import warnings
import tempfile
import torch
import numpy as np
from rdkit import Chem
from rdkit.Chem.rdForceFieldHelpers import UFFOptimizeMolecule, UFFHasAllMoleculeParams
import openbabel
import utils
from constants import bonds1, bonds2, bonds3, margin1, margin2, margin3, \
bond_dict
def get_bond_order(atom1, atom2, distance):
distance = 100 * distance # We change the metric
if atom1 in bonds3 and atom2 in bonds3[atom1] and distance < bonds3[atom1][atom2] + margin3:
return 3 # Triple
if atom1 in bonds2 and atom2 in bonds2[atom1] and distance < bonds2[atom1][atom2] + margin2:
return 2 # Double
if atom1 in bonds1 and atom2 in bonds1[atom1] and distance < bonds1[atom1][atom2] + margin1:
return 1 # Single
return 0 # No bond
def get_bond_order_batch(atoms1, atoms2, distances, dataset_info):
if isinstance(atoms1, np.ndarray):
atoms1 = torch.from_numpy(atoms1)
if isinstance(atoms2, np.ndarray):
atoms2 = torch.from_numpy(atoms2)
if isinstance(distances, np.ndarray):
distances = torch.from_numpy(distances)
distances = 100 * distances # We change the metric
bonds1 = torch.tensor(dataset_info['bonds1'], device=atoms1.device)
bonds2 = torch.tensor(dataset_info['bonds2'], device=atoms1.device)
bonds3 = torch.tensor(dataset_info['bonds3'], device=atoms1.device)
bond_types = torch.zeros_like(atoms1) # 0: No bond
# Single
bond_types[distances < bonds1[atoms1, atoms2] + margin1] = 1
# Double (note that already assigned single bonds will be overwritten)
bond_types[distances < bonds2[atoms1, atoms2] + margin2] = 2
# Triple
bond_types[distances < bonds3[atoms1, atoms2] + margin3] = 3
return bond_types
def make_mol_openbabel(positions, atom_types, atom_decoder):
"""
Build an RDKit molecule using openbabel for creating bonds
Args:
positions: N x 3
atom_types: N
atom_decoder: maps indices to atom types
Returns:
rdkit molecule
"""
atom_types = [atom_decoder[x] for x in atom_types]
with tempfile.NamedTemporaryFile() as tmp:
tmp_file = tmp.name
# Write xyz file
utils.write_xyz_file(positions, atom_types, tmp_file)
# Convert to sdf file with openbabel
# openbabel will add bonds
obConversion = openbabel.OBConversion()
obConversion.SetInAndOutFormats("xyz", "sdf")
ob_mol = openbabel.OBMol()
obConversion.ReadFile(ob_mol, tmp_file)
obConversion.WriteFile(ob_mol, tmp_file)
# Read sdf file with RDKit
tmp_mol = Chem.SDMolSupplier(tmp_file, sanitize=False)[0]
