--- a +++ b/utils.py @@ -0,0 +1,234 @@ +from typing import Union, Iterable + +import numpy as np +import torch +import torch.nn.functional as F +from rdkit import Chem +import networkx as nx +from networkx.algorithms import isomorphism +from Bio.PDB.Polypeptide import is_aa + + +class Queue(): + def __init__(self, max_len=50): + self.items = [] + self.max_len = max_len + + def __len__(self): + return len(self.items) + + def add(self, item): + self.items.insert(0, item) + if len(self) > self.max_len: + self.items.pop() + + def mean(self): + return np.mean(self.items) + + def std(self): + return np.std(self.items) + + +def reverse_tensor(x): + return x[torch.arange(x.size(0) - 1, -1, -1)] + + +##### + + +def get_grad_norm( + parameters: Union[torch.Tensor, Iterable[torch.Tensor]], + norm_type: float = 2.0) -> torch.Tensor: + """ + Adapted from: https://pytorch.org/docs/stable/_modules/torch/nn/utils/clip_grad.html#clip_grad_norm_ + """ + + if isinstance(parameters, torch.Tensor): + parameters = [parameters] + parameters = [p for p in parameters if p.grad is not None] + + norm_type = float(norm_type) + + if len(parameters) == 0: + return torch.tensor(0.) + + device = parameters[0].grad.device + + total_norm = torch.norm(torch.stack( + [torch.norm(p.grad.detach(), norm_type).to(device) for p in + parameters]), norm_type) + + return total_norm + + +def write_xyz_file(coords, atom_types, filename): + out = f"{len(coords)}\n\n" + assert len(coords) == len(atom_types) + for i in range(len(coords)): + out += f"{atom_types[i]} {coords[i, 0]:.3f} {coords[i, 1]:.3f} {coords[i, 2]:.3f}\n" + with open(filename, 'w') as f: + f.write(out) + + +def write_sdf_file(sdf_path, molecules): + # NOTE Changed to be compatitble with more versions of rdkit + #with Chem.SDWriter(str(sdf_path)) as w: + # for mol in molecules: + # w.write(mol) + + w = Chem.SDWriter(str(sdf_path)) + w.SetKekulize(False) + for m in molecules: + if m is not None: + w.write(m) + + # print(f'Wrote SDF file to {sdf_path}') + + +def residues_to_atoms(x_ca, atom_encoder): + x = x_ca + one_hot = F.one_hot( + torch.tensor(atom_encoder['C'], device=x_ca.device), + num_classes=len(atom_encoder) + ).repeat(*x_ca.shape[:-1], 1) + return x, one_hot + + +def get_residue_with_resi(pdb_chain, resi): + res = [x for x in pdb_chain.get_residues() if x.id[1] == resi] + assert len(res) == 1 + return res[0] + + +def get_pocket_from_ligand(pdb_model, ligand, dist_cutoff=8.0): + + if ligand.endswith(".sdf"): + # ligand as sdf file + rdmol = Chem.SDMolSupplier(str(ligand))[0] + ligand_coords = torch.from_numpy(rdmol.GetConformer().GetPositions()).float() + resi = None + else: + # ligand contained in PDB; given in <chain>:<resi> format + chain, resi = ligand.split(':') + ligand = get_residue_with_resi(pdb_model[chain], int(resi)) + ligand_coords = torch.from_numpy( + np.array([a.get_coord() for a in ligand.get_atoms()])) + + pocket_residues = [] + for residue in pdb_model.get_residues(): + if residue.id[1] == resi: + continue # skip ligand itself + + res_coords = torch.from_numpy( + np.array([a.get_coord() for a in residue.get_atoms()])) + if is_aa(residue.get_resname(), standard=True) \ + and torch.cdist(res_coords, ligand_coords).min() < dist_cutoff: + pocket_residues.append(residue) + + return