Diff of /utils.py [000000] .. [607087]

Switch to unified view

a b/utils.py
1
from typing import Union, Iterable
2
3
import numpy as np
4
import torch
5
import torch.nn.functional as F
6
from rdkit import Chem
7
import networkx as nx
8
from networkx.algorithms import isomorphism
9
from Bio.PDB.Polypeptide import is_aa
10
11
12
class Queue():
13
    def __init__(self, max_len=50):
14
        self.items = []
15
        self.max_len = max_len
16
17
    def __len__(self):
18
        return len(self.items)
19
20
    def add(self, item):
21
        self.items.insert(0, item)
22
        if len(self) > self.max_len:
23
            self.items.pop()
24
25
    def mean(self):
26
        return np.mean(self.items)
27
28
    def std(self):
29
        return np.std(self.items)
30
31
32
def reverse_tensor(x):
33
    return x[torch.arange(x.size(0) - 1, -1, -1)]
34
35
36
#####
37
38
39
def get_grad_norm(
40
        parameters: Union[torch.Tensor, Iterable[torch.Tensor]],
41
        norm_type: float = 2.0) -> torch.Tensor:
42
    """
43
    Adapted from: https://pytorch.org/docs/stable/_modules/torch/nn/utils/clip_grad.html#clip_grad_norm_
44
    """
45
46
    if isinstance(parameters, torch.Tensor):
47
        parameters = [parameters]
48
    parameters = [p for p in parameters if p.grad is not None]
49
50
    norm_type = float(norm_type)
51
52
    if len(parameters) == 0:
53
        return torch.tensor(0.)
54
55
    device = parameters[0].grad.device
56
57
    total_norm = torch.norm(torch.stack(
58
        [torch.norm(p.grad.detach(), norm_type).to(device) for p in
59
         parameters]), norm_type)
60
61
    return total_norm
62
63
64
def write_xyz_file(coords, atom_types, filename):
65
    out = f"{len(coords)}\n\n"
66
    assert len(coords) == len(atom_types)
67
    for i in range(len(coords)):
68
        out += f"{atom_types[i]} {coords[i, 0]:.3f} {coords[i, 1]:.3f} {coords[i, 2]:.3f}\n"
69
    with open(filename, 'w') as f:
70
        f.write(out)
71
72
73
def write_sdf_file(sdf_path, molecules):
74
    # NOTE Changed to be compatitble with more versions of rdkit
75
    #with Chem.SDWriter(str(sdf_path)) as w:
76
    #    for mol in molecules:
77
    #        w.write(mol)
78
79
    w = Chem.SDWriter(str(sdf_path))
80
    w.SetKekulize(False)
81
    for m in molecules:
82
        if m is not None:
83
            w.write(m)
84
85
    # print(f'Wrote SDF file to {sdf_path}')
86
87
88
def residues_to_atoms(x_ca, atom_encoder):
89
    x = x_ca
90
    one_hot = F.one_hot(
91
        torch.tensor(atom_encoder['C'], device=x_ca.device),
92
        num_classes=len(atom_encoder)
93
    ).repeat(*x_ca.shape[:-1], 1)
94
    return x, one_hot
95
96
97
def get_residue_with_resi(pdb_chain, resi):
98
    res = [x for x in pdb_chain.get_residues() if x.id[1] == resi]
99
    assert len(res) == 1
100
    return res[0]
101
102
103
def get_pocket_from_ligand(pdb_model, ligand, dist_cutoff=8.0):
104
105
    if ligand.endswith(".sdf"):
106
        # ligand as sdf file
107
        rdmol = Chem.SDMolSupplier(str(ligand))[0]
108
        ligand_coords = torch.from_numpy(rdmol.GetConformer().GetPositions()).float()
109
        resi = None
110
    else:
111
        # ligand contained in PDB; given in <chain>:<resi> format
112
        chain, resi = ligand.split(':')
113
        ligand = get_residue_with_resi(pdb_model[chain], int(resi))
114
        ligand_coords = torch.from_numpy(
115
            np.array([a.get_coord() for a in ligand.get_atoms()]))
116
117
    pocket_residues = []
118
    for residue in pdb_model.get_residues():
119
        if residue.id[1] == resi:
120
            continue  # skip ligand itself
121
122
        res_coords = torch.from_numpy(
123
            np.array([a.get_coord() for a in residue.get_atoms()]))
124
        if is_aa(residue.get_resname(), standard=True) \
125
                and torch.cdist(res_coords, ligand_coords).min() < dist_cutoff:
126
            pocket_residues.append(residue)
127
128
    return pocket_residues
129
130
131
