[e0aade]: / equivariant_diffusion / conditional_model.py

Download this file

747 lines (589 with data), 31.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
import math
import numpy as np
import torch
import torch.nn.functional as F
from torch_scatter import scatter_add, scatter_mean
import utils
from equivariant_diffusion.en_diffusion import EnVariationalDiffusion
class ConditionalDDPM(EnVariationalDiffusion):
"""
Conditional Diffusion Module.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
assert not self.dynamics.update_pocket_coords
def kl_prior(self, xh_lig, mask_lig, num_nodes):
"""Computes the KL between q(z1 | x) and the prior p(z1) = Normal(0, 1).
This is essentially a lot of work for something that is in practice
negligible in the loss. However, you compute it so that you see it when
you've made a mistake in your noise schedule.
"""
batch_size = len(num_nodes)
# Compute the last alpha value, alpha_T.
ones = torch.ones((batch_size, 1), device=xh_lig.device)
gamma_T = self.gamma(ones)
alpha_T = self.alpha(gamma_T, xh_lig)
# Compute means.
mu_T_lig = alpha_T[mask_lig] * xh_lig
mu_T_lig_x, mu_T_lig_h = \
mu_T_lig[:, :self.n_dims], mu_T_lig[:, self.n_dims:]
# Compute standard deviations (only batch axis for x-part, inflated for h-part).
sigma_T_x = self.sigma(gamma_T, mu_T_lig_x).squeeze()
sigma_T_h = self.sigma(gamma_T, mu_T_lig_h).squeeze()
# Compute KL for h-part.
zeros = torch.zeros_like(mu_T_lig_h)
ones = torch.ones_like(sigma_T_h)
mu_norm2 = self.sum_except_batch((mu_T_lig_h - zeros) ** 2, mask_lig)
kl_distance_h = self.gaussian_KL(mu_norm2, sigma_T_h, ones, d=1)
# Compute KL for x-part.
zeros = torch.zeros_like(mu_T_lig_x)
ones = torch.ones_like(sigma_T_x)
mu_norm2 = self.sum_except_batch((mu_T_lig_x - zeros) ** 2, mask_lig)
subspace_d = self.subspace_dimensionality(num_nodes)
kl_distance_x = self.gaussian_KL(mu_norm2, sigma_T_x, ones, subspace_d)
return kl_distance_x + kl_distance_h
def log_pxh_given_z0_without_constants(self, ligand, z_0_lig, eps_lig,
net_out_lig, gamma_0, epsilon=1e-10):
# Discrete properties are predicted directly from z_t.
z_h_lig = z_0_lig[:, self.n_dims:]
# Take only part over x.
eps_lig_x = eps_lig[:, :self.n_dims]
net_lig_x = net_out_lig[:, :self.n_dims]
# Compute sigma_0 and rescale to the integer scale of the data.
sigma_0 = self.sigma(gamma_0, target_tensor=z_0_lig)
sigma_0_cat = sigma_0 * self.norm_values[1]
# Computes the error for the distribution
# N(x | 1 / alpha_0 z_0 + sigma_0/alpha_0 eps_0, sigma_0 / alpha_0),
# the weighting in the epsilon parametrization is exactly '1'.
squared_error = (eps_lig_x - net_lig_x) ** 2
if self.vnode_idx is not None:
# coordinates of virtual atoms should not contribute to the error
squared_error[ligand['one_hot'][:, self.vnode_idx].bool(), :self.n_dims] = 0
log_p_x_given_z0_without_constants_ligand = -0.5 * (
self.sum_except_batch(squared_error, ligand['mask'])
)
