from functools import lru_cache
import sys
import pickle
import random
import networkx as nx
import numpy as np
import torch
import rdkit
from rdkit import Chem
from rdkit.Chem import AllChem
sys.path.append('..')
import numpy as np
from unicore.data import BaseWrapperDataset
from . import data_utils
from unimol.utils import geom
def gen_conformation(mol, num_conf=20, num_worker=8, keepHs=False):
try:
mol = Chem.AddHs(mol)
AllChem.EmbedMultipleConfs(mol, numConfs=num_conf, numThreads=num_worker, pruneRmsThresh=0.1, maxAttempts=5, useRandomCoords=False)
AllChem.MMFFOptimizeMoleculeConfs(mol, numThreads=num_worker)
if not keepHs:
mol = Chem.RemoveHs(mol)
return mol
except:
return None
class FragmentConformationDataset(BaseWrapperDataset):
def __init__(
self,
dataset,
seed,
vocab,
conf_vocab,
use_pocket=True,
is_train=True
):
self.dataset = dataset
self.seed = seed
self.use_pocket = use_pocket
self.conf_vocab = Vocabulary(vocab, conf_vocab)
self.is_train = is_train
self.set_epoch(None)
def set_epoch(self, epoch, **unused):
super().set_epoch(epoch)
self.epoch = epoch
def parse_frag_mol(self, frag_mol):
atom_types = [a.GetSymbol() for a in frag_mol.GetAtoms()]
atom_coords = np.array(frag_mol.GetConformer(0).GetPositions())
return {'atom_types': atom_types, 'atom_coords': atom_coords}
def parse_frag_idx(self, vocab_conf, full_mol, atom_map):
if vocab_conf.GetNumConformers() == 0:
smi = Chem.MolToSmiles(vocab_conf)
vocab_conf = Chem.MolFromSmiles(smi)
vocab_conf = gen_conformation(vocab_conf, num_conf=1, num_worker=1, keepHs=True)
mol = Chem.RWMol(full_mol)
atom_idx = list(range(full_mol.GetNumAtoms()))
for i, atom in enumerate(full_mol.GetAtoms()):
if atom.GetAtomMapNum() not in atom_map:
atom_idx[i] = -1
for i in range(len(atom_idx) - 1, -1, -1):
if atom_idx[i] == -1:
mol.RemoveAtom(i)
mol = mol.GetMol()
#mol = Chem.RemoveHs(mol)
smi = Chem.MolToSmiles(mol)
#find the map num in smiles
map_num = []
smi_p = smi.split('[')
for i in range(1, len(smi_p)):
if ':' in smi_p[i]:
end_idx = smi_p[i].split(':')[1].index(']')
map_num.append(int(smi_p[i].split(':')[1][:end_idx]))
vocab_conf = Chem.RemoveHs(vocab_conf)
for i, atom in enumerate(vocab_conf.GetAtoms()):
if atom.GetSymbol() != 'H':
atom.SetAtomMapNum(map_num[i])
vocab_conf = Chem.AddHs(vocab_conf, addCoords=True)
if torch.isnan(torch.from_numpy(np.array(vocab_conf.GetConformer(0).GetPositions()))).any():
vocab_conf = gen_conformation(vocab_conf, num_conf=1, num_worker=1, keepHs=True)
return vocab_conf
def pocket_atom(self, atom):
if atom[0] in ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']:
return atom[1]
else:
return atom[0]
def check_leaf(self, edges, index):
out_degree = 0
for edge in edges:
if edge[0] == index:
out_degree += 1
if out_degree == 0:
return True
else:
return False
def pocket_atom(self, atom):
if atom[0] in ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']:
return atom[1]
else:
return atom[0]
def check_leaf(self, edges, index):
out_degree = 0
for edge in edges:
if edge[0] == index:
out_degree += 1
if out_degree == 0:
return True
else:
return False
@lru_cache(maxsize=16)
def __cached_item__(self, index: int, epoch: int):
random.seed(self.seed + epoch)
#pocket
if self.use_pocket:
pocket_atoms = np.array(
[self.pocket_atom(item) for item in self.dataset[index]['pocket_atom']]
)
pocket_coordinates = np.stack(self.dataset[index]['pocket_coord'])
full_mol = self.dataset[index]['frags']['mol']
frag_graph = nx.Graph()
edges = self.dataset[index]['frags']['frag_edges']
frag_graph.add_edges_from(np.array(edges))
if len(edges) == 0:
frag_mol_idx = self.dataset[index]['frags']['frag_idx'][0]
frag_mol = self.conf_vocab.conf[frag_mol_idx]
