[8956d4]: / unimol / utils / docking_utils.py

Download this file

217 lines (188 with data), 7.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# Copyright (c) DP Techonology, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import numpy as np
from rdkit import Chem
from rdkit.Chem import AllChem
from rdkit import RDLogger
RDLogger.DisableLog("rdApp.*")
import warnings
warnings.filterwarnings(action="ignore")
from rdkit.Chem import rdMolTransforms
import copy
import lmdb
import pickle
import pandas as pd
def get_torsions(m, removeHs=True):
if removeHs:
m = Chem.RemoveHs(m)
torsionList = []
torsionSmarts = "[!$(*#*)&!D1]-&!@[!$(*#*)&!D1]"
torsionQuery = Chem.MolFromSmarts(torsionSmarts)
matches = m.GetSubstructMatches(torsionQuery)
for match in matches:
idx2 = match[0]
idx3 = match[1]
bond = m.GetBondBetweenAtoms(idx2, idx3)
jAtom = m.GetAtomWithIdx(idx2)
kAtom = m.GetAtomWithIdx(idx3)
for b1 in jAtom.GetBonds():
if b1.GetIdx() == bond.GetIdx():
continue
idx1 = b1.GetOtherAtomIdx(idx2)
for b2 in kAtom.GetBonds():
if (b2.GetIdx() == bond.GetIdx()) or (b2.GetIdx() == b1.GetIdx()):
continue
idx4 = b2.GetOtherAtomIdx(idx3)
# skip 3-membered rings
if idx4 == idx1:
continue
# skip torsions that include hydrogens
if (m.GetAtomWithIdx(idx1).GetAtomicNum() == 1) or (
m.GetAtomWithIdx(idx4).GetAtomicNum() == 1
):
continue
if m.GetAtomWithIdx(idx4).IsInRing():
torsionList.append((idx4, idx3, idx2, idx1))
break
else:
torsionList.append((idx1, idx2, idx3, idx4))
break
break
return torsionList
def SetDihedral(conf, atom_idx, new_vale):
rdMolTransforms.SetDihedralRad(
conf, atom_idx[0], atom_idx[1], atom_idx[2], atom_idx[3], new_vale
)
def single_conf_gen_bonds(tgt_mol, num_confs=1000, seed=42, removeHs=True):
mol = copy.deepcopy(tgt_mol)
mol = Chem.AddHs(mol)
allconformers = AllChem.EmbedMultipleConfs(
mol, numConfs=num_confs, randomSeed=seed, clearConfs=True
)
if removeHs:
mol = Chem.RemoveHs(mol)
rotable_bonds = get_torsions(mol, removeHs=removeHs)
for i in range(len(allconformers)):
np.random.seed(i)
values = 3.1415926 * 2 * np.random.rand(len(rotable_bonds))
for idx in range(len(rotable_bonds)):
SetDihedral(mol.GetConformers()[i], rotable_bonds[idx], values[idx])
Chem.rdMolTransforms.CanonicalizeConformer(mol.GetConformers()[i])
return mol
def load_lmdb_data(lmdb_path, key):
env = lmdb.open(
lmdb_path,
subdir=False,
readonly=True,
lock=False,
readahead=False,
meminit=False,
max_readers=256,
)
txn = env.begin()
_keys = list(txn.cursor().iternext(values=False))
collects = []
for idx in range(len(_keys)):
datapoint_pickled = txn.get(f"{idx}".encode("ascii"))
data = pickle.loads(datapoint_pickled)
collects.append(data[key])
return collects
def docking_data_pre(raw_data_path, predict_path):
mol_list = load_lmdb_data(raw_data_path, "mol_list")
mol_list = [Chem.RemoveHs(mol) for items in mol_list for mol in items]
predict = pd.read_pickle(predict_path)
(
smi_list,
pocket_list,
pocket_coords_list,
distance_predict_list,
holo_distance_predict_list,
holo_coords_list,
holo_center_coords_list,
) = ([], [], [], [], [], [], [])
for batch in predict:
sz = batch["atoms"].size(0)
for i in range(sz):
smi_list.append(batch["smi_name"][i])
pocket_list.append(batch["pocket_name"][i])
distance_predict = batch["cross_distance_predict"][i]
token_mask = batch["atoms"][i] > 2
pocket_token_mask = batch["pocket_atoms"][i] > 2
distance_predict = distance_predict[token_mask][:, pocket_token_mask]
pocket_coords = batch["pocket_coordinates"][i]
pocket_coords = pocket_coords[pocket_token_mask, :]
holo_distance_predict = batch["holo_distance_predict"][i]
holo_distance_predict = holo_distance_predict[token_mask][:, token_mask]
holo_coordinates = batch["holo_coordinates"][i]
holo_coordinates = holo_coordinates[token_mask, :]
holo_center_coordinates = batch["holo_center_coordinates"][i][:3]
pocket_coords = pocket_coords.numpy().astype(np.float32)
distance_predict = distance_predict.numpy().astype(np.float32)
holo_distance_predict = holo_distance_predict.numpy().astype(np.float32)
holo_coords = holo_coordinates.numpy().astype(np.float32)
pocket_coords_list.append(pocket_coords)
distance_predict_list.append(distance_predict)
holo_distance_predict_list.append(holo_distance_predict)
holo_coords_list.append(holo_coords)
holo_center_coords_list.append(holo_center_coordinates)
return (
mol_list,
smi_list,
pocket_list,
pocket_coords_list,
distance_predict_list,
holo_distance_predict_list,
holo_coords_list,
holo_center_coords_list,
)
def ensemble_iterations(
mol_list,
smi_list,
pocket_list,
pocket_coords_list,
distance_predict_list,
holo_distance_predict_list,
holo_coords_list,
holo_center_coords_list,
tta_times=10,
):
sz = len(mol_list)
for i in range(sz // tta_times):
start_idx, end_idx = i * tta_times, (i + 1) * tta_times
distance_predict_tta = distance_predict_list[start_idx:end_idx]
holo_distance_predict_tta = holo_distance_predict_list[start_idx:end_idx]
mol = copy.deepcopy(mol_list[start_idx])
rdkit_mol = single_conf_gen_bonds(
mol, num_confs=tta_times, seed=42, removeHs=True
)
sz = len(rdkit_mol.GetConformers())
initial_coords_list = [
rdkit_mol.GetConformers()[i].GetPositions().astype(np.float32)
for i in range(sz)
]
yield [
initial_coords_list,
mol,
smi_list[start_idx],
pocket_list[start_idx],
pocket_coords_list[start_idx],
distance_predict_tta,
holo_distance_predict_tta,
holo_coords_list[start_idx],
holo_center_coords_list[start_idx],
]
def rmsd_func(holo_coords, predict_coords):
if predict_coords is not np.nan:
sz = holo_coords.shape
rmsd = np.sqrt(np.sum((predict_coords - holo_coords) ** 2) / sz[0])
return rmsd
return 1000.0
def print_results(rmsd_results):
print("RMSD < 1.0 : ", np.mean(rmsd_results < 1.0))
print("RMSD < 1.5 : ", np.mean(rmsd_results < 1.5))
print("RMSD < 2.0 : ", np.mean(rmsd_results < 2.0))
print("RMSD < 3.0 : ", np.mean(rmsd_results < 3.0))
print("RMSD < 5.0 : ", np.mean(rmsd_results < 5.0))
print("avg RMSD : ", np.mean(rmsd_results))