[e0aade]: / equivariant_diffusion / dynamics.py

Download this file

188 lines (153 with data), 7.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import torch
import torch.nn as nn
import torch.nn.functional as F
from equivariant_diffusion.egnn_new import EGNN, GNN
from equivariant_diffusion.en_diffusion import EnVariationalDiffusion
remove_mean_batch = EnVariationalDiffusion.remove_mean_batch
import numpy as np
class EGNNDynamics(nn.Module):
def __init__(self, atom_nf, residue_nf,
n_dims, joint_nf=16, hidden_nf=64, device='cpu',
act_fn=torch.nn.SiLU(), n_layers=4, attention=False,
condition_time=True, tanh=False, mode='egnn_dynamics',
norm_constant=0, inv_sublayers=2, sin_embedding=False,
normalization_factor=100, aggregation_method='sum',
update_pocket_coords=True, edge_cutoff_ligand=None,
edge_cutoff_pocket=None, edge_cutoff_interaction=None,
reflection_equivariant=True, edge_embedding_dim=None):
super().__init__()
self.mode = mode
self.edge_cutoff_l = edge_cutoff_ligand
self.edge_cutoff_p = edge_cutoff_pocket
self.edge_cutoff_i = edge_cutoff_interaction
self.edge_nf = edge_embedding_dim
self.atom_encoder = nn.Sequential(
nn.Linear(atom_nf, 2 * atom_nf),
act_fn,
nn.Linear(2 * atom_nf, joint_nf)
)
self.atom_decoder = nn.Sequential(
nn.Linear(joint_nf, 2 * atom_nf),
act_fn,
nn.Linear(2 * atom_nf, atom_nf)
)
self.residue_encoder = nn.Sequential(
nn.Linear(residue_nf, 2 * residue_nf),
act_fn,
nn.Linear(2 * residue_nf, joint_nf)
)
self.residue_decoder = nn.Sequential(
nn.Linear(joint_nf, 2 * residue_nf),
act_fn,
nn.Linear(2 * residue_nf, residue_nf)
)
self.edge_embedding = nn.Embedding(3, self.edge_nf) \
if self.edge_nf is not None else None
self.edge_nf = 0 if self.edge_nf is None else self.edge_nf
if condition_time:
dynamics_node_nf = joint_nf + 1
else:
print('Warning: dynamics model is _not_ conditioned on time.')
dynamics_node_nf = joint_nf
if mode == 'egnn_dynamics':
self.egnn = EGNN(
in_node_nf=dynamics_node_nf, in_edge_nf=self.edge_nf,
hidden_nf=hidden_nf, device=device, act_fn=act_fn,
n_layers=n_layers, attention=attention, tanh=tanh,
norm_constant=norm_constant,
inv_sublayers=inv_sublayers, sin_embedding=sin_embedding,
normalization_factor=normalization_factor,
aggregation_method=aggregation_method,
reflection_equiv=reflection_equivariant
)
self.node_nf = dynamics_node_nf
self.update_pocket_coords = update_pocket_coords
elif mode == 'gnn_dynamics':
self.gnn = GNN(
in_node_nf=dynamics_node_nf + n_dims, in_edge_nf=self.edge_nf,
hidden_nf=hidden_nf, out_node_nf=n_dims + dynamics_node_nf,
device=device, act_fn=act_fn, n_layers=n_layers,
attention=attention, normalization_factor=normalization_factor,
aggregation_method=aggregation_method)
self.device = device
self.n_dims = n_dims
self.condition_time = condition_time
def forward(self, xh_atoms, xh_residues, t, mask_atoms, mask_residues):
x_atoms = xh_atoms[:, :self.n_dims].clone()
h_atoms = xh_atoms[:, self.n_dims:].clone()
x_residues = xh_residues[:, :self.n_dims].clone()
h_residues = xh_residues[:, self.n_dims:].clone()
# embed atom features and residue features in a shared space
h_atoms = self.atom_encoder(h_atoms)
h_residues = self.residue_encoder(h_residues)
# combine the two node types
x = torch.cat((x_atoms, x_residues), dim=0)
h = torch.cat((h_atoms, h_residues), dim=0)
mask = torch.cat([mask_atoms, mask_residues])
if self.condition_time:
if np.prod(t.size()) == 1:
