[8956d4]: / unimol / tasks / unimol.py

Download this file

238 lines (218 with data), 8.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
# Copyright (c) DP Technology.
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import os
import numpy as np
from unicore.data import (
Dictionary,
NestedDictionaryDataset,
AppendTokenDataset,
PrependTokenDataset,
RightPadDataset,
EpochShuffleDataset,
TokenizeDataset,
RightPadDataset2D,
FromNumpyDataset,
RawArrayDataset,
)
from unimol.data import (
KeyDataset,
ConformerSampleDataset,
DistanceDataset,
EdgeTypeDataset,
MaskPointsDataset,
RemoveHydrogenDataset,
AtomTypeDataset,
NormalizeDataset,
CroppingDataset,
RightPadDatasetCoord,
Add2DConformerDataset,
LMDBDataset,
)
from unicore.tasks import UnicoreTask, register_task
logger = logging.getLogger(__name__)
@register_task("unimol")
class UniMolTask(UnicoreTask):
"""Task for training transformer auto-encoder models."""
@staticmethod
def add_args(parser):
"""Add task-specific arguments to the parser."""
parser.add_argument(
"data",
help="colon separated path to data directories list, \
will be iterated upon during epochs in round-robin manner",
)
parser.add_argument(
"--mask-prob",
default=0.15,
type=float,
help="probability of replacing a token with mask",
)
parser.add_argument(
"--leave-unmasked-prob",
default=0.05,
type=float,
help="probability that a masked token is unmasked",
)
parser.add_argument(
"--random-token-prob",
default=0.05,
type=float,
help="probability of replacing a token with a random token",
)
parser.add_argument(
"--noise-type",
default="uniform",
choices=["trunc_normal", "uniform", "normal", "none"],
help="noise type in coordinate noise",
)
parser.add_argument(
"--noise",
default=1.0,
type=float,
help="coordinate noise for masked atoms",
)
parser.add_argument(
"--remove-hydrogen",
action="store_true",
help="remove hydrogen atoms",
)
parser.add_argument(
"--remove-polar-hydrogen",
action="store_true",
help="remove polar hydrogen atoms",
)
parser.add_argument(
"--max-atoms",
type=int,
default=256,
help="selected maximum number of atoms in a molecule",
)
parser.add_argument(
"--dict-name",
default="dict.txt",
help="dictionary file",
)
parser.add_argument(
"--only-polar",
default=1,
type=int,
help="1: only polar hydrogen ; -1: all hydrogen ; 0: remove all hydrogen ",
)
def __init__(self, args, dictionary):
super().__init__(args)
self.dictionary = dictionary
self.seed = args.seed
# add mask token
self.mask_idx = dictionary.add_symbol("[MASK]", is_special=True)
if self.args.only_polar > 0:
self.args.remove_polar_hydrogen = True
elif args.only_polar < 0:
self.args.remove_polar_hydrogen = False
else:
self.args.remove_hydrogen = True
@classmethod
def setup_task(cls, args, **kwargs):
dictionary = Dictionary.load(os.path.join(args.data, args.dict_name))
logger.info("dictionary: {} types".format(len(dictionary)))
return cls(args, dictionary)
def load_dataset(self, split, combine=False, **kwargs):
"""Load a given dataset split.
Args:
split (str): name of the split (e.g., train, valid, test)
"""
split_path = os.path.join(self.args.data, split + ".lmdb")
raw_dataset = LMDBDataset(split_path)
def one_dataset(raw_dataset, coord_seed, mask_seed):
if self.args.mode =='train':
raw_dataset = Add2DConformerDataset(
raw_dataset, "smi", "atoms", "coordinates"
)
smi_dataset = KeyDataset(raw_dataset, "smi")
dataset = ConformerSampleDataset(
raw_dataset, coord_seed, "atoms", "coordinates"
)
dataset = AtomTypeDataset(raw_dataset, dataset)
dataset = RemoveHydrogenDataset(
dataset,
"atoms",
"coordinates",
self.args.remove_hydrogen,
self.args.remove_polar_hydrogen,
)
dataset = CroppingDataset(
dataset, self.seed, "atoms", "coordinates", self.args.max_atoms
)
dataset = NormalizeDataset(dataset, "coordinates", normalize_coord=True)
token_dataset = KeyDataset(dataset, "atoms")
token_dataset = TokenizeDataset(
token_dataset, self.dictionary, max_seq_len=self.args.max_seq_len
)
coord_dataset = KeyDataset(dataset, "coordinates")
expand_dataset = MaskPointsDataset(
token_dataset,
coord_dataset,
self.dictionary,
pad_idx=self.dictionary.pad(),
mask_idx=self.mask_idx,
noise_type=self.args.noise_type,
noise=self.args.noise,
seed=mask_seed,
mask_prob=self.args.mask_prob,
leave_unmasked_prob=self.args.leave_unmasked_prob,
random_token_prob=self.args.random_token_prob,
)
def PrependAndAppend(dataset, pre_token, app_token):
dataset = PrependTokenDataset(dataset, pre_token)
return AppendTokenDataset(dataset, app_token)
encoder_token_dataset = KeyDataset(expand_dataset, "atoms")
encoder_target_dataset = KeyDataset(expand_dataset, "targets")
encoder_coord_dataset = KeyDataset(expand_dataset, "coordinates")
src_dataset = PrependAndAppend(
encoder_token_dataset, self.dictionary.bos(), self.dictionary.eos()
)
tgt_dataset = PrependAndAppend(
encoder_target_dataset, self.dictionary.pad(), self.dictionary.pad()
)
encoder_coord_dataset = PrependAndAppend(encoder_coord_dataset, 0.0, 0.0)
encoder_distance_dataset = DistanceDataset(encoder_coord_dataset)
edge_type = EdgeTypeDataset(src_dataset, len(self.dictionary))
coord_dataset = FromNumpyDataset(coord_dataset)
coord_dataset = PrependAndAppend(coord_dataset, 0.0, 0.0)
distance_dataset = DistanceDataset(coord_dataset)
return {
"src_tokens": RightPadDataset(
src_dataset,
pad_idx=self.dictionary.pad(),
),
"src_coord": RightPadDatasetCoord(
encoder_coord_dataset,
pad_idx=0,
),
"src_distance": RightPadDataset2D(
encoder_distance_dataset,
pad_idx=0,
),
"src_edge_type": RightPadDataset2D(
edge_type,
pad_idx=0,
),
}, {
"tokens_target": RightPadDataset(
tgt_dataset, pad_idx=self.dictionary.pad()
),
"distance_target": RightPadDataset2D(distance_dataset, pad_idx=0),
"coord_target": RightPadDatasetCoord(coord_dataset, pad_idx=0),
"smi_name": RawArrayDataset(smi_dataset),
}
net_input, target = one_dataset(raw_dataset, self.args.seed, self.args.seed)
dataset = {"net_input": net_input, "target": target}
dataset = NestedDictionaryDataset(dataset)
if split in ["train", "train.small"]:
dataset = EpochShuffleDataset(dataset, len(dataset), self.args.seed)
self.datasets[split] = dataset
def build_model(self, args):
from unicore import models
model = models.build_model(args, self)
return model