# Compute delta indicator masks.
# un-normalize
ligand_onehot = ligand['one_hot'] * self.norm_values[1] + self.norm_biases[1]
estimated_ligand_onehot = z_h_lig * self.norm_values[1] + self.norm_biases[1]
# Centered h_cat around 1, since onehot encoded.
centered_ligand_onehot = estimated_ligand_onehot - 1
# Compute integrals from 0.5 to 1.5 of the normal distribution
# N(mean=z_h_cat, stdev=sigma_0_cat)
log_ph_cat_proportional_ligand = torch.log(
self.cdf_standard_gaussian((centered_ligand_onehot + 0.5) / sigma_0_cat[ligand['mask']])
- self.cdf_standard_gaussian((centered_ligand_onehot - 0.5) / sigma_0_cat[ligand['mask']])
+ epsilon
)
# Normalize the distribution over the categories.
log_Z = torch.logsumexp(log_ph_cat_proportional_ligand, dim=1,
keepdim=True)
log_probabilities_ligand = log_ph_cat_proportional_ligand - log_Z
# Select the log_prob of the current category using the onehot
# representation.
log_ph_given_z0_ligand = self.sum_except_batch(
log_probabilities_ligand * ligand_onehot, ligand['mask'])
return log_p_x_given_z0_without_constants_ligand, log_ph_given_z0_ligand
def sample_p_xh_given_z0(self, z0_lig, xh0_pocket, lig_mask, pocket_mask,
batch_size, fix_noise=False):
"""Samples x ~ p(x|z0)."""
t_zeros = torch.zeros(size=(batch_size, 1), device=z0_lig.device)
gamma_0 = self.gamma(t_zeros)
# Computes sqrt(sigma_0^2 / alpha_0^2)
sigma_x = self.SNR(-0.5 * gamma_0)
net_out_lig, _ = self.dynamics(
z0_lig, xh0_pocket, t_zeros, lig_mask, pocket_mask)
# Compute mu for p(zs | zt).
mu_x_lig = self.compute_x_pred(net_out_lig, z0_lig, gamma_0, lig_mask)
xh_lig, xh0_pocket = self.sample_normal_zero_com(
mu_x_lig, xh0_pocket, sigma_x, lig_mask, pocket_mask, fix_noise)
x_lig, h_lig = self.unnormalize(
xh_lig[:, :self.n_dims], z0_lig[:, self.n_dims:])
x_pocket, h_pocket = self.unnormalize(
xh0_pocket[:, :self.n_dims], xh0_pocket[:, self.n_dims:])
h_lig = F.one_hot(torch.argmax(h_lig, dim=1), self.atom_nf)
# h_pocket = F.one_hot(torch.argmax(h_pocket, dim=1), self.residue_nf)
return x_lig, h_lig, x_pocket, h_pocket
def sample_normal(self, *args):
raise NotImplementedError("Has been replaced by sample_normal_zero_com()")
def sample_normal_zero_com(self, mu_lig, xh0_pocket, sigma, lig_mask,
pocket_mask, fix_noise=False):
"""Samples from a Normal distribution."""
if fix_noise:
# bs = 1 if fix_noise else mu.size(0)
raise NotImplementedError("fix_noise option isn't implemented yet")
eps_lig = self.sample_gaussian(
size=(len(lig_mask), self.n_dims + self.atom_nf),
device=lig_mask.device)
out_lig = mu_lig + sigma[lig_mask] * eps_lig
# project to COM-free subspace
xh_pocket = xh0_pocket.detach().clone()
out_lig[:, :self.n_dims], xh_pocket[:, :self.n_dims] = \
self.remove_mean_batch(out_lig[:, :self.n_dims],
xh0_pocket[:, :self.n_dims],
lig_mask, pocket_mask)
return out_lig, xh_pocket
def noised_representation(self, xh_lig, xh0_pocket, lig_mask, pocket_mask,
gamma_t):
