")
+        if not self.disable_correction:
+            corrected = correct.correct("experiments/inference/{}/inference_drugs.txt".format(self.submodel))
+            gen_smi = corrected["SMILES"].tolist()
+            
+        else:
+            gen_smi = pd.read_csv("experiments/inference/{}/inference_drugs.txt".format(self.submodel))["SMILES"].tolist()
+            
+            
+        et = time.time() - start_time
+        
+        gen_vecs = [AllChem.GetMorganFingerprintAsBitVect(Chem.MolFromSmiles(x), 2, nBits=1024) for x in uniqueness_calc if Chem.MolFromSmiles(x) is not None]
+        real_vecs = [AllChem.GetMorganFingerprintAsBitVect(x, 2, nBits=1024) for x in real_smiles_snn if x is not None]
+        print("Inference mode is lasted for {:.2f} seconds".format(et))
+
+        print("Metrics calculation started using MOSES.")
+        
+        if not self.disable_correction:
+            val = round(len(gen_smi)/self.sample_num, 3)
+            print("Validity: ", val, "\n")
+        else: 
+            val = round(fraction_valid(gen_smi), 3)
+            print("Validity: ", val, "\n")
+
+        uniq = round(fraction_unique(gen_smi), 3)
+        nov = round(novelty(gen_smi, chembl_smiles), 3)
+        nov_test = round(novelty(gen_smi, chembl_test), 3)
+        drug_nov = round(novelty(gen_smi, drug_smiles), 3)
+        max_len = round(Metrics.max_component(gen_smi, self.vertexes), 3)
+        mean_atom = round(Metrics.mean_atom_type(nodes_sample), 3)
+        snn_chembl = round(average_agg_tanimoto(np.array(real_vecs), np.array(gen_vecs)), 3)
+        snn_drug = round(average_agg_tanimoto(np.array(drug_vecs), np.array(gen_vecs)), 3)
+        int_div = round((internal_diversity(np.array(gen_vecs)))[0], 3)
+        qed = round(np.mean([QED.qed(Chem.MolFromSmiles(x)) for x in gen_smi if Chem.MolFromSmiles(x) is not None]), 3)
+        sa = round(np.mean([sascorer.calculateScore(Chem.MolFromSmiles(x)) for x in gen_smi if Chem.MolFromSmiles(x) is not None]), 3)
+
+        print("Uniqueness: ", uniq, "\n")
+        print("Novelty (Train): ", nov, "\n")
+        print("Novelty (Inference): ", nov_test, "\n")
+        print("Novelty (Real Inhibitors): ", drug_nov, "\n")
+        print("Average Length: ", max_len, "\n")
+        print("Mean Atom Type: ", mean_atom, "\n")
+        print("SNN (ChEMBL): ", snn_chembl, "\n")
+        print("SNN (Real Inhibitors): ", snn_drug, "\n")
+        print("Internal Diversity: ", int_div, "\n")
+        print("QED: ", qed, "\n")
+        print("SA: ", sa, "\n")
+
+        print("Metrics are calculated.")
+        model_res = pd.DataFrame({"submodel": [self.submodel], "validity": [val],
+                        "uniqueness": [uniq], "novelty": [nov],
+                        "novelty_inference": [nov_test], "novelty_real_inhibitor": [drug_nov],
+                        "ave_len": [max_len], "mean_atom_type": [mean_atom],
+                        "snn_chembl": [snn_chembl], "snn_real_inhibitor": [snn_drug], 
+                        "IntDiv": [int_div], "qed": [qed], "sa": [sa]})
+        search_res = pd.concat([search_res, model_res], axis=0)
+        os.remove("experiments/inference/{}/inference_drugs.txt".format(self.submodel))
+        search_res.to_csv("experiments/inference/{}/inference_results.csv".format(self.submodel), index=False)
+        generatedsmiles = pd.DataFrame({"SMILES": gen_smi})
+        generatedsmiles.to_csv("experiments/inference/{}/inference_drugs.csv".format(self.submodel), index=False)
+
+
+if __name__=="__main__":
+    parser = argparse.ArgumentParser()
+
+    # Inference configuration.
+    parser.add_argument('--submodel', type=str, default="DrugGEN", help="Chose model subtype: DrugGEN, NoTarget", choices=['DrugGEN', 'NoTarget'])
+    parser.add_argument('--inference_model', type=str, help="Path to the model for inference")
+    parser.add_argument('--sample_num', type=int, default=100, help='inference samples')
+    parser.add_argument('--disable_correction', action='store_true', help='Disable SMILES correction')
+   
+    # Data configuration.
+    parser.add_argument('--inf_smiles', type=str, required=True)
+    parser.add_argument('--train_smiles', type=str, required=True)
+    parser.add_argument('--train_drug_smiles', type=str, required=True)
+    parser.add_argument('--inf_batch_size', type=int, default=1, help='Batch size for inference')
+    parser.add_argument('--mol_data_dir', type=str, default='data')
+    parser.add_argument('--features', action='store_true', help='features dimension for nodes')
+
+    # Model configuration.
+    parser.add_argument('--act', type=str, default="relu", help="Activation function for the model.", choices=['relu', 'tanh', 'leaky', 'sigmoid'])
+    parser.add_argument('--max_atom', type=int, default=45, help='Max atom number for molecules must be specified.')
+    parser.add_argument('--dim', type=int, default=128, help='Dimension of the Transformer Encoder model for the GAN.')
+    parser.add_argument('--depth', type=int, default=1, help='Depth of the Transformer model from the GAN.')
+    parser.add_argument('--heads', type=int, default=8, help='Number of heads for the MultiHeadAttention module from the GAN.')
+    parser.add_argument('--mlp_ratio', type=int, default=3, help='MLP ratio for the Transformer.')
+    parser.add_argument('--dropout', type=float, default=0., help='dropout rate')
+
+    # Seed configuration.
+    parser.add_argument('--set_seed', action='store_true', help='set seed for reproducibility')
+    parser.add_argument('--seed', type=int, default=1, help='seed for reproducibility')
+
+    config = parser.parse_args()
+    inference = Inference(config)
+    inference.inference()