|
a |
|
b/optimize.py |
|
|
1 |
import argparse |
|
|
2 |
from pathlib import Path |
|
|
3 |
|
|
|
4 |
import numpy as np |
|
|
5 |
import torch |
|
|
6 |
import torch.nn.functional as F |
|
|
7 |
from Bio.PDB import PDBParser |
|
|
8 |
from rdkit import Chem |
|
|
9 |
import pandas as pd |
|
|
10 |
import random |
|
|
11 |
from torch_scatter import scatter_mean |
|
|
12 |
from openbabel import openbabel |
|
|
13 |
openbabel.obErrorLog.StopLogging() # suppress OpenBabel messages |
|
|
14 |
|
|
|
15 |
import utils |
|
|
16 |
from lightning_modules import LigandPocketDDPM |
|
|
17 |
from constants import FLOAT_TYPE, INT_TYPE |
|
|
18 |
from analysis.molecule_builder import build_molecule, process_molecule |
|
|
19 |
from analysis.metrics import MoleculeProperties |
|
|
20 |
|
|
|
21 |
|
|
|
22 |
def prepare_from_sdf_files(sdf_files, atom_encoder): |
|
|
23 |
|
|
|
24 |
ligand_coords = [] |
|
|
25 |
atom_one_hot = [] |
|
|
26 |
for file in sdf_files: |
|
|
27 |
rdmol = Chem.SDMolSupplier(str(file), sanitize=False)[0] |
|
|
28 |
ligand_coords.append( |
|
|
29 |
torch.from_numpy(rdmol.GetConformer().GetPositions()).float() |
|
|
30 |
) |
|
|
31 |
types = torch.tensor([atom_encoder[a.GetSymbol()] for a in rdmol.GetAtoms()]) |
|
|
32 |
atom_one_hot.append( |
|
|
33 |
F.one_hot(types, num_classes=len(atom_encoder)) |
|
|
34 |
) |
|
|
35 |
|
|
|
36 |
return torch.cat(ligand_coords, dim=0), torch.cat(atom_one_hot, dim=0) |
|
|
37 |
|
|
|
38 |
|
|
|
39 |
def prepare_ligands_from_mols(mols, atom_encoder, device='cpu'): |
|
|
40 |
|
|
|
41 |
ligand_coords = [] |
|
|
42 |
atom_one_hots = [] |
|
|
43 |
masks = [] |
|
|
44 |
sizes = [] |
|
|
45 |
for i, mol in enumerate(mols): |
|
|
46 |
coord = torch.tensor(mol.GetConformer().GetPositions(), dtype=FLOAT_TYPE) |
|
|
47 |
types = torch.tensor([atom_encoder[a.GetSymbol()] for a in mol.GetAtoms()], dtype=INT_TYPE) |
|
|
48 |
one_hot = F.one_hot(types, num_classes=len(atom_encoder)) |
|
|
49 |
mask = torch.ones(len(types), dtype=INT_TYPE) * i |
|
|
50 |
ligand_coords.append(coord) |
|
|
51 |
atom_one_hots.append(one_hot) |
|
|
52 |
masks.append(mask) |
|
|
53 |
sizes.append(len(types)) |
|
|
54 |
|
|
|
55 |
ligand = { |
|
|
56 |
'x': torch.cat(ligand_coords, dim=0).to(device), |
|
|
57 |
'one_hot': torch.cat(atom_one_hots, dim=0).to(device), |
|
|
58 |
'size': torch.tensor(sizes, dtype=INT_TYPE).to(device), |
|
|
59 |
'mask': torch.cat(masks, dim=0).to(device), |
|
|
60 |
} |
|
|
61 |
|
|
|
62 |
return ligand |
|
|
63 |
|
|
|
64 |
|
|
|
65 |
def prepare_ligand_from_pdb(biopython_atoms, atom_encoder): |
|
|
66 |
|
|
|
67 |
coord = torch.tensor(np.array([a.get_coord() |
|
|
68 |
for a in biopython_atoms]), dtype=FLOAT_TYPE) |
|
|
69 |
types = torch.tensor([atom_encoder[a.element.capitalize()] |
|
|
70 |
for a in biopython_atoms]) |
|
|
71 |
one_hot = F.one_hot(types, num_classes=len(atom_encoder)) |
|
|
72 |
|
|
|
73 |
return coord, one_hot |
|
|
74 |
|
|
|
75 |
|
|
|
76 |
def prepare_substructure(ref_ligand, fix_atoms, pdb_model): |
|
|
77 |
|
|
|
78 |
if fix_atoms[0].endswith(".sdf"): |
|
|
79 |
# ligand as sdf file |
|
|
80 |
coord, one_hot = prepare_from_sdf_files(fix_atoms, model.lig_type_encoder) |
|
|
81 |
|
|
|
82 |
else: |
|
|
83 |
# ligand contained in PDB; given in <chain>:<resi> format |
|
|
84 |
chain, resi = ref_ligand.split(':') |
|
|
85 |
ligand = utils.get_residue_with_resi(pdb_model[chain], int(resi)) |
|
|
86 |
fixed_atoms = [a for a in ligand.get_atoms() if a.get_name() in set(fix_atoms)] |
|
|
87 |
coord, one_hot = prepare_ligand_from_pdb(fixed_atoms, model.lig_type_encoder) |
|
|
88 |
|
|
|
89 |
return coord, one_hot |