# Compute alpha_t and sigma_t from gamma.
alpha_t = self.alpha(gamma_t, xh_lig)
sigma_t = self.sigma(gamma_t, xh_lig)
# Sample zt ~ Normal(alpha_t x, sigma_t)
eps_lig = self.sample_gaussian(
size=(len(lig_mask), self.n_dims + self.atom_nf),
device=lig_mask.device)
# Sample z_t given x, h for timestep t, from q(z_t | x, h)
z_t_lig = alpha_t[lig_mask] * xh_lig + sigma_t[lig_mask] * eps_lig
# project to COM-free subspace
xh_pocket = xh0_pocket.detach().clone()
z_t_lig[:, :self.n_dims], xh_pocket[:, :self.n_dims] = \
self.remove_mean_batch(z_t_lig[:, :self.n_dims],
xh_pocket[:, :self.n_dims],
lig_mask, pocket_mask)
return z_t_lig, xh_pocket, eps_lig
def log_pN(self, N_lig, N_pocket):
"""
Prior on the sample size for computing
log p(x,h,N) = log p(x,h|N) + log p(N), where log p(x,h|N) is the
model's output
Args:
N: array of sample sizes
Returns:
log p(N)
"""
log_pN = self.size_distribution.log_prob_n1_given_n2(N_lig, N_pocket)
return log_pN
def delta_log_px(self, num_nodes):
return -self.subspace_dimensionality(num_nodes) * \
np.log(self.norm_values[0])
def forward(self, ligand, pocket, return_info=False):
"""
Computes the loss and NLL terms
"""
# Normalize data, take into account volume change in x.
ligand, pocket = self.normalize(ligand, pocket)
# Likelihood change due to normalization
# if self.vnode_idx is not None:
# delta_log_px = self.delta_log_px(ligand['size'] - ligand['num_virtual_atoms'] + pocket['size'])
# else:
delta_log_px = self.delta_log_px(ligand['size'])
# Sample a timestep t for each example in batch
# At evaluation time, loss_0 will be computed separately to decrease
# variance in the estimator (costs two forward passes)
lowest_t = 0 if self.training else 1
t_int = torch.randint(
lowest_t, self.T + 1, size=(ligand['size'].size(0), 1),
device=ligand['x'].device).float()
s_int = t_int - 1 # previous timestep
# Masks: important to compute log p(x | z0).
t_is_zero = (t_int == 0).float()
t_is_not_zero = 1 - t_is_zero
# Normalize t to [0, 1]. Note that the negative
# step of s will never be used, since then p(x | z0) is computed.
s = s_int / self.T
t = t_int / self.T
# Compute gamma_s and gamma_t via the network.
gamma_s = self.inflate_batch_array(self.gamma(s), ligand['x'])
gamma_t = self.inflate_batch_array(self.gamma(t), ligand['x'])
# Concatenate x, and h[categorical].
xh0_lig = torch.cat([ligand['x'], ligand['one_hot']], dim=1)
xh0_pocket = torch.cat([pocket['x'], pocket['one_hot']], dim=1)
# Center the input nodes
xh0_lig[:, :self.n_dims], xh0_pocket[:, :self.n_dims] = \
self.remove_mean_batch(xh0_lig[:, :self.n_dims],
xh0_pocket[:, :self.n_dims],
ligand['mask'], pocket['mask'])
# Find noised representation
z_t_lig, xh_pocket, eps_t_lig = \
self.noised_representation(xh0_lig, xh0_pocket, ligand['mask'],
pocket['mask'], gamma_t)
# Neural net prediction.
net_out_lig, _ = self.dynamics(
z_t_lig, xh_pocket, t, ligand['mask'], pocket['mask'])
# For LJ loss term
# xh_lig_hat does not need to be zero-centered as it is only used for
# computing relative distances
xh_lig_hat = self.xh_given_zt_and_epsilon(z_t_lig, net_out_lig, gamma_t,
ligand['mask'])
# Compute the L2 error.
squared_error = (eps_t_lig - net_out_lig) ** 2
if self.vnode_idx is not None:
# coordinates of virtual atoms should not contribute to the error
squared_error[ligand['one_hot'][:, self.vnode_idx].bool(), :self.n_dims] = 0
error_t_lig = self.sum_except_batch(squared_error, ligand['mask'])
# Compute weighting with SNR: (1 - SNR(s-t)) for epsilon parametrization
SNR_weight = (1 - self.SNR(gamma_s - gamma_t)).squeeze(1)
assert error_t_lig.size() == SNR_weight.size()
# The _constants_ depending on sigma_0 from the
# cross entropy term E_q(z0 | x) [log p(x | z0)].
neg_log_constants = -self.log_constants_p_x_given_z0(
n_nodes=ligand['size'], device=error_t_lig.device)