f_mol_noH_num = len([atom for atom in frag_mol.GetAtoms() if atom.GetSymbol() != 'H'])
frag_mol = Chem.AddHs(frag_mol, addCoords=True)
frag_mol_data = self.parse_frag_mol(frag_mol)
return {
'atom_types': np.array([], dtype=str),
'atom_coords': np.zeros((1, 3), dtype=np.float32),
'focal_atom_local': 0,#place holder
'attach_atom_local': 0,#place holder
'focal_atom': 0,#place holder
'attach_atom': 0,#place holder
'frag_atom_types': frag_mol_data['atom_types'],
'frag_atom_coords': frag_mol_data['atom_coords'],
'end': True,
'torsion_output_prev': 0,#place holder
'coords_input_prev': frag_mol_data['atom_coords'],
'atom_types_withfocal': frag_mol_data['atom_types'],
'pocket_atoms': pocket_atoms,
'pocket_coordinates': pocket_coordinates,
'first': True,
'symmetric': True
}
bfs_edges = list(nx.bfs_edges(frag_graph, 0))
#reorder the link and local link
link = self.dataset[index]['frags']['links']
local_link = self.dataset[index]['frags']['links_local']
reorrder_link, reorrder_local_link = [], []
for i, b_edge in enumerate(bfs_edges):
for j, o_edge in enumerate(edges):
if b_edge[0] == o_edge[0] and b_edge[1] == o_edge[1]:
reorrder_link.append(link[j])
reorrder_local_link.append(local_link[j])
elif b_edge[0] == o_edge[1] and b_edge[1] == o_edge[0]:
reorrder_link.append([link[j][1], link[j][0]])
reorrder_local_link.append([local_link[j][1], local_link[j][0]])
self.dataset[index]['frags']['links'] = reorrder_link
self.dataset[index]['frags']['links_local'] = reorrder_local_link
#clip a random subgraph
bfs_edges_full = bfs_edges.copy()
clip_step = random.randint(0, len(bfs_edges))
#print('clip_step', clip_step)
start_frag = bfs_edges[0][0]
if clip_step != 0:
bfs_edges = bfs_edges[:clip_step]
focal_frag, attach_frag = bfs_edges[-1]
else:
focal_frag, attach_frag = bfs_edges[0]
for i, atom in enumerate(full_mol.GetAtoms()):
atom.SetAtomMapNum(i + 1)
end = (clip_step == len(bfs_edges_full))
if clip_step == 0:
#frag
#print('first frag')
frag_mol_idx = self.dataset[index]['frags']['frag_idx'][start_frag]
frag_mol = self.conf_vocab.conf[frag_mol_idx]
if frag_mol is None:
print(frag_mol_idx, 'is None')
frag_mol = self.parse_frag_idx(frag_mol, full_mol, self.dataset[index]['frags']['map'][start_frag])
frag_mol_data = self.parse_frag_mol(frag_mol)
return {
'atom_types': np.array([], dtype=str),
'atom_coords': np.zeros((1, 3), dtype=np.float32),
'focal_atom_local': 0,#place holder
'attach_atom_local': 0,#place holder
'focal_atom': 0,#place holder
'attach_atom': 0,#place holder
'frag_atom_types': frag_mol_data['atom_types'],
'frag_atom_coords': frag_mol_data['atom_coords'],
'end': end,
'torsion_output_prev': 0,#place holder
'coords_input_prev': frag_mol_data['atom_coords'],
'atom_types_withfocal': frag_mol_data['atom_types'],
'pocket_atoms': pocket_atoms,
'pocket_coordinates': pocket_coordinates,
'first': True,
'symmetric': True
}
clip_frag_idx = [e[0] for e in bfs_edges] + [e[1] for e in bfs_edges[:-1]]
clip_frag_idx = np.unique(clip_frag_idx)
frag_attach_idx = bfs_edges[-1][1]
clip_map = []
for i in range(len(clip_frag_idx)):
clip_map.extend(self.dataset[index]['frags']['map'][clip_frag_idx[i]])
clip_map_attach = clip_map + self.dataset[index]['frags']['map'][frag_attach_idx]
#print('frag_node_map', self.dataset[index]['frags']['map'])
#get part mol
part_mol = Chem.RWMol(full_mol)
atom_idx = list(range(full_mol.GetNumAtoms()))
for i, atom in enumerate(full_mol.GetAtoms()):
if atom.GetSymbol() == 'H':
#remove if neighbor is not in clip_map
neighbor_atom = [atom.GetAtomMapNum() for atom in part_mol.GetAtomWithIdx(i).GetNeighbors()]
neighbor_map = [atom.GetAtomMapNum() for atom in part_mol.GetAtomWithIdx(i).GetNeighbors()][0]
