[8956d4]: / unimol / data / vae_binding_dataset.py

Download this file

177 lines (149 with data), 5.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# Copyright (c) DP Technology.
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from functools import lru_cache
import numpy as np
from unicore.data import BaseWrapperDataset
from . import data_utils
class VAEBindingDataset(BaseWrapperDataset):
def __init__(
self,
dataset,
seed,
atoms,
coordinates,
pocket_atoms,
pocket_coordinates,
selfies,
is_train=True,
):
self.dataset = dataset
self.seed = seed
self.atoms = atoms
self.coordinates = coordinates
self.pocket_atoms = pocket_atoms
self.pocket_coordinates = pocket_coordinates
self.selfies = selfies
self.is_train = is_train
self.set_epoch(None)
def set_epoch(self, epoch, **unused):
super().set_epoch(epoch)
self.epoch = epoch
def pocket_atom(self, atom):
if atom[0] in ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']:
return atom[1]
else:
return atom[0]
@lru_cache(maxsize=16)
def __cached_item__(self, index: int, epoch: int):
atoms = np.array(self.dataset[index][self.atoms])
coordinates = self.dataset[index][self.coordinates]
pocket_atoms = np.array(
[self.pocket_atom(item) for item in self.dataset[index][self.pocket_atoms]]
)
pocket_coordinates = np.stack(self.dataset[index][self.pocket_coordinates])
smi = self.dataset[index]["smi"]
pocket = self.dataset[index]["pocket"]
#affinity = self.dataset[index][self.affinity]
selfies = np.array(self.dataset[index][self.selfies])
return {
"atoms": atoms,
"coordinates": coordinates.astype(np.float32),
"holo_coordinates": coordinates.astype(np.float32),#placeholder
"pocket_atoms": pocket_atoms,
"pocket_coordinates": pocket_coordinates.astype(np.float32),
"holo_pocket_coordinates": pocket_coordinates.astype(np.float32),#placeholder
"smi": smi,
"pocket": pocket,
"selfies": selfies
}
def __getitem__(self, index: int):
return self.__cached_item__(index, self.epoch)
class VAEBindingTestDataset(BaseWrapperDataset):
def __init__(
self,
dataset,
seed,
atoms,
coordinates,
pocket_atoms,
pocket_coordinates,
is_train=True,
):
self.dataset = dataset
self.seed = seed
self.atoms = atoms
self.coordinates = coordinates
self.pocket_atoms = pocket_atoms
self.pocket_coordinates = pocket_coordinates
self.is_train = is_train
self.set_epoch(None)
def set_epoch(self, epoch, **unused):
super().set_epoch(epoch)
self.epoch = epoch
def pocket_atom(self, atom):
if atom[0] in ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']:
return atom[1]
else:
return atom[0]
@lru_cache(maxsize=16)
def __cached_item__(self, index: int, epoch: int):
atoms = np.array(self.dataset[index][self.atoms])
coordinates = self.dataset[index][self.coordinates]
pocket_atoms = np.array(
[self.pocket_atom(item) for item in self.dataset[index][self.pocket_atoms]]
)
pocket_coordinates = np.stack(self.dataset[index][self.pocket_coordinates])
smi = self.dataset[index]["smi"]
pocket = self.dataset[index]["pocket_name"]
lig = self.dataset[index]["lig_name"]
#affinity = self.dataset[index][self.affinity]
return {
"atoms": atoms,
"coordinates": coordinates.astype(np.float32),
"holo_coordinates": coordinates.astype(np.float32),#placeholder
"pocket_atoms": pocket_atoms,
"pocket_coordinates": pocket_coordinates.astype(np.float32),
"holo_pocket_coordinates": pocket_coordinates.astype(np.float32),#placeholder
"smi": smi,
"pocket": pocket,
"lig": lig
}
def __getitem__(self, index: int):
return self.__cached_item__(index, self.epoch)
class VAEGenerationTestDataset(BaseWrapperDataset):
def __init__(
self,
dataset,
seed,
pocket_atoms,
pocket_coordinates,
is_train=True,
):
self.dataset = dataset
self.seed = seed
self.pocket_atoms = pocket_atoms
self.pocket_coordinates = pocket_coordinates
self.is_train = is_train
self.set_epoch(None)
def set_epoch(self, epoch, **unused):
super().set_epoch(epoch)
self.epoch = epoch
def pocket_atom(self, atom):
if atom[0] in ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']:
return atom[1]
else:
return atom[0]
@lru_cache(maxsize=16)
def __cached_item__(self, index: int, epoch: int):
pocket_atoms = np.array(
[self.pocket_atom(item) for item in self.dataset[index][self.pocket_atoms]]
)
pocket_coordinates = np.stack(self.dataset[index][self.pocket_coordinates])
return {
"pocket_atoms": pocket_atoms,
"pocket_coordinates": pocket_coordinates.astype(np.float32),
"holo_pocket_coordinates": pocket_coordinates.astype(np.float32),#placeholder
}
def __getitem__(self, index: int):
return self.__cached_item__(index, self.epoch)