# The KL between q(zT | x) and p(zT) = Normal(0, 1).
# Should be close to zero.
kl_prior = self.kl_prior(xh0_lig, ligand['mask'], ligand['size'])
if self.training:
# Computes the L_0 term (even if gamma_t is not actually gamma_0)
# and this will later be selected via masking.
log_p_x_given_z0_without_constants_ligand, log_ph_given_z0 = \
self.log_pxh_given_z0_without_constants(
ligand, z_t_lig, eps_t_lig, net_out_lig, gamma_t)
loss_0_x_ligand = -log_p_x_given_z0_without_constants_ligand * \
t_is_zero.squeeze()
loss_0_h = -log_ph_given_z0 * t_is_zero.squeeze()
# apply t_is_zero mask
error_t_lig = error_t_lig * t_is_not_zero.squeeze()
else:
# Compute noise values for t = 0.
t_zeros = torch.zeros_like(s)
gamma_0 = self.inflate_batch_array(self.gamma(t_zeros), ligand['x'])
# Sample z_0 given x, h for timestep t, from q(z_t | x, h)
z_0_lig, xh_pocket, eps_0_lig = \
self.noised_representation(xh0_lig, xh0_pocket, ligand['mask'],
pocket['mask'], gamma_0)
net_out_0_lig, _ = self.dynamics(
z_0_lig, xh_pocket, t_zeros, ligand['mask'], pocket['mask'])
log_p_x_given_z0_without_constants_ligand, log_ph_given_z0 = \
self.log_pxh_given_z0_without_constants(
ligand, z_0_lig, eps_0_lig, net_out_0_lig, gamma_0)
loss_0_x_ligand = -log_p_x_given_z0_without_constants_ligand
loss_0_h = -log_ph_given_z0
# sample size prior
log_pN = self.log_pN(ligand['size'], pocket['size'])
info = {
'eps_hat_lig_x': scatter_mean(
net_out_lig[:, :self.n_dims].abs().mean(1), ligand['mask'],
dim=0).mean(),
'eps_hat_lig_h': scatter_mean(
net_out_lig[:, self.n_dims:].abs().mean(1), ligand['mask'],
dim=0).mean(),
}
loss_terms = (delta_log_px, error_t_lig, torch.tensor(0.0), SNR_weight,
loss_0_x_ligand, torch.tensor(0.0), loss_0_h,
neg_log_constants, kl_prior, log_pN,
t_int.squeeze(), xh_lig_hat)
return (*loss_terms, info) if return_info else loss_terms
def partially_noised_ligand(self, ligand, pocket, noising_steps):
"""
Partially noises a ligand to be later denoised.
"""
# Inflate timestep into an array
t_int = torch.ones(size=(ligand['size'].size(0), 1),
device=ligand['x'].device).float() * noising_steps
# Normalize t to [0, 1].
t = t_int / self.T
# Compute gamma_s and gamma_t via the network.
gamma_t = self.inflate_batch_array(self.gamma(t), ligand['x'])
# Concatenate x, and h[categorical].
xh0_lig = torch.cat([ligand['x'], ligand['one_hot']], dim=1)
xh0_pocket = torch.cat([pocket['x'], pocket['one_hot']], dim=1)
# Center the input nodes
xh0_lig[:, :self.n_dims], xh0_pocket[:, :self.n_dims] = \
self.remove_mean_batch(xh0_lig[:, :self.n_dims],
xh0_pocket[:, :self.n_dims],
ligand['mask'], pocket['mask'])
# Find noised representation
z_t_lig, xh_pocket, eps_t_lig = \
self.noised_representation(xh0_lig, xh0_pocket, ligand['mask'],
pocket['mask'], gamma_t)
return z_t_lig, xh_pocket, eps_t_lig
def diversify(self, ligand, pocket, noising_steps):
"""
Diversifies a set of ligands via noise-denoising
"""