pocket_residues + + +def batch_to_list(data, batch_mask): + # data_list = [] + # for i in torch.unique(batch_mask): + # data_list.append(data[batch_mask == i]) + # return data_list + + # make sure batch_mask is increasing + idx = torch.argsort(batch_mask) + batch_mask = batch_mask[idx] + data = data[idx] + + chunk_sizes = torch.unique(batch_mask, return_counts=True)[1].tolist() + return torch.split(data, chunk_sizes) + + +def num_nodes_to_batch_mask(n_samples, num_nodes, device): + assert isinstance(num_nodes, int) or len(num_nodes) == n_samples + + if isinstance(num_nodes, torch.Tensor): + num_nodes = num_nodes.to(device) + + sample_inds = torch.arange(n_samples, device=device) + + return torch.repeat_interleave(sample_inds, num_nodes) + + +def rdmol_to_nxgraph(rdmol): + graph = nx.Graph() + for atom in rdmol.GetAtoms(): + # Add the atoms as nodes + graph.add_node(atom.GetIdx(), atom_type=atom.GetAtomicNum()) + + # Add the bonds as edges + for bond in rdmol.GetBonds(): + graph.add_edge(bond.GetBeginAtomIdx(), bond.GetEndAtomIdx()) + + return graph + + +def calc_rmsd(mol_a, mol_b): + """ Calculate RMSD of two molecules with unknown atom correspondence. """ + graph_a = rdmol_to_nxgraph(mol_a) + graph_b = rdmol_to_nxgraph(mol_b) + + gm = isomorphism.GraphMatcher( + graph_a, graph_b, + node_match=lambda na, nb: na['atom_type'] == nb['atom_type']) + + isomorphisms = list(gm.isomorphisms_iter()) + if len(isomorphisms) < 1: + return None + + all_rmsds = [] + for mapping in isomorphisms: + atom_types_a = [atom.GetAtomicNum() for atom in mol_a.GetAtoms()] + atom_types_b = [mol_b.GetAtomWithIdx(mapping[i]).GetAtomicNum() + for i in range(mol_b.GetNumAtoms())] + assert atom_types_a == atom_types_b + + conf_a = mol_a.GetConformer() + coords_a = np.array([conf_a.GetAtomPosition(i) + for i in range(mol_a.GetNumAtoms())]) + conf_b = mol_b.GetConformer() + coords_b = np.array([conf_b.GetAtomPosition(mapping[i]) + for i in range(mol_b.GetNumAtoms())]) + + diff = coords_a - coords_b + rmsd = np.sqrt(np.mean(np.sum(diff * diff, axis=1))) + all_rmsds.append(rmsd) + + if len(isomorphisms) > 1: + print("More than one isomorphism found. Returning minimum RMSD.") + + return min(all_rmsds) + + +class AppendVirtualNodes: + def __init__(self, max_ligand_size, atom_encoder, symbol): + self.max_ligand_size = max_ligand_size + self.atom_encoder = atom_encoder + self.vidx = atom_encoder[symbol] + + def __call__(self, data): + + n_virt = self.max_ligand_size - data['num_lig_atoms'] + mu = data['lig_coords'].mean(0, keepdim=True) + sigma = data['lig_coords'].std(0).max() + virt_coords = torch.randn(n_virt, 3) * sigma + mu + + # insert virtual atom column + one_hot = torch.cat((data['lig_one_hot'][:, :self.vidx], + torch.zeros(data['num_lig_atoms'])[:, None], + data['lig_one_hot'][:, self.vidx:]), dim=1) + virt_one_hot = torch.zeros(n_virt, len(self.atom_encoder)) + virt_one_hot[:, self.vidx] = 1 + virt_mask = torch.ones(n_virt) * data['lig_mask'][0] + + data['lig_coords'] = torch.cat((data['lig_coords'], virt_coords)) + data['lig_one_hot'] = torch.cat((one_hot, virt_one_hot)) + data['num_lig_atoms'] = self.max_ligand_size + data['lig_mask'] = torch.cat((data['lig_mask'], virt_mask)) + data['num_virtual_atoms'] = n_virt + + return data