import argparse
import warnings
from pathlib import Path
from time import time
import torch
from rdkit import Chem
from tqdm import tqdm
from lightning_modules import LigandPocketDDPM
from analysis.molecule_builder import process_molecule
import utils
MAXITER = 10
MAXNTRIES = 10
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('checkpoint', type=Path)
parser.add_argument('--test_dir', type=Path)
parser.add_argument('--test_list', type=Path, default=None)
parser.add_argument('--outdir', type=Path)
parser.add_argument('--n_samples', type=int, default=100)
parser.add_argument('--all_frags', action='store_true')
parser.add_argument('--sanitize', action='store_true')
parser.add_argument('--relax', action='store_true')
parser.add_argument('--batch_size', type=int, default=120)
parser.add_argument('--resamplings', type=int, default=10)
parser.add_argument('--jump_length', type=int, default=1)
parser.add_argument('--timesteps', type=int, default=None)
parser.add_argument('--fix_n_nodes', action='store_true')
parser.add_argument('--n_nodes_bias', type=int, default=0)
parser.add_argument('--n_nodes_min', type=int, default=0)
parser.add_argument('--skip_existing', action='store_true')
args = parser.parse_args()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
args.outdir.mkdir(exist_ok=args.skip_existing)
raw_sdf_dir = Path(args.outdir, 'raw')
raw_sdf_dir.mkdir(exist_ok=args.skip_existing)
processed_sdf_dir = Path(args.outdir, 'processed')
processed_sdf_dir.mkdir(exist_ok=args.skip_existing)
times_dir = Path(args.outdir, 'pocket_times')
times_dir.mkdir(exist_ok=args.skip_existing)
# Load model
model = LigandPocketDDPM.load_from_checkpoint(
args.checkpoint, map_location=device)
model = model.to(device)
test_files = list(args.test_dir.glob('[!.]*.sdf'))
if args.test_list is not None:
with open(args.test_list, 'r') as f:
test_list = set(f.read().split(','))
test_files = [x for x in test_files if x.stem in test_list]
pbar = tqdm(test_files)
time_per_pocket = {}
for sdf_file in pbar:
ligand_name = sdf_file.stem
pdb_name, pocket_id, *suffix = ligand_name.split('_')
pdb_file = Path(sdf_file.parent, f"{pdb_name}.pdb")
txt_file = Path(sdf_file.parent, f"{ligand_name}.txt")
sdf_out_file_raw = Path(raw_sdf_dir, f'{ligand_name}_gen.sdf')
sdf_out_file_processed = Path(processed_sdf_dir,
f'{ligand_name}_gen.sdf')
time_file = Path(times_dir, f'{ligand_name}.txt')
if args.skip_existing and time_file.exists() \
and sdf_out_file_processed.exists() \
and sdf_out_file_raw.exists():
with open(time_file, 'r') as f:
time_per_pocket[str(sdf_file)] = float(f.read().split()[1])
continue
for n_try in range(MAXNTRIES):
try:
t_pocket_start = time()
with open(txt_file, 'r') as f:
resi_list = f.read().split()
if args.fix_n_nodes:
# some ligands (e.g. 6JWS_bio1_PT1:A:801) could not be read with sanitize=True
suppl = Chem.SDMolSupplier(str(sdf_file), sanitize=False)
num_nodes_lig = suppl[0].GetNumAtoms()
else:
num_nodes_lig = None
all_molecules = []
valid_molecules = []
processed_molecules = [] # only used as temporary variable
iter = 0
n_generated = 0
n_valid = 0
while len(valid_molecules) < args.n_samples:
iter += 1
if iter > MAXITER:
raise RuntimeError('Maximum number of iterations has been exceeded.')
num_nodes_lig_inflated = None if num_nodes_lig is None else \
torch.ones(args.batch_size, dtype=int) * num_nodes_lig
# Turn all filters off first
mols_batch = model.generate_ligands(
pdb_file, args.batch_size, resi_list,
num_nodes_lig=num_nodes_lig_inflated,
timesteps=args.timesteps, sanitize=False,
largest_frag=False, relax_iter=0,
n_nodes_bias=args.n_nodes_bias,
n_nodes_min=args.n_nodes_min,
resamplings=args.resamplings,
jump_length=args.jump_length)
all_molecules.extend(mols_batch)
# Filter to find valid molecules
mols_batch_processed = [
process_molecule(m, sanitize=args.sanitize,
relax_iter=(200 if args.relax else 0),
largest_frag=not args.all_frags)
for m in mols_batch
]
processed_molecules.extend(mols_batch_processed)
valid_mols_batch = [m for m in mols_batch_processed if m is not None]
n_generated += args.batch_size
n_valid += len(valid_mols_batch)
valid_molecules.extend(valid_mols_batch)
# Remove excess molecules from list
valid_molecules = valid_molecules[:args.n_samples]
# Reorder raw files
all_molecules = \
[all_molecules[i] for i, m in enumerate(processed_molecules)
if m is not None] + \
[all_molecules[i] for i, m in enumerate(processed_molecules)
if m is None]
# Write SDF files
utils.write_sdf_file(sdf_out_file_raw, all_molecules)
utils.write_sdf_file(sdf_out_file_processed, valid_molecules)
# Time the sampling process
time_per_pocket[str(sdf_file)] = time() - t_pocket_start
with open(time_file, 'w') as f:
f.write(f"{str(sdf_file)} {time_per_pocket[str(sdf_file)]}")
pbar.set_description(
f'Last processed: {ligand_name}. '
f'Validity: {n_valid / n_generated * 100:.2f}%. '
f'{(time() - t_pocket_start) / len(valid_molecules):.2f} '
f'sec/mol.')
break # no more tries needed
except (RuntimeError, ValueError) as e:
if n_try >= MAXNTRIES - 1:
raise RuntimeError("Maximum number of retries exceeded")
warnings.warn(f"Attempt {n_try + 1}/{MAXNTRIES} failed with "
f"error: '{e}'. Trying again...")
with open(Path(args.outdir, 'pocket_times.txt'), 'w') as f:
for k, v in time_per_pocket.items():
f.write(f"{k} {v}\n")
times_arr = torch.tensor([x for x in time_per_pocket.values()])
print(f"Time per pocket: {times_arr.mean():.3f} \pm "
f"{times_arr.std(unbiased=False):.2f}")