import argparse
import gzip
import multiprocessing as mp
import os
import pickle
import random
import lmdb
import numpy as np
import pandas as pd
import rdkit
import rdkit.Chem.AllChem as AllChem
import torch
import tqdm
from biopandas.mol2 import PandasMol2
from biopandas.pdb import PandasPdb
from rdkit import Chem, RDLogger
from rdkit.Chem.MolStandardize import rdMolStandardize
RDLogger.DisableLog('rdApp.*')
parser = argparse.ArgumentParser()
parser.add_argument('--mol_data_path', type=str, default='/data/protein/DUD-E/raw/all')
parser.add_argument('--lmdb_path', type=str, default='docked_dude_fromweb2D.lmdb')
args = parser.parse_args()
def gen_conformation(mol, num_conf=20, num_worker=8):
try:
mol = Chem.AddHs(mol)
AllChem.EmbedMultipleConfs(mol, numConfs=num_conf, numThreads=num_worker, pruneRmsThresh=1, maxAttempts=10000, useRandomCoords=False)
try:
AllChem.MMFFOptimizeMoleculeConfs(mol, numThreads=num_worker)
except:
pass
mol = Chem.RemoveHs(mol)
except:
print("cannot gen conf", Chem.MolToSmiles(mol))
return None
if mol.GetNumConformers() == 0:
print("cannot gen conf", Chem.MolToSmiles(mol))
return None
return mol
def convert_2Dmol_to_data(mol, num_conf=1, num_worker=5):
#to 3D
mol = gen_conformation(mol, num_conf, num_worker)
if mol is None:
return None
coords = [np.array(mol.GetConformer(i).GetPositions()) for i in range(mol.GetNumConformers())]
atom_types = [a.GetSymbol() for a in mol.GetAtoms()]
return {'coords': coords, 'atom_types': atom_types, 'smi': Chem.MolToSmiles(mol), 'mol': mol}
def convert_3Dmol_to_data(mol):
if mol is None:
return None
coords = [np.array(mol.GetConformer(i).GetPositions()) for i in range(mol.GetNumConformers())]
atom_types = [a.GetSymbol() for a in mol.GetAtoms()]
return {'coords': coords, 'atom_types': atom_types, 'smi': Chem.MolToSmiles(mol), 'mol': mol}
def read_pdb(path):
pdb_df = PandasPdb().read_pdb(path)
coord = pdb_df.df['ATOM'][['x_coord', 'y_coord', 'z_coord']]
atom_type = pdb_df.df['ATOM']['atom_name']
residue_name = pdb_df.df['ATOM']['chain_id'] + pdb_df.df['ATOM']['residue_number'].astype(str)
residue_type = pdb_df.df['ATOM']['residue_name']
protein = {'coord': np.array(coord),
'atom_type': list(atom_type),
'residue_name': list(residue_name),
'residue_type': list(residue_type)}
return protein
def read_sdf_gz_3d(path):
inf = gzip.open(path)
with Chem.ForwardSDMolSupplier(inf, removeHs=False, sanitize=False) as gzsuppl:
ms = [add_charges(x) for x in gzsuppl if x is not None]
ms = [rdMolStandardize.Uncharger().uncharge(Chem.RemoveHs(m)) for m in ms if m is not None]
return ms
def add_charges(m):
m.UpdatePropertyCache(strict=False)
ps = Chem.DetectChemistryProblems(m)
if not ps:
Chem.SanitizeMol(m)
return m
for p in ps:
if p.GetType()=='AtomValenceException':
at = m.GetAtomWithIdx(p.GetAtomIdx())
if at.GetAtomicNum()==7 and at.GetFormalCharge()==0 and at.GetExplicitValence()==4:
at.SetFormalCharge(1)
if at.GetAtomicNum()==6 and at.GetExplicitValence()==5:
#remove a bond
for b in at.GetBonds():
if b.GetBondType()==Chem.rdchem.BondType.DOUBLE:
b.SetBondType(Chem.rdchem.BondType.SINGLE)
break
if at.GetAtomicNum()==8 and at.GetFormalCharge()==0 and at.GetExplicitValence()==3:
at.SetFormalCharge(1)
if at.GetAtomicNum()==5 and at.GetFormalCharge()==0 and at.GetExplicitValence()==4:
at.SetFormalCharge(-1)
try:
Chem.SanitizeMol(m)
except:
return None
return m
def get_different_raid(protein, ligand, raid=6):
protein_coord = protein['coord']
ligand_coord = ligand['coord']
protein_residue_name = protein['residue_name']
pocket_residue = set()
for i in range(len(protein_coord)):
for j in range(len(ligand_coord)):
if np.linalg.norm(protein_coord[i] - ligand_coord[j]) < raid:
pocket_residue.add(protein_residue_name[i])
return pocket_residue
def read_mol2_ligand(path):
mol2_df = PandasMol2().read_mol2(path)
coord = mol2_df.df[['x', 'y', 'z']]
atom_type = mol2_df.df['atom_name']
ligand = {'coord': np.array(coord), 'atom_type': list(atom_type), 'mol': Chem.MolFromMol2File(path)}