# t is the same for all elements in batch.
h_time = torch.empty_like(h[:, 0:1]).fill_(t.item())
else:
# t is different over the batch dimension.
h_time = t[mask]
h = torch.cat([h, h_time], dim=1)
# get edges of a complete graph
edges = self.get_edges(mask_atoms, mask_residues, x_atoms, x_residues)
assert torch.all(mask[edges[0]] == mask[edges[1]])
# Get edge types
if self.edge_nf > 0:
# 0: ligand-pocket, 1: ligand-ligand, 2: pocket-pocket
edge_types = torch.zeros(edges.size(1), dtype=int, device=edges.device)
edge_types[(edges[0] < len(mask_atoms)) & (edges[1] < len(mask_atoms))] = 1
edge_types[(edges[0] >= len(mask_atoms)) & (edges[1] >= len(mask_atoms))] = 2
# Learnable embedding
edge_types = self.edge_embedding(edge_types)
else:
edge_types = None
if self.mode == 'egnn_dynamics':
update_coords_mask = None if self.update_pocket_coords \
else torch.cat((torch.ones_like(mask_atoms),
torch.zeros_like(mask_residues))).unsqueeze(1)
h_final, x_final = self.egnn(h, x, edges,
update_coords_mask=update_coords_mask,
batch_mask=mask, edge_attr=edge_types)
vel = (x_final - x)
elif self.mode == 'gnn_dynamics':
xh = torch.cat([x, h], dim=1)
output = self.gnn(xh, edges, node_mask=None, edge_attr=edge_types)
vel = output[:, :3]
h_final = output[:, 3:]
else:
raise Exception("Wrong mode %s" % self.mode)
if self.condition_time:
# Slice off last dimension which represented time.
h_final = h_final[:, :-1]
# decode atom and residue features
h_final_atoms = self.atom_decoder(h_final[:len(mask_atoms)])
h_final_residues = self.residue_decoder(h_final[len(mask_atoms):])
if torch.any(torch.isnan(vel)):
if self.training:
vel[torch.isnan(vel)] = 0.0
else:
raise ValueError("NaN detected in EGNN output")
if self.update_pocket_coords:
# in case of unconditional joint distribution, include this as in
# the original code
vel = remove_mean_batch(vel, mask)
return torch.cat([vel[:len(mask_atoms)], h_final_atoms], dim=-1), \
torch.cat([vel[len(mask_atoms):], h_final_residues], dim=-1)
def get_edges(self, batch_mask_ligand, batch_mask_pocket, x_ligand, x_pocket):
adj_ligand = batch_mask_ligand[:, None] == batch_mask_ligand[None, :]
adj_pocket = batch_mask_pocket[:, None] == batch_mask_pocket[None, :]
adj_cross = batch_mask_ligand[:, None] == batch_mask_pocket[None, :]
if self.edge_cutoff_l is not None:
adj_ligand = adj_ligand & (torch.cdist(x_ligand, x_ligand) <= self.edge_cutoff_l)
if self.edge_cutoff_p is not None:
adj_pocket = adj_pocket & (torch.cdist(x_pocket, x_pocket) <= self.edge_cutoff_p)
if self.edge_cutoff_i is not None:
adj_cross = adj_cross & (torch.cdist(x_ligand, x_pocket) <= self.edge_cutoff_i)
adj = torch.cat((torch.cat((adj_ligand, adj_cross), dim=1),
torch.cat((adj_cross.T, adj_pocket), dim=1)), dim=0)
edges = torch.stack(torch.where(adj), dim=0)
return edges