if neighbor_map not in clip_map:
atom_idx[i] = -1
if atom.GetAtomMapNum() not in clip_map:
atom_idx[i] = -1
else:
if atom.GetAtomMapNum() not in clip_map:
atom_idx[i] = -1
for i in range(len(atom_idx) - 1, -1, -1):
if atom_idx[i] == -1:
part_mol.RemoveAtom(i)
frag_exp_link = []
for i in range(len(clip_frag_idx)):
for e_d, e in enumerate(bfs_edges_full):
if e[0] == clip_frag_idx[i] and e[1] not in clip_frag_idx:
frag_exp_link.append(self.dataset[index]['frags']['links'][e_d][0])
for link_mp in frag_exp_link:
add_map = [i for i, atom in enumerate(part_mol.GetAtoms()) if atom.GetAtomMapNum() == link_mp][0]
part_mol.AddAtom(Chem.Atom(1))
part_mol.AddBond(add_map, part_mol.GetNumAtoms() - 1, Chem.rdchem.BondType.SINGLE)
part_mol = part_mol.GetMol()
part_mol = Chem.RemoveHs(part_mol)
part_mol = Chem.AddHs(part_mol, addCoords=True)
part_mol_atom_types = [atom.GetSymbol() for atom in part_mol.GetAtoms()]
part_mol_atom_coords = np.array([part_mol.GetConformer().GetAtomPosition(i) for i in range(part_mol.GetNumAtoms())])
#get part mol with attach
part_mol_attach = Chem.RWMol(full_mol)
atom_idx = list(range(full_mol.GetNumAtoms()))
for i, atom in enumerate(full_mol.GetAtoms()):
if full_mol.GetAtomWithIdx(i).GetSymbol() == 'H':
#remove if neighbor is not in clip_map
neighbor = [atom.GetAtomMapNum() for atom in part_mol_attach.GetAtomWithIdx(i).GetNeighbors()][0]
if neighbor not in clip_map_attach:
atom_idx[i] = -1
else:
if atom.GetAtomMapNum() not in clip_map_attach:
atom_idx[i] = -1
#print([i for i, idx in enumerate(atom_idx) if idx == -1])
for i in range(len(atom_idx) - 1, -1, -1):
if atom_idx[i] == -1:
part_mol_attach.RemoveAtom(i)
#if not self.check_leaf(edges, frag_attach_idx):
frag_exp_link = []
clip_frag_attach_idx = list(clip_frag_idx) + [frag_attach_idx]
for i in range(len(clip_frag_attach_idx)):
for e_d, e in enumerate(bfs_edges_full):
if e[0] == clip_frag_attach_idx[i] and e[1] not in clip_frag_attach_idx:
frag_exp_link.append(self.dataset[index]['frags']['links'][e_d][0])
for link_mp in frag_exp_link:
add_map = [i for i, atom in enumerate(part_mol_attach.GetAtoms()) if atom.GetAtomMapNum() == link_mp][0]
part_mol_attach.AddAtom(Chem.Atom(1))
part_mol_attach.AddBond(add_map, part_mol_attach.GetNumAtoms() - 1, Chem.rdchem.BondType.SINGLE)
#print('add H atom symbol', part_mol_attach.GetAtomWithIdx(add_map).GetSymbol())
#else:
# print('leaf node')
part_mol_attach = part_mol_attach.GetMol()
part_mol_attach = Chem.RemoveHs(part_mol_attach)
part_mol_attach = Chem.AddHs(part_mol_attach, addCoords=True)
part_mol_attach_atom_types = [atom.GetSymbol() for atom in part_mol_attach.GetAtoms()]
part_mol_attach_atom_coords = np.array([part_mol_attach.GetConformer().GetAtomPosition(i) for i in range(part_mol_attach.GetNumAtoms())])
'''
part_mol_atom = [self.dataset[index]['frags']['map'][e[0]] for e in bfs_edges] + \
[self.dataset[index]['frags']['map'][e[1]] for e in bfs_edges[:-1]]
part_mol_atom = np.concatenate(part_mol_atom, axis=0)
part_mol_atom = np.unique(part_mol_atom)
part_mol_atom_types = self.dataset[index]['atom_types'][part_mol_atom]
part_mol_atom_coords = self.dataset[index]['atom_coords'][part_mol_atom]
'''
'''
#add focal atom
part_mol_atom_withfocal = [self.dataset[index]['frags']['map'][e[0]] for e in bfs_edges] + \
[self.dataset[index]['frags']['map'][e[1]] for e in bfs_edges]
part_mol_atom_withfocal = np.concatenate(part_mol_atom_withfocal, axis=0)
part_mol_atom_withfocal = np.unique(part_mol_atom_withfocal)
part_mol_atom_types_withfocal = self.dataset[index]['atom_types'][part_mol_atom_withfocal]
part_mol_atom_coords_withfocal = self.dataset[index]['atom_coords'][part_mol_atom_withfocal]
'''