def batch_to_list(data, batch_mask):
132
    # data_list = []
133
    # for i in torch.unique(batch_mask):
134
    #     data_list.append(data[batch_mask == i])
135
    # return data_list
136
137
    # make sure batch_mask is increasing
138
    idx = torch.argsort(batch_mask)
139
    batch_mask = batch_mask[idx]
140
    data = data[idx]
141
142
    chunk_sizes = torch.unique(batch_mask, return_counts=True)[1].tolist()
143
    return torch.split(data, chunk_sizes)
144
145
146
def num_nodes_to_batch_mask(n_samples, num_nodes, device):
147
    assert isinstance(num_nodes, int) or len(num_nodes) == n_samples
148
149
    if isinstance(num_nodes, torch.Tensor):
150
        num_nodes = num_nodes.to(device)
151
152
    sample_inds = torch.arange(n_samples, device=device)
153
154
    return torch.repeat_interleave(sample_inds, num_nodes)
155
156
157
def rdmol_to_nxgraph(rdmol):
158
    graph = nx.Graph()
159
    for atom in rdmol.GetAtoms():
160
        # Add the atoms as nodes
161
        graph.add_node(atom.GetIdx(), atom_type=atom.GetAtomicNum())
162
163
    # Add the bonds as edges
164
    for bond in rdmol.GetBonds():
165
        graph.add_edge(bond.GetBeginAtomIdx(), bond.GetEndAtomIdx())
166
167
    return graph
168
169
170
def calc_rmsd(mol_a, mol_b):
171
    """ Calculate RMSD of two molecules with unknown atom correspondence. """
172
    graph_a = rdmol_to_nxgraph(mol_a)
173
    graph_b = rdmol_to_nxgraph(mol_b)
174
175
    gm = isomorphism.GraphMatcher(
176
        graph_a, graph_b,
177
        node_match=lambda na, nb: na['atom_type'] == nb['atom_type'])
178
179
    isomorphisms = list(gm.isomorphisms_iter())
180
    if len(isomorphisms) < 1:
181
        return None
182
183
    all_rmsds = []
184
    for mapping in isomorphisms:
185
        atom_types_a = [atom.GetAtomicNum() for atom in mol_a.GetAtoms()]
186
        atom_types_b = [mol_b.GetAtomWithIdx(mapping[i]).GetAtomicNum()
187
                        for i in range(mol_b.GetNumAtoms())]
188
        assert atom_types_a == atom_types_b
189
190
        conf_a = mol_a.GetConformer()
191
        coords_a = np.array([conf_a.GetAtomPosition(i)
192
                             for i in range(mol_a.GetNumAtoms())])
193
        conf_b = mol_b.GetConformer()
194
        coords_b = np.array([conf_b.GetAtomPosition(mapping[i])
195
                             for i in range(mol_b.GetNumAtoms())])
196
197
        diff = coords_a - coords_b
198
        rmsd = np.sqrt(np.mean(np.sum(diff * diff, axis=1)))
199
        all_rmsds.append(rmsd)
200
201
    if len(isomorphisms) > 1:
202
        print("More than one isomorphism found. Returning minimum RMSD.")
203
204
    return min(all_rmsds)
205
206
207
class AppendVirtualNodes:
208
    def __init__(self, max_ligand_size, atom_encoder, symbol):
209
        self.max_ligand_size = max_ligand_size
210
        self.atom_encoder = atom_encoder
211
        self.vidx = atom_encoder[symbol]
212
213
    def __call__(self, data):
214
215
        n_virt = self.max_ligand_size - data['num_lig_atoms']
216
        mu = data['lig_coords'].mean(0, keepdim=True)
217
        sigma = data['lig_coords'].std(0).max()
218
        virt_coords = torch.randn(n_virt, 3) * sigma + mu
219
220
        # insert virtual atom column
221
        one_hot = torch.cat((data['lig_one_hot'][:, :self.vidx],
222
                            torch.zeros(data['num_lig_atoms'])[:, None],
223
                            data['lig_one_hot'][:, self.vidx:]), dim=1)
224
        virt_one_hot = torch.zeros(n_virt, len(self.atom_encoder))
225
        virt_one_hot[:, self.vidx] = 1
226
        virt_mask = torch.ones(n_virt) * data['lig_mask'][0]
227
228
        data['lig_coords'] = torch.cat((data['lig_coords'], virt_coords))
229
        data['lig_one_hot'] = torch.cat((one_hot, virt_one_hot))
230
        data['num_lig_atoms'] = self.max_ligand_size
231
        data['lig_mask'] = torch.cat((data['lig_mask'], virt_mask))
232
        data['num_virtual_atoms'] = n_virt
233
234
        return data