[b40915]: / unimol / utils / coordinate_model.py

Download this file

216 lines (188 with data), 6.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
# Copyright (c) DP Techonology, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import copy
import torch
import pandas as pd
from rdkit import Chem
import pickle
import argparse
from docking_utils import rmsd_func
import warnings
warnings.filterwarnings(action="ignore")
def single_SF_loss(
predict_coords,
pocket_coords,
distance_predict,
holo_distance_predict,
dist_threshold=4.5,
):
dist = torch.norm(predict_coords.unsqueeze(1) - pocket_coords.unsqueeze(0), dim=-1)
holo_dist = torch.norm(
predict_coords.unsqueeze(1) - predict_coords.unsqueeze(0), dim=-1
)
distance_mask = distance_predict < dist_threshold
cross_dist_score = (
(dist[distance_mask] - distance_predict[distance_mask]) ** 2
).mean()
dist_score = ((holo_dist - holo_distance_predict) ** 2).mean()
loss = cross_dist_score * 1.0 + dist_score * 5.0
return loss
def scoring(
predict_coords,
pocket_coords,
distance_predict,
holo_distance_predict,
dist_threshold=4.5,
):
predict_coords = predict_coords.detach()
dist = torch.norm(predict_coords.unsqueeze(1) - pocket_coords.unsqueeze(0), dim=-1)
holo_dist = torch.norm(
predict_coords.unsqueeze(1) - predict_coords.unsqueeze(0), dim=-1
)
distance_mask = distance_predict < dist_threshold
cross_dist_score = (
(dist[distance_mask] - distance_predict[distance_mask]) ** 2
).mean()
dist_score = ((holo_dist - holo_distance_predict) ** 2).mean()
return cross_dist_score.numpy(), dist_score.numpy()
def dock_with_gradient(
coords,
pocket_coords,
distance_predict_tta,
holo_distance_predict_tta,
loss_func=single_SF_loss,
holo_coords=None,
iterations=20000,
early_stoping=5,
):
bst_loss, bst_coords, bst_meta_info = 10000.0, coords, None
for i, (distance_predict, holo_distance_predict) in enumerate(
zip(distance_predict_tta, holo_distance_predict_tta)
):
new_coords = copy.deepcopy(coords)
_coords, _loss, _meta_info = single_dock_with_gradient(
new_coords,
pocket_coords,
distance_predict,
holo_distance_predict,
loss_func=loss_func,
holo_coords=holo_coords,
iterations=iterations,
early_stoping=early_stoping,
)
if bst_loss > _loss:
bst_coords = _coords
bst_loss = _loss
bst_meta_info = _meta_info
return bst_coords, bst_loss, bst_meta_info
def single_dock_with_gradient(
coords,
pocket_coords,
distance_predict,
holo_distance_predict,
loss_func=single_SF_loss,
holo_coords=None,
iterations=20000,
early_stoping=5,
):
coords = torch.from_numpy(coords).float()
pocket_coords = torch.from_numpy(pocket_coords).float()
distance_predict = torch.from_numpy(distance_predict).float()
holo_distance_predict = torch.from_numpy(holo_distance_predict).float()
if holo_coords is not None:
holo_coords = torch.from_numpy(holo_coords).float()
coords.requires_grad = True
optimizer = torch.optim.LBFGS([coords], lr=1.0)
bst_loss, times = 10000.0, 0
for i in range(iterations):
def closure():
optimizer.zero_grad()
loss = loss_func(
coords, pocket_coords, distance_predict, holo_distance_predict
)
loss.backward()
return loss
loss = optimizer.step(closure)
if loss.item() < bst_loss:
bst_loss = loss.item()
times = 0
else:
times += 1
if times > early_stoping:
break
meta_info = scoring(coords, pocket_coords, distance_predict, holo_distance_predict)
return coords.detach().numpy(), loss.detach().numpy(), meta_info
def set_coord(mol, coords):
for i in range(coords.shape[0]):
mol.GetConformer(0).SetAtomPosition(i, coords[i].tolist())
return mol
def add_coord(mol, xyz):
x, y, z = xyz
conf = mol.GetConformer(0)
pos = conf.GetPositions()
pos[:, 0] += x
pos[:, 1] += y
pos[:, 2] += z
for i in range(pos.shape[0]):
conf.SetAtomPosition(
i, Chem.rdGeometry.Point3D(pos[i][0], pos[i][1], pos[i][2])
)
return mol
def single_docking(input_path, output_path, output_ligand_path):
content = pd.read_pickle(input_path)
(
init_coords_tta,
mol,
smi,
pocket,
pocket_coords,
distance_predict_tta,
holo_distance_predict_tta,
holo_coords,
holo_cener_coords,
) = content
sample_times = len(init_coords_tta)
bst_predict_coords, bst_loss, bst_meta_info = None, 1000.0, None
for i in range(sample_times):
init_coords = init_coords_tta[i]
predict_coords, loss, meta_info = dock_with_gradient(
init_coords,
pocket_coords,
distance_predict_tta,
holo_distance_predict_tta,
holo_coords=holo_coords,
loss_func=single_SF_loss,
)
if loss < bst_loss:
bst_loss = loss
bst_predict_coords = predict_coords
bst_meta_info = meta_info
_rmsd = round(rmsd_func(holo_coords, bst_predict_coords), 4)
_cross_score = round(float(bst_meta_info[0]), 4)
_self_score = round(float(bst_meta_info[1]), 4)
print(f"{pocket}-{smi}-RMSD:{_rmsd}-{_cross_score}-{_self_score}")
mol = Chem.RemoveHs(mol)
mol = set_coord(mol, bst_predict_coords)
if output_path is not None:
with open(output_path, "wb") as f:
pickle.dump(
[bst_predict_coords, holo_coords, bst_loss, smi, pocket, pocket_coords],
f,
)
if output_ligand_path is not None:
mol = add_coord(mol, holo_cener_coords.numpy())
Chem.MolToMolFile(mol, output_ligand_path)
return True
if __name__ == "__main__":
torch.set_num_threads(1)
torch.manual_seed(0)
parser = argparse.ArgumentParser(description="Docking with gradient")
parser.add_argument("--input", type=str, help="input file.")
parser.add_argument("--output", type=str, default=None, help="output path.")
parser.add_argument(
"--output-ligand", type=str, default=None, help="output ligand sdf path."
)
args = parser.parse_args()
single_docking(args.input, args.output, args.output_ligand)