focal_atom_local = [i for i, atom in enumerate(part_mol.GetAtoms()) if atom.GetAtomMapNum() == self.dataset[index]['frags']['links'][clip_step - 1][0]][0]
focal_atom = [i for i, atom in enumerate(part_mol_attach.GetAtoms()) if atom.GetAtomMapNum() == self.dataset[index]['frags']['links'][clip_step - 1][0]][0]
#focal_atom = self.dataset[index]['frags']['map'][focal_frag][focal_atom_local]
#frag
frag_mol_idx = self.dataset[index]['frags']['frag_idx'][attach_frag]
frag_mol = self.conf_vocab.conf[frag_mol_idx]
frag_mol = self.parse_frag_idx(frag_mol, self.dataset[index]['frags']['mol'], self.dataset[index]['frags']['map'][attach_frag])
frag_mol_data = self.parse_frag_mol(frag_mol)
if frag_mol is None:
print(frag_mol_idx, 'is None')
attach_atom_local = [i for i, atom in enumerate(frag_mol.GetAtoms()) if atom.GetAtomMapNum() == self.dataset[index]['frags']['links'][clip_step - 1][1]][0]
attach_atom = [i for i, atom in enumerate(part_mol_attach.GetAtoms()) if atom.GetAtomMapNum() == self.dataset[index]['frags']['links'][clip_step - 1][1]][0]
#attach_atom = self.dataset[index]['frags']['map'][bfs_edges[-1][1]][attach_atom_local]
#torsion angles
#prev_edge = bfs_edges[-1]
'''
prev_link_local = self.dataset[index]['frags']['link_atoms'][bfs_edges.index(prev_edge) - 1]
prev_link = (self.dataset[index]['frags']['map'][prev_edge[0]][prev_link_local[0]],
self.dataset[index]['frags']['map'][prev_edge[1]][prev_link_local[1]])
index_rotate = [prev_link[1]] + self.dataset[index]['frags']['map'][focal_frag]
index_parent = np.concatenate([self.dataset[index]['frags']['map'][e[0]] for e in bfs_edges[:-1]], axis=0) + [prev_link[0]]
'''
index_rotate = [i for i, atom in enumerate(part_mol_attach.GetAtoms()) if atom.GetAtomMapNum() in self.dataset[index]['frags']['map'][attach_frag]]
index_rotate.remove(attach_atom)
index_rotate = [attach_atom] + index_rotate
index_parent = []
for e in bfs_edges[:-1]:
index_parent += self.dataset[index]['frags']['map'][e[0]]
index_parent += self.dataset[index]['frags']['map'][e[1]]
index_parent += self.dataset[index]['frags']['map'][focal_frag]
index_parent = list(np.unique(index_parent))
index_parent = [i for i, atom in enumerate(part_mol_attach.GetAtoms()) if atom.GetAtomMapNum() in index_parent]
index_parent.remove(focal_atom)
index_parent = index_parent + [focal_atom]
#add hydrogen
# get the hydrogen that connects to the rotate atoms
index_rotate_h = []
for i in index_rotate:
for j in part_mol_attach.GetAtomWithIdx(i).GetNeighbors():
if j.GetAtomicNum() == 1:
index_rotate_h.append(j.GetIdx())
index_rotate += index_rotate_h
# get the hydrogen that connects to the parent atoms
index_parent_h = []
for i in index_parent:
for j in part_mol_attach.GetAtomWithIdx(i).GetNeighbors():
if j.GetAtomicNum() == 1:
index_parent_h.append(j.GetIdx())
index_parent = index_parent_h + index_parent
coords_input_prev, torsion_output_prev = geom.change_torsion(part_mol_attach_atom_coords, [index_parent, index_rotate])
symmetric = (len(index_rotate) == 0 )
return {
'atom_types': part_mol_atom_types,
'atom_coords': part_mol_atom_coords,
'focal_atom_local': focal_atom_local,
'attach_atom_local': attach_atom_local,
'focal_atom': focal_atom,
'attach_atom': attach_atom,
'frag_atom_types': frag_mol_data['atom_types'],
'frag_atom_coords': frag_mol_data['atom_coords'],
'end': end,
'torsion_output_prev': torsion_output_prev,
'coords_input_prev': coords_input_prev,
'atom_types_withfocal': part_mol_attach_atom_types,
'pocket_atoms': pocket_atoms,
'pocket_coordinates': pocket_coordinates,
'first': False,
'symmetric': symmetric
}
def __getitem__(self, index: int):
item = self.__cached_item__(index, self.epoch)
return item