return ligand
def read_smi_mol(path):
with open(path, 'r') as f:
mols_lines = list(f.readlines())
smis = [l.split(' ')[0] for l in mols_lines]
mols = [Chem.MolFromSmiles(m) for m in smis]
return mols
def parser(protein_path, mol_path, ligand_path, activity, pocket_index, raid=6):
protein = read_pdb(protein_path)
data_mols = read_smi_mol(mol_path)
ligand = read_mol2_ligand(ligand_path)
pocket_residue = get_different_raid(protein, ligand, raid=raid)
pocket_atom_idx = [i for i, r in enumerate(protein['residue_name']) if r in pocket_residue]
pocket_atom_type = [protein['atom_type'][i] for i in pocket_atom_idx]
pocket_coord = [protein['coord'][i] for i in pocket_atom_idx]
pocket_residue_type = [protein['residue_type'][i] for i in pocket_atom_idx]
pocket_name = protein_path.split('/')[-2]
pool = mp.Pool(32)
#mols = [convert_2Dmol_to_data(m) for m in data_mols if m is not None]
data_mols = [m for m in data_mols if m is not None]
mols = [m for m in tqdm.tqdm(pool.imap_unordered(convert_2Dmol_to_data, data_mols))]
mols = [m for m in mols if m is not None]
return [{'atoms': m['atom_types'],
'coordinates': m['coords'],
'smi': m['smi'],
'mol': ligand,
'pocket_name': pocket_name,
'pocket_index': pocket_index,
'activity': activity,
"pocket_atom_type": pocket_atom_type,
"pocket_coord": pocket_coord} for m in mols]
def mol_parser(mol_path, ligand_path, label):
data_mols = read_smi_mol(mol_path)
data_mols = [m for m in data_mols if m is not None]
ligand = read_mol2_ligand(ligand_path)
pool = mp.Pool(32)
mols = [m for m in tqdm.tqdm(pool.imap_unordered(convert_2Dmol_to_data, data_mols))]
mols = [m for m in mols if m is not None]
return [{'atoms': m['atom_types'],
'coordinates': m['coords'],
'smi': m['smi'],
'mol': m['mol'],
'label': label
} for m in mols]
def pocket_parser(protein_path, ligand_path, pocket_index, raid=6):
protein = read_pdb(protein_path)
ligand = read_mol2_ligand(ligand_path)
pocket_residue = get_different_raid(protein, ligand, raid=raid)
pocket_atom_idx = [i for i, r in enumerate(protein['residue_name']) if r in pocket_residue]
pocket_atom_type = [protein['atom_type'][i] for i in pocket_atom_idx]
pocket_coord = [protein['coord'][i] for i in pocket_atom_idx]
pocket_residue_type = [protein['residue_type'][i] for i in pocket_atom_idx]
pocket_name = protein_path.split('/')[-2]
return {'pocket': pocket_name,
'pocket_index': pocket_index,
"pocket_atoms": pocket_atom_type,
"pocket_coordinates": pocket_coord}
def write_lmdb(data, lmdb_path):
#resume
env = lmdb.open(lmdb_path, subdir=False, readonly=False, lock=False, readahead=False, meminit=False, map_size=1099511627776)
num = 0
with env.begin(write=True) as txn:
for d in data:
txn.put(str(num).encode('ascii'), pickle.dumps(d))
num += 1
if __name__ == '__main__':
protein_path = [os.path.join(args.mol_data_path, x, 'receptor.pdb') for x in os.listdir(args.mol_data_path)]
act_mol_path = [os.path.join(args.mol_data_path, x, 'actives_final.ism') for x in os.listdir(args.mol_data_path)]
decoy_mol_path = [os.path.join(args.mol_data_path, x, 'decoys_final.ism') for x in os.listdir(args.mol_data_path)]
for i, pocket in tqdm.tqdm(enumerate(protein_path)):
# acive mols
print(i, pocket)
data = []
d_active = (mol_parser(act_mol_path[i], pocket.replace('receptor.pdb', 'crystal_ligand.mol2'), 1))
data.extend(d_active)
# decoy mols
d_decoy = (mol_parser(decoy_mol_path[i], pocket.replace('receptor.pdb', 'crystal_ligand.mol2'), 0))
data.extend(d_decoy)
write_lmdb(data, pocket.replace('receptor.pdb', 'mols.lmdb'))
# write pocket
d = pocket_parser(pocket, pocket.replace('receptor.pdb', 'crystal_ligand.mol2'), i)
write_lmdb([d], pocket.replace('receptor.pdb', 'pocket.lmdb'))
# number of lines in actives_final.smi
with open(act_mol_path[i], 'r') as f:
mols_lines = list(f.readlines())
print("active", len(d_active), len(mols_lines))
with open(decoy_mol_path[i], 'r') as f:
mols_lines = list(f.readlines())
print("decoy", len(d_decoy), len(mols_lines))