import torch
import torch.nn as nn
import torch.nn.functional as F
from equivariant_diffusion.egnn_new import EGNN, GNN
from equivariant_diffusion.en_diffusion import EnVariationalDiffusion
remove_mean_batch = EnVariationalDiffusion.remove_mean_batch
import numpy as np
class EGNNDynamics(nn.Module):
def __init__(self, atom_nf, residue_nf,
n_dims, joint_nf=16, hidden_nf=64, device='cpu',
act_fn=torch.nn.SiLU(), n_layers=4, attention=False,
condition_time=True, tanh=False, mode='egnn_dynamics',
norm_constant=0, inv_sublayers=2, sin_embedding=False,
normalization_factor=100, aggregation_method='sum',
update_pocket_coords=True, edge_cutoff_ligand=None,
edge_cutoff_pocket=None, edge_cutoff_interaction=None,
reflection_equivariant=True, edge_embedding_dim=None):
super().__init__()
self.mode = mode
self.edge_cutoff_l = edge_cutoff_ligand
self.edge_cutoff_p = edge_cutoff_pocket
self.edge_cutoff_i = edge_cutoff_interaction
self.edge_nf = edge_embedding_dim
self.atom_encoder = nn.Sequential(
nn.Linear(atom_nf, 2 * atom_nf),
act_fn,
nn.Linear(2 * atom_nf, joint_nf)
)
self.atom_decoder = nn.Sequential(
nn.Linear(joint_nf, 2 * atom_nf),
act_fn,
nn.Linear(2 * atom_nf, atom_nf)
)
self.residue_encoder = nn.Sequential(
nn.Linear(residue_nf, 2 * residue_nf),
act_fn,
nn.Linear(2 * residue_nf, joint_nf)
)
self.residue_decoder = nn.Sequential(
nn.Linear(joint_nf, 2 * residue_nf),
act_fn,
nn.Linear(2 * residue_nf, residue_nf)
)
self.edge_embedding = nn.Embedding(3, self.edge_nf) \
if self.edge_nf is not None else None
self.edge_nf = 0 if self.edge_nf is None else self.edge_nf
if condition_time:
dynamics_node_nf = joint_nf + 1
else:
print('Warning: dynamics model is _not_ conditioned on time.')
dynamics_node_nf = joint_nf
if mode == 'egnn_dynamics':
self.egnn = EGNN(
in_node_nf=dynamics_node_nf, in_edge_nf=self.edge_nf,
hidden_nf=hidden_nf, device=device, act_fn=act_fn,
n_layers=n_layers, attention=attention, tanh=tanh,
norm_constant=norm_constant,
inv_sublayers=inv_sublayers, sin_embedding=sin_embedding,
normalization_factor=normalization_factor,
aggregation_method=aggregation_method,
reflection_equiv=reflection_equivariant
)
self.node_nf = dynamics_node_nf
self.update_pocket_coords = update_pocket_coords
elif mode == 'gnn_dynamics':
self.gnn = GNN(
in_node_nf=dynamics_node_nf + n_dims, in_edge_nf=self.edge_nf,
hidden_nf=hidden_nf, out_node_nf=n_dims + dynamics_node_nf,
device=device, act_fn=act_fn, n_layers=n_layers,
attention=attention, normalization_factor=normalization_factor,
aggregation_method=aggregation_method)
self.device = device
self.n_dims = n_dims
self.condition_time = condition_time
def forward(self, xh_atoms, xh_residues, t, mask_atoms, mask_residues):
x_atoms = xh_atoms[:, :self.n_dims].clone()
h_atoms = xh_atoms[:, self.n_dims:].clone()
x_residues = xh_residues[:, :self.n_dims].clone()
h_residues = xh_residues[:, self.n_dims:].clone()
# embed atom features and residue features in a shared space
h_atoms = self.atom_encoder(h_atoms)
h_residues = self.residue_encoder(h_residues)
# combine the two node types
x = torch.cat((x_atoms, x_residues), dim=0)
h = torch.cat((h_atoms, h_residues), dim=0)
mask = torch.cat([mask_atoms, mask_residues])
if self.condition_time:
if np.prod(t.size()) == 1:
# t is the same for all elements in batch.
h_time = torch.empty_like(h[:, 0:1]).fill_(t.item())
else:
# t is different over the batch dimension.
h_time = t[mask]
h = torch.cat([h, h_time], dim=1)
# get edges of a complete graph
edges = self.get_edges(mask_atoms, mask_residues, x_atoms, x_residues)
assert torch.all(mask[edges[0]] == mask[edges[1]])
# Get edge types
if self.edge_nf > 0:
# 0: ligand-pocket, 1: ligand-ligand, 2: pocket-pocket
edge_types = torch.zeros(edges.size(1), dtype=int, device=edges.device)
edge_types[(edges[0] < len(mask_atoms)) & (edges[1] < len(mask_atoms))] = 1
edge_types[(edges[0] >= len(mask_atoms)) & (edges[1] >= len(mask_atoms))] = 2
# Learnable embedding
edge_types = self.edge_embedding(edge_types)
else:
edge_types = None
if self.mode == 'egnn_dynamics':
update_coords_mask = None if self.update_pocket_coords \
else torch.cat((torch.ones_like(mask_atoms),
torch.zeros_like(mask_residues))).unsqueeze(1)
h_final, x_final = self.egnn(h, x, edges,
update_coords_mask=update_coords_mask,
batch_mask=mask, edge_attr=edge_types)
vel = (x_final - x)
elif self.mode == 'gnn_dynamics':
xh = torch.cat([x, h], dim=1)
output = self.gnn(xh, edges, node_mask=None, edge_attr=edge_types)
vel = output[:, :3]
h_final = output[:, 3:]
else:
raise Exception("Wrong mode %s" % self.mode)
if self.condition_time:
# Slice off last dimension which represented time.
h_final = h_final[:, :-1]
# decode atom and residue features
h_final_atoms = self.atom_decoder(h_final[:len(mask_atoms)])
h_final_residues = self.residue_decoder(h_final[len(mask_atoms):])
if torch.any(torch.isnan(vel)):
if self.training:
vel[torch.isnan(vel)] = 0.0
else:
raise ValueError("NaN detected in EGNN output")
if self.update_pocket_coords:
# in case of unconditional joint distribution, include this as in
# the original code
vel = remove_mean_batch(vel, mask)
return torch.cat([vel[:len(mask_atoms)], h_final_atoms], dim=-1), \
torch.cat([vel[len(mask_atoms):], h_final_residues], dim=-1)
def get_edges(self, batch_mask_ligand, batch_mask_pocket, x_ligand, x_pocket):
adj_ligand = batch_mask_ligand[:, None] == batch_mask_ligand[None, :]
adj_pocket = batch_mask_pocket[:, None] == batch_mask_pocket[None, :]
adj_cross = batch_mask_ligand[:, None] == batch_mask_pocket[None, :]
if self.edge_cutoff_l is not None:
adj_ligand = adj_ligand & (torch.cdist(x_ligand, x_ligand) <= self.edge_cutoff_l)
if self.edge_cutoff_p is not None:
adj_pocket = adj_pocket & (torch.cdist(x_pocket, x_pocket) <= self.edge_cutoff_p)
if self.edge_cutoff_i is not None:
adj_cross = adj_cross & (torch.cdist(x_ligand, x_pocket) <= self.edge_cutoff_i)
adj = torch.cat((torch.cat((adj_ligand, adj_cross), dim=1),
torch.cat((adj_cross.T, adj_pocket), dim=1)), dim=0)
edges = torch.stack(torch.where(adj), dim=0)
return edges