|
|
90 |
|
|
|
91 |
|
|
|
92 |
def diversify_ligands(model, pocket, mols, timesteps, |
|
|
93 |
sanitize=False, |
|
|
94 |
largest_frag=False, |
|
|
95 |
relax_iter=0): |
|
|
96 |
""" |
|
|
97 |
Diversify ligands for a specified pocket. |
|
|
98 |
|
|
|
99 |
Parameters: |
|
|
100 |
model: The model instance used for diversification. |
|
|
101 |
pocket: The pocket information including coordinates and types. |
|
|
102 |
mols: List of RDKit molecule objects to be diversified. |
|
|
103 |
timesteps: Number of denoising steps to apply during diversification. |
|
|
104 |
sanitize: If True, performs molecule sanitization post-generation (default: False). |
|
|
105 |
largest_frag: If True, only the largest fragment of the generated molecule is returned (default: False). |
|
|
106 |
relax_iter: Number of iterations for force field relaxation of the generated molecules (default: 0). |
|
|
107 |
|
|
|
108 |
Returns: |
|
|
109 |
A list of diversified RDKit molecule objects. |
|
|
110 |
""" |
|
|
111 |
|
|
|
112 |
ligand = prepare_ligands_from_mols(mols, model.lig_type_encoder, device=model.device) |
|
|
113 |
|
|
|
114 |
pocket_mask = pocket['mask'] |
|
|
115 |
lig_mask = ligand['mask'] |
|
|
116 |
|
|
|
117 |
# Pocket's center of mass |
|
|
118 |
pocket_com_before = scatter_mean(pocket['x'], pocket['mask'], dim=0) |
|
|
119 |
|
|
|
120 |
out_lig, out_pocket, _, _ = model.ddpm.diversify(ligand, pocket, noising_steps=timesteps) |
|
|
121 |
|
|
|
122 |
# Move generated molecule back to the original pocket position |
|
|
123 |
pocket_com_after = scatter_mean(out_pocket[:, :model.x_dims], pocket_mask, dim=0) |
|
|
124 |
|
|
|
125 |
out_pocket[:, :model.x_dims] += \ |
|
|
126 |
(pocket_com_before - pocket_com_after)[pocket_mask] |
|
|
127 |
out_lig[:, :model.x_dims] += \ |
|
|
128 |
(pocket_com_before - pocket_com_after)[lig_mask] |
|
|
129 |
|
|
|
130 |
# Build mol objects |
|
|
131 |
x = out_lig[:, :model.x_dims].detach().cpu() |
|
|
132 |
atom_type = out_lig[:, model.x_dims:].argmax(1).detach().cpu() |
|
|
133 |
|
|
|
134 |
molecules = [] |
|
|
135 |
for mol_pc in zip(utils.batch_to_list(x, lig_mask), |
|
|
136 |
utils.batch_to_list(atom_type, lig_mask)): |
|
|
137 |
|
|
|
138 |
mol = build_molecule(*mol_pc, model.dataset_info, add_coords=True) |
|
|
139 |
mol = process_molecule(mol, |
|
|
140 |
add_hydrogens=False, |
|
|
141 |
sanitize=sanitize, |
|
|
142 |
relax_iter=relax_iter, |
|
|
143 |
largest_frag=largest_frag) |
|
|
144 |
if mol is not None: |
|
|
145 |
molecules.append(mol) |
|
|
146 |
|
|
|
147 |
return molecules |
|
|
148 |
|
|
|
149 |
|
|
|
150 |
if __name__ == "__main__": |
|
|
151 |
|
|
|
152 |
parser = argparse.ArgumentParser() |
|
|
153 |
parser.add_argument('--checkpoint', type=Path, default='checkpoints/crossdocked_fullatom_cond.ckpt') |
|
|
154 |
parser.add_argument('--pdbfile', type=str, default='example/5ndu.pdb') |
|
|
155 |
parser.add_argument('--ref_ligand', type=str, default='example/5ndu_linked_mols.sdf') |
|
|
156 |
parser.add_argument('--objective', type=str, default='sa', choices={'qed', 'sa'}) |
|
|
157 |
parser.add_argument('--timesteps', type=int, default=100) |
|
|
158 |
parser.add_argument('--population_size', type=int, default=100) |
|
|
159 |
parser.add_argument('--evolution_steps', type=int, default=10) |
|
|
160 |
parser.add_argument('--top_k', type=int, default=7) |
|
|
161 |
parser.add_argument('--outfile', type=Path, default='output.sdf') |
|
|
162 |
parser.add_argument('--relax', action='store_true') |
|
|
163 |
|
|
|
164 |
|
|
|
165 |
args = parser.parse_args() |
|
|
166 |
|
|
|
167 |
pdb_id = Path(args.pdbfile).stem |
|
|
168 |