# Normalize data, take into account volume change in x.
ligand, pocket = self.normalize(ligand, pocket)
z_lig, xh_pocket, _ = self.partially_noised_ligand(ligand, pocket, noising_steps)
timesteps = self.T
n_samples = len(pocket['size'])
device = pocket['x'].device
# xh0_pocket is the original pocket while xh_pocket might be a
# translated version of it
xh0_pocket = torch.cat([pocket['x'], pocket['one_hot']], dim=1)
lig_mask = ligand['mask']
self.assert_mean_zero_with_mask(z_lig[:, :self.n_dims], lig_mask)
# Iteratively sample p(z_s | z_t) for t = 1, ..., T, with s = t - 1.
for s in reversed(range(0, noising_steps)):
s_array = torch.full((n_samples, 1), fill_value=s,
device=z_lig.device)
t_array = s_array + 1
s_array = s_array / timesteps
t_array = t_array / timesteps
z_lig, xh_pocket = self.sample_p_zs_given_zt(
s_array, t_array, z_lig.detach(), xh_pocket.detach(), lig_mask, pocket['mask'])
# Finally sample p(x, h | z_0).
x_lig, h_lig, x_pocket, h_pocket = self.sample_p_xh_given_z0(
z_lig, xh_pocket, lig_mask, pocket['mask'], n_samples)
self.assert_mean_zero_with_mask(x_lig, lig_mask)
# Overwrite last frame with the resulting x and h.
out_lig = torch.cat([x_lig, h_lig], dim=1)
out_pocket = torch.cat([x_pocket, h_pocket], dim=1)
# remove frame dimension if only the final molecule is returned
return out_lig, out_pocket, lig_mask, pocket['mask']
def xh_given_zt_and_epsilon(self, z_t, epsilon, gamma_t, batch_mask):
""" Equation (7) in the EDM paper """
alpha_t = self.alpha(gamma_t, z_t)
sigma_t = self.sigma(gamma_t, z_t)
xh = z_t / alpha_t[batch_mask] - epsilon * sigma_t[batch_mask] / \
alpha_t[batch_mask]
return xh
def sample_p_zt_given_zs(self, zs_lig, xh0_pocket, ligand_mask, pocket_mask,
gamma_t, gamma_s, fix_noise=False):
sigma2_t_given_s, sigma_t_given_s, alpha_t_given_s = \
self.sigma_and_alpha_t_given_s(gamma_t, gamma_s, zs_lig)
mu_lig = alpha_t_given_s[ligand_mask] * zs_lig
zt_lig, xh0_pocket = self.sample_normal_zero_com(
mu_lig, xh0_pocket, sigma_t_given_s, ligand_mask, pocket_mask,
fix_noise)
return zt_lig, xh0_pocket
def sample_p_zs_given_zt(self, s, t, zt_lig, xh0_pocket, ligand_mask,
pocket_mask, fix_noise=False):
"""Samples from zs ~ p(zs | zt). Only used during sampling."""
gamma_s = self.gamma(s)
gamma_t = self.gamma(t)
sigma2_t_given_s, sigma_t_given_s, alpha_t_given_s = \
self.sigma_and_alpha_t_given_s(gamma_t, gamma_s, zt_lig)
sigma_s = self.sigma(gamma_s, target_tensor=zt_lig)
sigma_t = self.sigma(gamma_t, target_tensor=zt_lig)
# Neural net prediction.
eps_t_lig, _ = self.dynamics(
zt_lig, xh0_pocket, t, ligand_mask, pocket_mask)
