[e0aade]: / configs / moad_fullatom_joint.yml

Download this file

63 lines (58 with data), 1.4 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
run_name: 'SE3-joint-fullAtom'
logdir: '/path/to/logdir'
wandb_params:
mode: 'online' # disabled, offline, online
entity: 'my_username'
group: 'bindingmoad'
dataset: 'bindingmoad'
datadir: '/path/to//processed_noH_full/'
enable_progress_bar: False
num_sanity_val_steps: 0
mode: 'joint'
pocket_representation: 'full-atom'
virtual_nodes: False
batch_size: 16
lr: 5.0e-4
n_epochs: 1000
num_workers: 2
gpus: 2
clip_grad: True
augment_rotation: False
augment_noise: 0
auxiliary_loss: False
loss_params:
max_weight: 0.001
schedule: 'linear'
clamp_lj: 3.0
egnn_params:
device: 'cuda'
edge_cutoff_ligand: null
edge_cutoff_pocket: 0.8 # = 4.0 / 5.0
edge_cutoff_interaction: 1.4 # = 7.0 / 5.0
reflection_equivariant: False
edge_embedding_dim: 8
joint_nf: 128
hidden_nf: 192
n_layers: 6
attention: True
tanh: True
norm_constant: 1
inv_sublayers: 1
sin_embedding: False
aggregation_method: 'sum'
normalization_factor: 100 # used if aggregation_method='sum'
diffusion_params:
diffusion_steps: 500
diffusion_noise_schedule: 'polynomial_2' # learned, cosine
diffusion_noise_precision: 1.0e-5
diffusion_loss_type: 'l2' # vlb, l2
normalize_factors: [5, 5] # [x, h]
eval_epochs: 25
visualize_sample_epoch: 25
visualize_chain_epoch: 25
eval_params:
n_eval_samples: 100
eval_batch_size: 50
smiles_file: '/path/to/train_smiles.npy'
n_visualize_samples: 5
keep_frames: 100