|
|
|
169 |
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
|
170 |
population_size = args.population_size |
|
|
171 |
evolution_steps = args.evolution_steps |
|
|
172 |
top_k = args.top_k |
|
|
173 |
|
|
|
174 |
# Load model |
|
|
175 |
model = LigandPocketDDPM.load_from_checkpoint( |
|
|
176 |
args.checkpoint, map_location=device) |
|
|
177 |
model = model.to(device) |
|
|
178 |
|
|
|
179 |
# Prepare ligand + pocket |
|
|
180 |
# Load PDB |
|
|
181 |
pdb_model = PDBParser(QUIET=True).get_structure('', args.pdbfile)[0] |
|
|
182 |
# Define pocket based on reference ligand |
|
|
183 |
residues = utils.get_pocket_from_ligand(pdb_model, args.ref_ligand) |
|
|
184 |
pocket = model.prepare_pocket(residues, repeats=population_size) |
|
|
185 |
|
|
|
186 |
|
|
|
187 |
if args.objective == 'qed': |
|
|
188 |
objective_function = MoleculeProperties().calculate_qed |
|
|
189 |
elif args.objective == 'sa': |
|
|
190 |
objective_function = MoleculeProperties().calculate_sa |
|
|
191 |
else: |
|
|
192 |
### IMPLEMENT YOUR OWN OBJECTIVE |
|
|
193 |
### FUNCTIONS HERE |
|
|
194 |
raise ValueError(f"Objective function {args.objective} not recognized.") |
|
|
195 |
|
|
|
196 |
ref_mol = Chem.SDMolSupplier(args.ref_ligand)[0] |
|
|
197 |
|
|
|
198 |
# Store molecules in history dataframe |
|
|
199 |
buffer = pd.DataFrame(columns=['generation', 'score', 'fate' 'mol', 'smiles']) |
|
|
200 |
|
|
|
201 |
# Population initialization |
|
|
202 |
buffer = buffer.append({'generation': 0, |
|
|
203 |
'score': objective_function(ref_mol), |
|
|
204 |
'fate': 'initial', 'mol': ref_mol, |
|
|
205 |
'smiles': Chem.MolToSmiles(ref_mol)}, ignore_index=True) |
|
|
206 |
|
|
|
207 |
for generation_idx in range(evolution_steps): |
|
|
208 |
|
|
|
209 |
if generation_idx == 0: |
|
|
210 |
molecules = buffer['mol'].tolist() * population_size |
|
|
211 |
else: |
|
|
212 |
# Select top k molecules from previous generation |
|
|
213 |
previous_gen = buffer[buffer['generation'] == generation_idx] |
|
|
214 |
top_k_molecules = previous_gen.nlargest(top_k, 'score')['mol'].tolist() |
|
|
215 |
molecules = top_k_molecules * (population_size // top_k) |
|
|
216 |
|
|
|
217 |
# Update the fate of selected top k molecules in the buffer |
|
|
218 |
buffer.loc[buffer['generation'] == generation_idx, 'fate'] = 'survived' |
|
|
219 |
|
|
|
220 |
# Ensure the right number of molecules |
|
|
221 |
if len(molecules) < population_size: |
|
|
222 |
molecules += [random.choice(molecules) for _ in range(population_size - len(molecules))] |
|
|
223 |
|
|
|
224 |
|
|
|
225 |
# Diversify molecules |
|
|
226 |
assert len(molecules) == population_size, f"Wrong number of molecules: {len(molecules)} when it should be {population_size}" |
|
|
227 |
print(f"Generation {generation_idx}, mean score: {np.mean([objective_function(mol) for mol in molecules])}") |
|
|
228 |
molecules = diversify_ligands(model, |
|
|
229 |
pocket, |
|
|
230 |
molecules, |
|
|
231 |
timesteps=args.timesteps, |
|
|
232 |
sanitize=True, |
|
|
233 |
relax_iter=(200 if args.relax else 0)) |
|
|
234 |
|
|
|
235 |
|
|
|
236 |
# Evaluate and save molecules |
|
|
237 |
for mol in molecules: |
|
|
238 |
buffer = buffer.append({'generation': generation_idx + 1, |
|
|
239 |
'score': objective_function(mol), |
|
|
240 |
'fate': 'purged', |
|
|
241 |
'mol': mol, |
|
|
242 |
'smiles': Chem.MolToSmiles(mol)}, ignore_index=True) |
|
|
243 |
|
|
|
244 |
|
|
|
245 |
# Make SDF files |
|
|
246 |
utils.write_sdf_file(args.outfile, molecules) |
|
|
247 |
# Save buffer |
|
|
248 |
buffer.drop(columns=['mol']) |
|
|
249 |
buffer.to_csv(args.outfile.with_suffix('.csv')) |