Diff of /optimize.py [000000] .. [607087]

Switch to side-by-side view

--- a
+++ b/optimize.py
@@ -0,0 +1,249 @@
+import argparse
+from pathlib import Path
+
+import numpy as np
+import torch
+import torch.nn.functional as F
+from Bio.PDB import PDBParser
+from rdkit import Chem
+import pandas as pd
+import random
+from torch_scatter import scatter_mean
+from openbabel import openbabel
+openbabel.obErrorLog.StopLogging()  # suppress OpenBabel messages
+
+import utils
+from lightning_modules import LigandPocketDDPM
+from constants import FLOAT_TYPE, INT_TYPE
+from analysis.molecule_builder import build_molecule, process_molecule
+from analysis.metrics import MoleculeProperties
+
+
+def prepare_from_sdf_files(sdf_files, atom_encoder):
+
+    ligand_coords = []
+    atom_one_hot = []
+    for file in sdf_files:
+        rdmol = Chem.SDMolSupplier(str(file), sanitize=False)[0]
+        ligand_coords.append(
+            torch.from_numpy(rdmol.GetConformer().GetPositions()).float()
+        )
+        types = torch.tensor([atom_encoder[a.GetSymbol()] for a in rdmol.GetAtoms()])
+        atom_one_hot.append(
+            F.one_hot(types, num_classes=len(atom_encoder))
+        )
+
+    return torch.cat(ligand_coords, dim=0), torch.cat(atom_one_hot, dim=0)
+
+
+def prepare_ligands_from_mols(mols, atom_encoder, device='cpu'):
+
+    ligand_coords = []
+    atom_one_hots = []
+    masks = []
+    sizes = []
+    for i, mol in enumerate(mols):
+        coord = torch.tensor(mol.GetConformer().GetPositions(), dtype=FLOAT_TYPE)
+        types = torch.tensor([atom_encoder[a.GetSymbol()] for a in mol.GetAtoms()], dtype=INT_TYPE)
+        one_hot = F.one_hot(types, num_classes=len(atom_encoder))
+        mask = torch.ones(len(types), dtype=INT_TYPE) * i
+        ligand_coords.append(coord)
+        atom_one_hots.append(one_hot)
+        masks.append(mask)
+        sizes.append(len(types))
+
+    ligand = {
+        'x': torch.cat(ligand_coords, dim=0).to(device),
+        'one_hot': torch.cat(atom_one_hots, dim=0).to(device),
+        'size': torch.tensor(sizes, dtype=INT_TYPE).to(device),
+        'mask': torch.cat(masks, dim=0).to(device),
+    }
+
+    return ligand
+
+
+def prepare_ligand_from_pdb(biopython_atoms, atom_encoder):
+
+    coord = torch.tensor(np.array([a.get_coord()
+                                   for a in biopython_atoms]), dtype=FLOAT_TYPE)
+    types = torch.tensor([atom_encoder[a.element.capitalize()]
+                          for a in biopython_atoms])
+    one_hot = F.one_hot(types, num_classes=len(atom_encoder))
+
+    return coord, one_hot
+
+
+def prepare_substructure(ref_ligand, fix_atoms, pdb_model):
+
+    if fix_atoms[0].endswith(".sdf"):
+        # ligand as sdf file
+        coord, one_hot = prepare_from_sdf_files(fix_atoms, model.lig_type_encoder)
+
+    else:
+        # ligand contained in PDB; given in <chain>:<resi> format
+        chain, resi = ref_ligand.split(':')
+        ligand = utils.get_residue_with_resi(pdb_model[chain], int(resi))
+        fixed_atoms = [a for a in ligand.get_atoms() if a.get_name() in set(fix_atoms)]
+        coord, one_hot = prepare_ligand_from_pdb(fixed_atoms, model.lig_type_encoder)
+
+    return coord, one_hot
+
+
+def diversify_ligands(model, pocket, mols, timesteps,
+                    sanitize=False,
+                    largest_frag=False,
+                    relax_iter=0):
+    """
+    Diversify ligands for a specified pocket.
+    
+    Parameters:
+        model: The model instance used for diversification.
+        pocket: The pocket information including coordinates and types.
+        mols: List of RDKit molecule objects to be diversified.
+        timesteps: Number of denoising steps to apply during diversification.
+        sanitize: If True, performs molecule sanitization post-generation (default: False).
+        largest_frag: If True, only the largest fragment of the generated molecule is returned (default: False).
+        relax_iter: Number of iterations for force field relaxation of the generated molecules (default: 0).
+    
+    Returns:
+        A list of diversified RDKit molecule objects.