# Compute mu for p(zs | zt).
# Note: mu_{t->s} = 1 / alpha_{t|s} z_t - sigma_{t|s}^2 / sigma_t / alpha_{t|s} epsilon
# follows from the definition of mu_{t->s} and Equ. (7) in the EDM paper
mu_lig = zt_lig / alpha_t_given_s[ligand_mask] - \
(sigma2_t_given_s / alpha_t_given_s / sigma_t)[ligand_mask] * \
eps_t_lig
# Compute sigma for p(zs | zt).
sigma = sigma_t_given_s * sigma_s / sigma_t
# Sample zs given the parameters derived from zt.
zs_lig, xh0_pocket = self.sample_normal_zero_com(
mu_lig, xh0_pocket, sigma, ligand_mask, pocket_mask, fix_noise)
self.assert_mean_zero_with_mask(zt_lig[:, :self.n_dims], ligand_mask)
return zs_lig, xh0_pocket
def sample_combined_position_feature_noise(self, lig_indices, xh0_pocket,
pocket_indices):
"""
Samples mean-centered normal noise for z_x, and standard normal noise
for z_h.
"""
raise NotImplementedError("Use sample_normal_zero_com() instead.")
def sample(self, *args):
raise NotImplementedError("Conditional model does not support sampling "
"without given pocket.")
@torch.no_grad()
def sample_given_pocket(self, pocket, num_nodes_lig, return_frames=1,
timesteps=None):
"""
Draw samples from the generative model. Optionally, return intermediate
states for visualization purposes.
"""
timesteps = self.T if timesteps is None else timesteps
assert 0 < return_frames <= timesteps
assert timesteps % return_frames == 0
n_samples = len(pocket['size'])
device = pocket['x'].device
_, pocket = self.normalize(pocket=pocket)
# xh0_pocket is the original pocket while xh_pocket might be a
# translated version of it
xh0_pocket = torch.cat([pocket['x'], pocket['one_hot']], dim=1)
lig_mask = utils.num_nodes_to_batch_mask(
n_samples, num_nodes_lig, device)
# Sample from Normal distribution in the pocket center
mu_lig_x = scatter_mean(pocket['x'], pocket['mask'], dim=0)
mu_lig_h = torch.zeros((n_samples, self.atom_nf), device=device)
mu_lig = torch.cat((mu_lig_x, mu_lig_h), dim=1)[lig_mask]
sigma = torch.ones_like(pocket['size']).unsqueeze(1)
z_lig, xh_pocket = self.sample_normal_zero_com(
mu_lig, xh0_pocket, sigma, lig_mask, pocket['mask'])
self.assert_mean_zero_with_mask(z_lig[:, :self.n_dims], lig_mask)
out_lig = torch.zeros((return_frames,) + z_lig.size(),
device=z_lig.device)
out_pocket = torch.zeros((return_frames,) + xh_pocket.size(),
device=device)
# Iteratively sample p(z_s | z_t) for t = 1, ..., T, with s = t - 1.
for s in reversed(range(0, timesteps)):
s_array = torch.full((n_samples, 1), fill_value=s,
device=z_lig.device)
t_array = s_array + 1
s_array = s_array / timesteps
t_array = t_array / timesteps
z_lig, xh_pocket = self.sample_p_zs_given_zt(
s_array, t_array, z_lig, xh_pocket, lig_mask, pocket['mask'])
# save frame
if (s * return_frames) % timesteps == 0:
idx = (s * return_frames) // timesteps
out_lig[idx], out_pocket[idx] = \
self.unnormalize_z(z_lig, xh_pocket)
# Finally sample p(x, h | z_0).
x_lig, h_lig, x_pocket, h_pocket = self.sample_p_xh_given_z0(
z_lig, xh_pocket, lig_mask, pocket['mask'], n_samples)
self.assert_mean_zero_with_mask(x_lig, lig_mask)
# Correct CoM drift for examples without intermediate states
if return_frames == 1:
max_cog = scatter_add(x_lig, lig_mask, dim=0).abs().max().item()
if max_cog > 5e-2:
print(f'Warning CoG drift with error {max_cog:.3f}. Projecting '
f'the positions down.')
