[8956d4]: / unimol / data / tta_dataset.py

Download this file

147 lines (127 with data), 5.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# Copyright (c) DP Technology.
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import numpy as np
from functools import lru_cache
from unicore.data import BaseWrapperDataset
class TTADataset(BaseWrapperDataset):
def __init__(self, dataset, seed, atoms, coordinates, conf_size=10):
self.dataset = dataset
self.seed = seed
self.atoms = atoms
self.coordinates = coordinates
self.conf_size = conf_size
self.set_epoch(None)
def set_epoch(self, epoch, **unused):
super().set_epoch(epoch)
self.epoch = epoch
def __len__(self):
return len(self.dataset) * self.conf_size
@lru_cache(maxsize=16)
def __cached_item__(self, index: int, epoch: int):
smi_idx = index // self.conf_size
coord_idx = index % self.conf_size
atoms = np.array(self.dataset[smi_idx][self.atoms])
coordinates = np.array(self.dataset[smi_idx][self.coordinates][coord_idx])
smi = self.dataset[smi_idx]["smi"]
target = self.dataset[smi_idx]["target"]
return {
"atoms": atoms,
"coordinates": coordinates.astype(np.float32),
"smi": smi,
"target": target,
}
def __getitem__(self, index: int):
return self.__cached_item__(index, self.epoch)
class TTADecoderDataset(BaseWrapperDataset):
def __init__(self, dataset, seed, atoms, coordinates, selfies="selfies", conf_size=10):
self.dataset = dataset
self.seed = seed
self.atoms = atoms
self.coordinates = coordinates
self.selfies = selfies
self.conf_size = conf_size
self.set_epoch(None)
def set_epoch(self, epoch, **unused):
super().set_epoch(epoch)
self.epoch = epoch
def __len__(self):
return len(self.dataset) * self.conf_size
@lru_cache(maxsize=16)
def __cached_item__(self, index: int, epoch: int):
smi_idx = index // self.conf_size
coord_idx = index % self.conf_size
atoms = np.array(self.dataset[smi_idx][self.atoms])
coordinates = np.array(self.dataset[smi_idx][self.coordinates][coord_idx])
selfies = np.array(self.dataset[smi_idx][self.selfies])
smi = self.dataset[smi_idx]["smi"]
target = self.dataset[smi_idx]["target"]
return {
"atoms": atoms,
"selfies": selfies,
"coordinates": coordinates.astype(np.float32),
"smi": smi,
"target": target,
}
def __getitem__(self, index: int):
return self.__cached_item__(index, self.epoch)
class TTADockingPoseDataset(BaseWrapperDataset):
def __init__(
self,
dataset,
atoms,
coordinates,
pocket_atoms,
pocket_coordinates,
holo_coordinates,
holo_pocket_coordinates,
is_train=True,
conf_size=10,
):
self.dataset = dataset
self.atoms = atoms
self.coordinates = coordinates
self.pocket_atoms = pocket_atoms
self.pocket_coordinates = pocket_coordinates
self.holo_coordinates = holo_coordinates
self.holo_pocket_coordinates = holo_pocket_coordinates
self.is_train = is_train
self.conf_size = conf_size
self.set_epoch(None)
def set_epoch(self, epoch, **unused):
super().set_epoch(epoch)
self.epoch = epoch
def __len__(self):
return len(self.dataset) * self.conf_size
@lru_cache(maxsize=16)
def __cached_item__(self, index: int, epoch: int):
smi_idx = index // self.conf_size
coord_idx = index % self.conf_size
atoms = np.array(self.dataset[smi_idx][self.atoms])
coordinates = np.array(self.dataset[smi_idx][self.coordinates][coord_idx])
pocket_atoms = np.array(
[item[0] for item in self.dataset[smi_idx][self.pocket_atoms]]
)
pocket_coordinates = np.array(self.dataset[smi_idx][self.pocket_coordinates][0])
if self.is_train:
holo_coordinates = np.array(self.dataset[smi_idx][self.holo_coordinates][0])
holo_pocket_coordinates = np.array(
self.dataset[smi_idx][self.holo_pocket_coordinates][0]
)
else:
holo_coordinates = coordinates
holo_pocket_coordinates = pocket_coordinates
smi = self.dataset[smi_idx]["smi"]
pocket = self.dataset[smi_idx]["pocket"]
return {
"atoms": atoms,
"coordinates": coordinates.astype(np.float32),
"pocket_atoms": pocket_atoms,
"pocket_coordinates": pocket_coordinates.astype(np.float32),
"holo_coordinates": holo_coordinates.astype(np.float32),
"holo_pocket_coordinates": holo_pocket_coordinates.astype(np.float32),
"smi": smi,
"pocket": pocket,
}
def __getitem__(self, index: int):
return self.__cached_item__(index, self.epoch)