from pathlib import Path
from time import time
import argparse
import shutil
import random
import matplotlib.pyplot as plt
import seaborn as sns
from tqdm import tqdm
import numpy as np
from Bio.PDB import PDBParser
from Bio.PDB.Polypeptide import three_to_one, is_aa
from rdkit import Chem
from scipy.ndimage import gaussian_filter
import torch
from analysis.molecule_builder import build_molecule
from analysis.metrics import rdmol_to_smiles
import constants
from constants import covalent_radii, dataset_params
def process_ligand_and_pocket(pdbfile, sdffile,
atom_dict, dist_cutoff, ca_only):
pdb_struct = PDBParser(QUIET=True).get_structure('', pdbfile)
try:
ligand = Chem.SDMolSupplier(str(sdffile))[0]
except:
raise Exception(f'cannot read sdf mol ({sdffile})')
# remove H atoms if not in atom_dict, other atom types that aren't allowed
# should stay so that the entire ligand can be removed from the dataset
lig_atoms = [a.GetSymbol() for a in ligand.GetAtoms()
if (a.GetSymbol().capitalize() in atom_dict or a.element != 'H')]
lig_coords = np.array([list(ligand.GetConformer(0).GetAtomPosition(idx))
for idx in range(ligand.GetNumAtoms())])
try:
lig_one_hot = np.stack([
np.eye(1, len(atom_dict), atom_dict[a.capitalize()]).squeeze()
for a in lig_atoms
])
except KeyError as e:
raise KeyError(
f'{e} not in atom dict ({sdffile})')
# Find interacting pocket residues based on distance cutoff
pocket_residues = []
for residue in pdb_struct[0].get_residues():
res_coords = np.array([a.get_coord() for a in residue.get_atoms()])
if is_aa(residue.get_resname(), standard=True) and \
(((res_coords[:, None, :] - lig_coords[None, :, :]) ** 2).sum(
-1) ** 0.5).min() < dist_cutoff:
pocket_residues.append(residue)
pocket_ids = [f'{res.parent.id}:{res.id[1]}' for res in pocket_residues]
ligand_data = {
'lig_coords': lig_coords,
'lig_one_hot': lig_one_hot,
}
if ca_only:
try:
pocket_one_hot = []
full_coords = []
for res in pocket_residues:
for atom in res.get_atoms():
if atom.name == 'CA':
pocket_one_hot.append(np.eye(1, len(amino_acid_dict),
amino_acid_dict[three_to_one(res.get_resname())]).squeeze())
full_coords.append(atom.coord)
pocket_one_hot = np.stack(pocket_one_hot)
full_coords = np.stack(full_coords)
except KeyError as e:
raise KeyError(
f'{e} not in amino acid dict ({pdbfile}, {sdffile})')
pocket_data = {
'pocket_coords': full_coords,
'pocket_one_hot': pocket_one_hot,
'pocket_ids': pocket_ids
}
else:
full_atoms = np.concatenate(
[np.array([atom.element for atom in res.get_atoms()])
for res in pocket_residues], axis=0)
full_coords = np.concatenate(
[np.array([atom.coord for atom in res.get_atoms()])
for res in pocket_residues], axis=0)
try:
pocket_one_hot = []
for a in full_atoms:
if a in amino_acid_dict:
atom = np.eye(1, len(amino_acid_dict),
amino_acid_dict[a.capitalize()]).squeeze()
elif a != 'H':
atom = np.eye(1, len(amino_acid_dict),
len(amino_acid_dict)).squeeze()
pocket_one_hot.append(atom)
pocket_one_hot = np.stack(pocket_one_hot)
except KeyError as e:
raise KeyError(
f'{e} not in atom dict ({pdbfile})')
pocket_data = {
'pocket_coords': full_coords,
'pocket_one_hot': pocket_one_hot,
'pocket_ids': pocket_ids
}
return ligand_data, pocket_data
def compute_smiles(positions, one_hot, mask):
print("Computing SMILES ...")
