--- a +++ b/unimol/data/vae_binding_dataset.py @@ -0,0 +1,176 @@ +# Copyright (c) DP Technology. +# This source code is licensed under the MIT license found in the +# LICENSE file in the root directory of this source tree. + + +from functools import lru_cache + +import numpy as np +from unicore.data import BaseWrapperDataset + +from . import data_utils + + +class VAEBindingDataset(BaseWrapperDataset): + def __init__( + self, + dataset, + seed, + atoms, + coordinates, + pocket_atoms, + pocket_coordinates, + selfies, + is_train=True, + ): + self.dataset = dataset + self.seed = seed + self.atoms = atoms + self.coordinates = coordinates + self.pocket_atoms = pocket_atoms + self.pocket_coordinates = pocket_coordinates + self.selfies = selfies + self.is_train = is_train + self.set_epoch(None) + + def set_epoch(self, epoch, **unused): + super().set_epoch(epoch) + self.epoch = epoch + + def pocket_atom(self, atom): + if atom[0] in ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']: + return atom[1] + else: + return atom[0] + + @lru_cache(maxsize=16) + def __cached_item__(self, index: int, epoch: int): + atoms = np.array(self.dataset[index][self.atoms]) + coordinates = self.dataset[index][self.coordinates] + pocket_atoms = np.array( + [self.pocket_atom(item) for item in self.dataset[index][self.pocket_atoms]] + ) + pocket_coordinates = np.stack(self.dataset[index][self.pocket_coordinates]) + + smi = self.dataset[index]["smi"] + pocket = self.dataset[index]["pocket"] + #affinity = self.dataset[index][self.affinity] + selfies = np.array(self.dataset[index][self.selfies]) + return { + "atoms": atoms, + "coordinates": coordinates.astype(np.float32), + "holo_coordinates": coordinates.astype(np.float32),#placeholder + "pocket_atoms": pocket_atoms, + "pocket_coordinates": pocket_coordinates.astype(np.float32), + "holo_pocket_coordinates": pocket_coordinates.astype(np.float32),#placeholder + "smi": smi, + "pocket": pocket, + "selfies": selfies + } + + def __getitem__(self, index: int): + return self.__cached_item__(index, self.epoch) + + +class VAEBindingTestDataset(BaseWrapperDataset): + def __init__( + self, + dataset, + seed, + atoms, + coordinates, + pocket_atoms, + pocket_coordinates, + is_train=True, + ): + self.dataset = dataset + self.seed = seed + self.atoms = atoms + self.coordinates = coordinates + self.pocket_atoms = pocket_atoms + self.pocket_coordinates = pocket_coordinates + self.is_train = is_train + self.set_epoch(None) + + def set_epoch(self, epoch, **unused): + super().set_epoch(epoch) + self.epoch = epoch + + def pocket_atom(self, atom): + if atom[0] in ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']: + return atom[1] + else: + return atom[0] + + @lru_cache(maxsize=16) + def __cached_item__(self, index: int, epoch: int): + atoms = np.array(self.dataset[index][self.atoms]) + coordinates = self.dataset[index][self.coordinates] + pocket_atoms = np.array( + [self.pocket_atom(item) for item in self.dataset[index][self.pocket_atoms]] + ) + pocket_coordinates = np.stack(self.dataset[index][self.pocket_coordinates]) + + smi = self.dataset[index]["smi"] + pocket = self.dataset[index]["pocket_name"] + lig = self.dataset[index]["lig_name"] + #affinity = self.dataset[index][self.affinity] + return { + "atoms": atoms, + "coordinates": coordinates.astype(np.float32), + "holo_coordinates": coordinates.astype(np.float32),#placeholder + "pocket_atoms": pocket_atoms, + "pocket_coordinates": pocket_coordinates.astype(np.float32), + "holo_pocket_coordinates": pocket_coordinates.astype(np.float32),#placeholder + "smi": smi, + "pocket": pocket, + "lig": lig + } + + def __getitem__(self, index: int): + return self.__cached_item__(index, self.epoch) + +class VAEGenerationTestDataset(BaseWrapperDataset): + def __init__( + self, + dataset, + seed, + pocket_atoms, + pocket_coordinates, + is_train=True, + ): + self.dataset = dataset + self.seed = seed + self.pocket_atoms = pocket_atoms + self.pocket_coordinates = pocket_coordinates + self.is_train = is_train + self.set_epoch(None) + + def set_epoch(self, epoch, **unused): + super().set_epoch(epoch) + self.epoch = epoch + + def pocket_atom(self, atom): + if atom[0] in ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']: + return atom[1] + else: + return atom[0] + + @lru_cache(maxsize=16) + def __cached_item__(self, index: int, epoch: int): + pocket_atoms = np.array( + [self.pocket_atom(item) for item in self.dataset[index][self.pocket_atoms]] + ) + pocket_coordinates = np.stack(self.dataset[index][self.pocket_coordinates]) + + + return { + "pocket_atoms": pocket_atoms, + "pocket_coordinates": pocket_coordinates.astype(np.float32), + "holo_pocket_coordinates": pocket_coordinates.astype(np.float32),#placeholder + } + + def __getitem__(self, index: int): + return self.__cached_item__(index, self.epoch) + +