x_lig, x_pocket = self.remove_mean_batch(
x_lig, x_pocket, lig_mask, pocket['mask'])
# Overwrite last frame with the resulting x and h.
out_lig[0] = torch.cat([x_lig, h_lig], dim=1)
out_pocket[0] = torch.cat([x_pocket, h_pocket], dim=1)
# remove frame dimension if only the final molecule is returned
return out_lig.squeeze(0), out_pocket.squeeze(0), lig_mask, \
pocket['mask']
@torch.no_grad()
def inpaint(self, ligand, pocket, lig_fixed, resamplings=1, return_frames=1,
timesteps=None, center='ligand'):
"""
Draw samples from the generative model while fixing parts of the input.
Optionally, return intermediate states for visualization purposes.
Inspired by Algorithm 1 in:
Lugmayr, Andreas, et al.
"Repaint: Inpainting using denoising diffusion probabilistic models."
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2022.
"""
timesteps = self.T if timesteps is None else timesteps
assert 0 < return_frames <= timesteps
assert timesteps % return_frames == 0
if len(lig_fixed.size()) == 1:
lig_fixed = lig_fixed.unsqueeze(1)
n_samples = len(ligand['size'])
device = pocket['x'].device
# Normalize
ligand, pocket = self.normalize(ligand, pocket)
# xh0_pocket is the original pocket while xh_pocket might be a
# translated version of it
xh0_pocket = torch.cat([pocket['x'], pocket['one_hot']], dim=1)
com_pocket_0 = scatter_mean(pocket['x'], pocket['mask'], dim=0)
xh0_ligand = torch.cat([ligand['x'], ligand['one_hot']], dim=1)
xh_ligand = xh0_ligand.clone()
# Center initial system, subtract COM of known parts
if center == 'ligand':
mean_known = scatter_mean(ligand['x'][lig_fixed.bool().view(-1)],
ligand['mask'][lig_fixed.bool().view(-1)],
dim=0)
elif center == 'pocket':
mean_known = scatter_mean(pocket['x'], pocket['mask'], dim=0)
else:
raise NotImplementedError(
f"Centering option {center} not implemented")
# Sample from Normal distribution in the ligand center
mu_lig_x = mean_known
mu_lig_h = torch.zeros((n_samples, self.atom_nf), device=device)
mu_lig = torch.cat((mu_lig_x, mu_lig_h), dim=1)[ligand['mask']]
sigma = torch.ones_like(pocket['size']).unsqueeze(1)
z_lig, xh_pocket = self.sample_normal_zero_com(
mu_lig, xh0_pocket, sigma, ligand['mask'], pocket['mask'])
# Output tensors
out_lig = torch.zeros((return_frames,) + z_lig.size(),
device=z_lig.device)
out_pocket = torch.zeros((return_frames,) + xh_pocket.size(),
device=device)
# Iteratively sample with resampling iterations
for s in reversed(range(0, timesteps)):
# resampling iterations
for u in range(resamplings):
# Denoise one time step: t -> s
s_array = torch.full((n_samples, 1), fill_value=s,
device=device)
t_array = s_array + 1
s_array = s_array / timesteps
t_array = t_array / timesteps
gamma_t = self.gamma(t_array)
gamma_s = self.gamma(s_array)
# sample inpainted part
z_lig_unknown, xh_pocket = self.sample_p_zs_given_zt(
s_array, t_array, z_lig, xh_pocket, ligand['mask'],
pocket['mask'])
# sample known nodes from the input
com_pocket = scatter_mean(xh_pocket[:, :self.n_dims],
pocket['mask'], dim=0)
xh_ligand[:, :self.n_dims] = \
ligand['x'] + (com_pocket - com_pocket_0)[ligand['mask']]
z_lig_known, xh_pocket, _ = self.noised_representation(
xh_ligand, xh_pocket, ligand['mask'], pocket['mask'],
gamma_s)
# move center of mass of the noised part to the center of mass
# of the corresponding denoised part before combining them
# -> the resulting system should be COM-free
com_noised = scatter_mean(
z_lig_known[lig_fixed.bool().view(-1)][:, :self.n_dims],