atom_types = np.argmax(one_hot, axis=-1)
sections = np.where(np.diff(mask))[0] + 1
positions = [torch.from_numpy(x) for x in np.split(positions, sections)]
atom_types = [torch.from_numpy(x) for x in np.split(atom_types, sections)]
mols_smiles = []
pbar = tqdm(enumerate(zip(positions, atom_types)),
total=len(np.unique(mask)))
for i, (pos, atom_type) in pbar:
mol = build_molecule(pos, atom_type, dataset_info)
# BasicMolecularMetrics() computes SMILES after sanitization
try:
Chem.SanitizeMol(mol)
except ValueError:
continue
mol = rdmol_to_smiles(mol)
if mol is not None:
mols_smiles.append(mol)
pbar.set_description(f'{len(mols_smiles)}/{i + 1} successful')
return mols_smiles
def get_n_nodes(lig_mask, pocket_mask, smooth_sigma=None):
# Joint distribution of ligand's and pocket's number of nodes
idx_lig, n_nodes_lig = np.unique(lig_mask, return_counts=True)
idx_pocket, n_nodes_pocket = np.unique(pocket_mask, return_counts=True)
assert np.all(idx_lig == idx_pocket)
joint_histogram = np.zeros((np.max(n_nodes_lig) + 1,
np.max(n_nodes_pocket) + 1))
for nlig, npocket in zip(n_nodes_lig, n_nodes_pocket):
joint_histogram[nlig, npocket] += 1
print(f'Original histogram: {np.count_nonzero(joint_histogram)}/'
f'{joint_histogram.shape[0] * joint_histogram.shape[1]} bins filled')
# Smooth the histogram
if smooth_sigma is not None:
filtered_histogram = gaussian_filter(
joint_histogram, sigma=smooth_sigma, order=0, mode='constant',
cval=0.0, truncate=4.0)
print(f'Smoothed histogram: {np.count_nonzero(filtered_histogram)}/'
f'{filtered_histogram.shape[0] * filtered_histogram.shape[1]} bins filled')
joint_histogram = filtered_histogram
return joint_histogram
def get_bond_length_arrays(atom_mapping):
bond_arrays = []
for i in range(3):
bond_dict = getattr(constants, f'bonds{i + 1}')
bond_array = np.zeros((len(atom_mapping), len(atom_mapping)))
for a1 in atom_mapping.keys():
for a2 in atom_mapping.keys():
if a1 in bond_dict and a2 in bond_dict[a1]:
bond_len = bond_dict[a1][a2]
else:
bond_len = 0
bond_array[atom_mapping[a1], atom_mapping[a2]] = bond_len
assert np.all(bond_array == bond_array.T)
bond_arrays.append(bond_array)
return bond_arrays
def get_lennard_jones_rm(atom_mapping):
# Bond radii for the Lennard-Jones potential
LJ_rm = np.zeros((len(atom_mapping), len(atom_mapping)))
for a1 in atom_mapping.keys():
for a2 in atom_mapping.keys():
all_bond_lengths = []
for btype in ['bonds1', 'bonds2', 'bonds3']:
bond_dict = getattr(constants, btype)
if a1 in bond_dict and a2 in bond_dict[a1]:
all_bond_lengths.append(bond_dict[a1][a2])
if len(all_bond_lengths) > 0:
# take the shortest possible bond length because slightly larger
# values aren't penalized as much
bond_len = min(all_bond_lengths)
else:
if a1 == 'others' or a2 == 'others':
bond_len = 0
else:
# Replace missing values with sum of average covalent radii
bond_len = covalent_radii[a1] + covalent_radii[a2]
LJ_rm[atom_mapping[a1], atom_mapping[a2]] = bond_len
assert np.all(LJ_rm == LJ_rm.T)
return LJ_rm
def get_type_histograms(lig_one_hot, pocket_one_hot, atom_encoder, aa_encoder):
atom_decoder = list(atom_encoder.keys())
atom_counts = {k: 0 for k in atom_encoder.keys()}
for a in [atom_decoder[x] for x in lig_one_hot.argmax(1)]:
atom_counts[a] += 1
aa_decoder = list(aa_encoder.keys())
aa_counts = {k: 0 for k in aa_encoder.keys()}
for r in [aa_decoder[x] for x in pocket_one_hot.argmax(1)]:
aa_counts[r] += 1
return atom_counts, aa_counts
def saveall(filename, pdb_and_mol_ids, lig_coords, lig_one_hot, lig_mask,