+    """
+
+    ligand = prepare_ligands_from_mols(mols, model.lig_type_encoder, device=model.device)
+
+    pocket_mask = pocket['mask']
+    lig_mask = ligand['mask']
+
+    # Pocket's center of mass
+    pocket_com_before = scatter_mean(pocket['x'], pocket['mask'], dim=0)
+
+    out_lig, out_pocket, _, _ = model.ddpm.diversify(ligand, pocket, noising_steps=timesteps)
+
+    # Move generated molecule back to the original pocket position
+    pocket_com_after = scatter_mean(out_pocket[:, :model.x_dims], pocket_mask, dim=0)
+
+    out_pocket[:, :model.x_dims] += \
+        (pocket_com_before - pocket_com_after)[pocket_mask]
+    out_lig[:, :model.x_dims] += \
+        (pocket_com_before - pocket_com_after)[lig_mask]
+
+    # Build mol objects
+    x = out_lig[:, :model.x_dims].detach().cpu()
+    atom_type = out_lig[:, model.x_dims:].argmax(1).detach().cpu()
+
+    molecules = []
+    for mol_pc in zip(utils.batch_to_list(x, lig_mask),
+                      utils.batch_to_list(atom_type, lig_mask)):
+
+        mol = build_molecule(*mol_pc, model.dataset_info, add_coords=True)
+        mol = process_molecule(mol,
+                               add_hydrogens=False,
+                               sanitize=sanitize,
+                               relax_iter=relax_iter,
+                               largest_frag=largest_frag)
+        if mol is not None:
+            molecules.append(mol)
+
+    return molecules
+
+
+if __name__ == "__main__":
+
+    parser = argparse.ArgumentParser()
+    parser.add_argument('--checkpoint', type=Path, default='checkpoints/crossdocked_fullatom_cond.ckpt')
+    parser.add_argument('--pdbfile', type=str, default='example/5ndu.pdb')
+    parser.add_argument('--ref_ligand', type=str, default='example/5ndu_linked_mols.sdf')
+    parser.add_argument('--objective', type=str, default='sa', choices={'qed', 'sa'})
+    parser.add_argument('--timesteps', type=int, default=100)
+    parser.add_argument('--population_size', type=int, default=100)
+    parser.add_argument('--evolution_steps', type=int, default=10)
+    parser.add_argument('--top_k', type=int, default=7)
+    parser.add_argument('--outfile', type=Path, default='output.sdf')
+    parser.add_argument('--relax', action='store_true')
+
+
+    args = parser.parse_args()
+
+    pdb_id = Path(args.pdbfile).stem
+
+    device = 'cuda' if torch.cuda.is_available() else 'cpu'
+    population_size = args.population_size
+    evolution_steps = args.evolution_steps
+    top_k = args.top_k
+
+    # Load model
+    model = LigandPocketDDPM.load_from_checkpoint(
+        args.checkpoint, map_location=device)
+    model = model.to(device)
+
+    # Prepare ligand + pocket
+    # Load PDB
+    pdb_model = PDBParser(QUIET=True).get_structure('', args.pdbfile)[0]
+    # Define pocket based on reference ligand
+    residues = utils.get_pocket_from_ligand(pdb_model, args.ref_ligand)
+    pocket = model.prepare_pocket(residues, repeats=population_size)
+
+
+    if args.objective == 'qed':
+        objective_function = MoleculeProperties().calculate_qed
+    elif args.objective == 'sa':
+        objective_function = MoleculeProperties().calculate_sa
+    else:
+        ### IMPLEMENT YOUR OWN OBJECTIVE
+        ### FUNCTIONS HERE 
+        raise ValueError(f"Objective function {args.objective} not recognized.")
+
+    ref_mol = Chem.SDMolSupplier(args.ref_ligand)[0]
+
+    # Store molecules in history dataframe 
+    buffer = pd.DataFrame(columns=['generation', 'score', 'fate' 'mol', 'smiles'])
+
+    # Population initialization
+    buffer = buffer.append({'generation': 0,
+                            'score': objective_function(ref_mol),
+                            'fate': 'initial', 'mol': ref_mol,
+                            'smiles': Chem.MolToSmiles(ref_mol)}, ignore_index=True)
+
+    for generation_idx in range(evolution_steps):
+
+        if generation_idx == 0:
+            molecules = buffer['mol'].tolist() * population_size
+        else:
+            # Select top k molecules from previous generation
+            previous_gen = buffer[buffer['generation'] == generation_idx]
+            top_k_molecules = previous_gen.nlargest(top_k, 'score')['mol'].tolist()
+            molecules = top_k_molecules * (population_size // top_k)
+
+            # Update the fate of selected top k molecules in the buffer
+            buffer.loc[buffer['generation'] == generation_idx, 'fate'] = 'survived'
+
+            # Ensure the right number of molecules
+            if len(molecules) < population_size:
+                molecules += [random.choice(molecules) for _ in range(population_size - len(molecules))]
+
+
+        # Diversify molecules
+        assert len(molecules) == population_size, f"Wrong number of molecules: {len(molecules)} when it should be {population_size}"
+        print(f"Generation {generation_idx}, mean score: {np.mean([objective_function(mol) for mol in molecules])}")
+        molecules = diversify_ligands(model,
+                                    pocket,
+                                    molecules,
+                                timesteps=args.timesteps,
+                                sanitize=True,
+                                relax_iter=(200 if args.relax else 0))
+        
+        
+        # Evaluate and save molecules
+        for mol in molecules:
+            buffer = buffer.append({'generation': generation_idx + 1,
+            'score': objective_function(mol),
+            'fate': 'purged',
+            'mol': mol,
+            'smiles': Chem.MolToSmiles(mol)}, ignore_index=True)
+
+
+    # Make SDF files
+    utils.write_sdf_file(args.outfile, molecules)
+    # Save buffer
+    buffer.drop(columns=['mol'])
+    buffer.to_csv(args.outfile.with_suffix('.csv'))