ligand['mask'][lig_fixed.bool().view(-1)], dim=0)
com_denoised = scatter_mean(
z_lig_unknown[lig_fixed.bool().view(-1)][:, :self.n_dims],
ligand['mask'][lig_fixed.bool().view(-1)], dim=0)
dx = com_denoised - com_noised
z_lig_known[:, :self.n_dims] = z_lig_known[:, :self.n_dims] + dx[ligand['mask']]
xh_pocket[:, :self.n_dims] = xh_pocket[:, :self.n_dims] + dx[pocket['mask']]
# combine
z_lig = z_lig_known * lig_fixed + z_lig_unknown * (
1 - lig_fixed)
if u < resamplings - 1:
# Noise the sample
z_lig, xh_pocket = self.sample_p_zt_given_zs(
z_lig, xh_pocket, ligand['mask'], pocket['mask'],
gamma_t, gamma_s)
# save frame at the end of a resampling cycle
if u == resamplings - 1:
if (s * return_frames) % timesteps == 0:
idx = (s * return_frames) // timesteps
out_lig[idx], out_pocket[idx] = \
self.unnormalize_z(z_lig, xh_pocket)
# Finally sample p(x, h | z_0).
x_lig, h_lig, x_pocket, h_pocket = self.sample_p_xh_given_z0(
z_lig, xh_pocket, ligand['mask'], pocket['mask'], n_samples)
# Overwrite last frame with the resulting x and h.
out_lig[0] = torch.cat([x_lig, h_lig], dim=1)
out_pocket[0] = torch.cat([x_pocket, h_pocket], dim=1)
# remove frame dimension if only the final molecule is returned
return out_lig.squeeze(0), out_pocket.squeeze(0), ligand['mask'], \
pocket['mask']
@classmethod
def remove_mean_batch(cls, x_lig, x_pocket, lig_indices, pocket_indices):
# Just subtract the center of mass of the sampled part
mean = scatter_mean(x_lig, lig_indices, dim=0)
x_lig = x_lig - mean[lig_indices]
x_pocket = x_pocket - mean[pocket_indices]
return x_lig, x_pocket
# ------------------------------------------------------------------------------
# The same model without subspace-trick
# ------------------------------------------------------------------------------
class SimpleConditionalDDPM(ConditionalDDPM):
"""
Simpler conditional diffusion module without subspace-trick.
- rotational equivariance is guaranteed by construction
- translationally equivariant likelihood is achieved by first mapping
samples to a space where the context is COM-free and evaluating the
likelihood there
- molecule generation is equivariant because we can first sample in the
space where the context is COM-free and translate the whole system back to
the original position of the context later
"""
def subspace_dimensionality(self, input_size):
""" Override because we don't use the linear subspace anymore. """
return input_size * self.n_dims
@classmethod
def remove_mean_batch(cls, x_lig, x_pocket, lig_indices, pocket_indices):
""" Hacky way of removing the centering steps without changing too much
code. """
return x_lig, x_pocket
@staticmethod
def assert_mean_zero_with_mask(x, node_mask, eps=1e-10):
return
def forward(self, ligand, pocket, return_info=False):
# Subtract pocket center of mass
pocket_com = scatter_mean(pocket['x'], pocket['mask'], dim=0)
ligand['x'] = ligand['x'] - pocket_com[ligand['mask']]
pocket['x'] = pocket['x'] - pocket_com[pocket['mask']]
return super(SimpleConditionalDDPM, self).forward(
ligand, pocket, return_info)
@torch.no_grad()
def sample_given_pocket(self, pocket, num_nodes_lig, return_frames=1,
timesteps=None):
# Subtract pocket center of mass
pocket_com = scatter_mean(pocket['x'], pocket['mask'], dim=0)
pocket['x'] = pocket['x'] - pocket_com[pocket['mask']]
return super(SimpleConditionalDDPM, self).sample_given_pocket(
pocket, num_nodes_lig, return_frames, timesteps)