pocket_coords, pocket_one_hot, pocket_mask):
np.savez(filename,
names=pdb_and_mol_ids,
lig_coords=lig_coords,
lig_one_hot=lig_one_hot,
lig_mask=lig_mask,
pocket_coords=pocket_coords,
pocket_one_hot=pocket_one_hot,
pocket_mask=pocket_mask
)
return True
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('basedir', type=Path)
parser.add_argument('--outdir', type=Path, default=None)
parser.add_argument('--no_H', action='store_true')
parser.add_argument('--ca_only', action='store_true')
parser.add_argument('--dist_cutoff', type=float, default=8.0)
parser.add_argument('--random_seed', type=int, default=42)
args = parser.parse_args()
datadir = args.basedir / 'crossdocked_pocket10/'
if args.ca_only:
dataset_info = dataset_params['crossdock']
else:
dataset_info = dataset_params['crossdock_full']
amino_acid_dict = dataset_info['aa_encoder']
atom_dict = dataset_info['atom_encoder']
atom_decoder = dataset_info['atom_decoder']
# Make output directory
if args.outdir is None:
suffix = '_crossdock' if 'H' in atom_dict else '_crossdock_noH'
suffix += '_ca_only_temp' if args.ca_only else '_full_temp'
processed_dir = Path(args.basedir, f'processed{suffix}')
else:
processed_dir = args.outdir
processed_dir.mkdir(exist_ok=True, parents=True)
# Read data split
split_path = Path(args.basedir, 'split_by_name.pt')
data_split = torch.load(split_path)
# There is no validation set, copy 300 training examples (the validation set
# is not very important in this application)
# Note: before we had a data leak but it should not matter too much as most
# metrics monitored during training are independent of the pockets
data_split['val'] = random.sample(data_split['train'], 300)
n_train_before = len(data_split['train'])
n_val_before = len(data_split['val'])
n_test_before = len(data_split['test'])
failed_save = []
n_samples_after = {}
for split in data_split.keys():
lig_coords = []
lig_one_hot = []
lig_mask = []
pocket_coords = []
pocket_one_hot = []
pocket_mask = []
pdb_and_mol_ids = []
count_protein = []
count_ligand = []
count_total = []
count = 0
pdb_sdf_dir = processed_dir / split
pdb_sdf_dir.mkdir(exist_ok=True)
tic = time()
num_failed = 0
pbar = tqdm(data_split[split])
pbar.set_description(f'#failed: {num_failed}')
for pocket_fn, ligand_fn in pbar:
sdffile = datadir / f'{ligand_fn}'
pdbfile = datadir / f'{pocket_fn}'
try:
struct_copy = PDBParser(QUIET=True).get_structure('', pdbfile)
except:
num_failed += 1
failed_save.append((pocket_fn, ligand_fn))
print(failed_save[-1])
pbar.set_description(f'#failed: {num_failed}')
continue
try:
ligand_data, pocket_data = process_ligand_and_pocket(
pdbfile, sdffile,
atom_dict=atom_dict, dist_cutoff=args.dist_cutoff,
ca_only=args.ca_only)
except (KeyError, AssertionError, FileNotFoundError, IndexError,
ValueError) as e:
print(type(e).__name__, e, pocket_fn, ligand_fn)
num_failed += 1
pbar.set_description(f'#failed: {num_failed}')
continue
pdb_and_mol_ids.append(f"{pocket_fn}_{ligand_fn}")
lig_coords.append(ligand_data['lig_coords'])
lig_one_hot.append(ligand_data['lig_one_hot'])
lig_mask.append(count * np.ones(len(ligand_data['lig_coords'])))
pocket_coords.append(pocket_data['pocket_coords'])
pocket_one_hot.append(pocket_data['pocket_one_hot'])
pocket_mask.append(
count * np.ones(len(pocket_data['pocket_coords'])))
count_protein.append(pocket_data['pocket_coords'].shape[0])
count_ligand.append(ligand_data['lig_coords'].shape[0])
count_total.append(pocket_data['pocket_coords'].shape[0] +
ligand_data['lig_coords'].shape[0])
count += 1