# Build new molecule. This is a workaround to remove radicals.
mol = Chem.RWMol()
for atom in tmp_mol.GetAtoms():
mol.AddAtom(Chem.Atom(atom.GetSymbol()))
mol.AddConformer(tmp_mol.GetConformer(0))
for bond in tmp_mol.GetBonds():
mol.AddBond(bond.GetBeginAtomIdx(), bond.GetEndAtomIdx(),
bond.GetBondType())
return mol
def make_mol_edm(positions, atom_types, dataset_info, add_coords):
"""
Equivalent to EDM's way of building RDKit molecules
"""
n = len(positions)
# (X, A, E): atom_types, adjacency matrix, edge_types
# X: N (int)
# A: N x N (bool) -> (binary adjacency matrix)
# E: N x N (int) -> (bond type, 0 if no bond)
pos = positions.unsqueeze(0) # add batch dim
dists = torch.cdist(pos, pos, p=2).squeeze(0).view(-1) # remove batch dim & flatten
atoms1, atoms2 = torch.cartesian_prod(atom_types, atom_types).T
E_full = get_bond_order_batch(atoms1, atoms2, dists, dataset_info).view(n, n)
E = torch.tril(E_full, diagonal=-1) # Warning: the graph should be DIRECTED
A = E.bool()
X = atom_types
mol = Chem.RWMol()
for atom in X:
a = Chem.Atom(dataset_info["atom_decoder"][atom.item()])
mol.AddAtom(a)
all_bonds = torch.nonzero(A)
for bond in all_bonds:
mol.AddBond(bond[0].item(), bond[1].item(),
bond_dict[E[bond[0], bond[1]].item()])
if add_coords:
conf = Chem.Conformer(mol.GetNumAtoms())
for i in range(mol.GetNumAtoms()):
conf.SetAtomPosition(i, (positions[i, 0].item(),
positions[i, 1].item(),
positions[i, 2].item()))
mol.AddConformer(conf)
return mol
def build_molecule(positions, atom_types, dataset_info, add_coords=False,
use_openbabel=True):
"""
Build RDKit molecule
Args:
positions: N x 3
atom_types: N
dataset_info: dict
add_coords: Add conformer to mol (always added if use_openbabel=True)
use_openbabel: use OpenBabel to create bonds
Returns:
RDKit molecule
"""
if use_openbabel:
mol = make_mol_openbabel(positions, atom_types,
dataset_info["atom_decoder"])
else:
mol = make_mol_edm(positions, atom_types, dataset_info, add_coords)
return mol
def process_molecule(rdmol, add_hydrogens=False, sanitize=False, relax_iter=0,
largest_frag=False):
"""
Apply filters to an RDKit molecule. Makes a copy first.
Args:
rdmol: rdkit molecule
add_hydrogens
sanitize
relax_iter: maximum number of UFF optimization iterations
largest_frag: filter out the largest fragment in a set of disjoint
molecules
Returns:
RDKit molecule or None if it does not pass the filters
"""
# Create a copy
mol = Chem.Mol(rdmol)
if sanitize:
try:
Chem.SanitizeMol(mol)
except ValueError:
warnings.warn('Sanitization failed. Returning None.')
return None
if add_hydrogens:
mol = Chem.AddHs(mol, addCoords=(len(mol.GetConformers()) > 0))
if largest_frag:
mol_frags = Chem.GetMolFrags(mol, asMols=True, sanitizeFrags=False)
mol = max(mol_frags, default=mol, key=lambda m: m.GetNumAtoms())
if sanitize:
# sanitize the updated molecule
try:
Chem.SanitizeMol(mol)
except ValueError:
return None
if relax_iter > 0:
if not UFFHasAllMoleculeParams(mol):
warnings.warn('UFF parameters not available for all atoms. '
'Returning None.')
return None
try:
uff_relax(mol, relax_iter)
if sanitize:
# sanitize the updated molecule
Chem.SanitizeMol(mol)
except (RuntimeError, ValueError) as e:
return None
return mol
def uff_relax(mol, max_iter=200):
"""
Uses RDKit's universal force field (UFF) implementation to optimize a
molecule.
"""
more_iterations_required = UFFOptimizeMolecule(mol, maxIters=max_iter)
if more_iterations_required:
warnings.warn(f'Maximum number of FF iterations reached. '
f'Returning molecule after {max_iter} relaxation steps.')
return more_iterations_required
def filter_rd_mol(rdmol):
"""
Filter out RDMols if they have a 3-3 ring intersection
adapted from:
https://github.com/luost26/3D-Generative-SBDD/blob/main/utils/chem.py
"""
ring_info = rdmol.GetRingInfo()
ring_info.AtomRings()
rings = [set(r) for r in ring_info.AtomRings()]
# 3-3 ring intersection
for i, ring_a in enumerate(rings):
if len(ring_a) != 3:
continue
for j, ring_b in enumerate(rings):
if i <= j:
continue
inter = ring_a.intersection(ring_b)
if (len(ring_b) == 3) and (len(inter) > 0):
return False
return True