if split in {'val', 'test'}:
# Copy PDB file
new_rec_name = Path(pdbfile).stem.replace('_', '-')
pdb_file_out = Path(pdb_sdf_dir, f"{new_rec_name}.pdb")
shutil.copy(pdbfile, pdb_file_out)
# Copy SDF file
new_lig_name = new_rec_name + '_' + Path(sdffile).stem.replace('_', '-')
sdf_file_out = Path(pdb_sdf_dir, f'{new_lig_name}.sdf')
shutil.copy(sdffile, sdf_file_out)
# specify pocket residues
with open(Path(pdb_sdf_dir, f'{new_lig_name}.txt'), 'w') as f:
f.write(' '.join(pocket_data['pocket_ids']))
lig_coords = np.concatenate(lig_coords, axis=0)
lig_one_hot = np.concatenate(lig_one_hot, axis=0)
lig_mask = np.concatenate(lig_mask, axis=0)
pocket_coords = np.concatenate(pocket_coords, axis=0)
pocket_one_hot = np.concatenate(pocket_one_hot, axis=0)
pocket_mask = np.concatenate(pocket_mask, axis=0)
saveall(processed_dir / f'{split}.npz', pdb_and_mol_ids, lig_coords,
lig_one_hot, lig_mask, pocket_coords,
pocket_one_hot, pocket_mask)
n_samples_after[split] = len(pdb_and_mol_ids)
print(f"Processing {split} set took {(time() - tic) / 60.0:.2f} minutes")
# --------------------------------------------------------------------------
# Compute statistics & additional information
# --------------------------------------------------------------------------
with np.load(processed_dir / 'train.npz', allow_pickle=True) as data:
lig_mask = data['lig_mask']
pocket_mask = data['pocket_mask']
lig_coords = data['lig_coords']
lig_one_hot = data['lig_one_hot']
pocket_one_hot = data['pocket_one_hot']
# Compute SMILES for all training examples
train_smiles = compute_smiles(lig_coords, lig_one_hot, lig_mask)
np.save(processed_dir / 'train_smiles.npy', train_smiles)
# Joint histogram of number of ligand and pocket nodes
n_nodes = get_n_nodes(lig_mask, pocket_mask, smooth_sigma=1.0)
np.save(Path(processed_dir, 'size_distribution.npy'), n_nodes)
# Convert bond length dictionaries to arrays for batch processing
bonds1, bonds2, bonds3 = get_bond_length_arrays(atom_dict)
# Get bond length definitions for Lennard-Jones potential
rm_LJ = get_lennard_jones_rm(atom_dict)
# Get histograms of ligand and pocket node types
atom_hist, aa_hist = get_type_histograms(lig_one_hot, pocket_one_hot,
atom_dict, amino_acid_dict)
# Create summary string
summary_string = '# SUMMARY\n\n'
summary_string += '# Before processing\n'
summary_string += f'num_samples train: {n_train_before}\n'
summary_string += f'num_samples val: {n_val_before}\n'
summary_string += f'num_samples test: {n_test_before}\n\n'
summary_string += '# After processing\n'
summary_string += f"num_samples train: {n_samples_after['train']}\n"
summary_string += f"num_samples val: {n_samples_after['val']}\n"
summary_string += f"num_samples test: {n_samples_after['test']}\n\n"
summary_string += '# Info\n'
summary_string += f"'atom_encoder': {atom_dict}\n"
summary_string += f"'atom_decoder': {list(atom_dict.keys())}\n"
summary_string += f"'aa_encoder': {amino_acid_dict}\n"
summary_string += f"'aa_decoder': {list(amino_acid_dict.keys())}\n"
summary_string += f"'bonds1': {bonds1.tolist()}\n"
summary_string += f"'bonds2': {bonds2.tolist()}\n"
summary_string += f"'bonds3': {bonds3.tolist()}\n"
summary_string += f"'lennard_jones_rm': {rm_LJ.tolist()}\n"
summary_string += f"'atom_hist': {atom_hist}\n"
summary_string += f"'aa_hist': {aa_hist}\n"
summary_string += f"'n_nodes': {n_nodes.tolist()}\n"
# Write summary to text file
with open(processed_dir / 'summary.txt', 'w') as f:
f.write(summary_string)
# Print summary
print(summary_string)
print(failed_save)