import math
from argparse import Namespace
from typing import Optional
from time import time
from pathlib import Path
import numpy as np
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
import pytorch_lightning as pl
import wandb
from torch_scatter import scatter_add, scatter_mean
from Bio.PDB import PDBParser
from Bio.PDB.Polypeptide import three_to_one
from constants import dataset_params, FLOAT_TYPE, INT_TYPE
from equivariant_diffusion.dynamics import EGNNDynamics
from equivariant_diffusion.en_diffusion import EnVariationalDiffusion
from equivariant_diffusion.conditional_model import ConditionalDDPM, \
SimpleConditionalDDPM
from dataset import ProcessedLigandPocketDataset
import utils
from analysis.visualization import save_xyz_file, visualize, visualize_chain
from analysis.metrics import BasicMolecularMetrics, CategoricalDistribution, \
MoleculeProperties
from analysis.molecule_builder import build_molecule, process_molecule
from analysis.docking import smina_score
class LigandPocketDDPM(pl.LightningModule):
def __init__(
self,
outdir,
dataset,
datadir,
batch_size,
lr,
egnn_params: Namespace,
diffusion_params,
num_workers,
augment_noise,
augment_rotation,
clip_grad,
eval_epochs,
eval_params,
visualize_sample_epoch,
visualize_chain_epoch,
auxiliary_loss,
loss_params,
mode,
node_histogram,
pocket_representation='CA',
virtual_nodes=False
):
super(LigandPocketDDPM, self).__init__()
self.save_hyperparameters()
ddpm_models = {'joint': EnVariationalDiffusion,
'pocket_conditioning': ConditionalDDPM,
'pocket_conditioning_simple': SimpleConditionalDDPM}
assert mode in ddpm_models
self.mode = mode
assert pocket_representation in {'CA', 'full-atom'}
self.pocket_representation = pocket_representation
self.dataset_name = dataset
self.datadir = datadir
self.outdir = outdir
self.batch_size = batch_size
self.eval_batch_size = eval_params.eval_batch_size \
if 'eval_batch_size' in eval_params else batch_size
self.lr = lr
self.loss_type = diffusion_params.diffusion_loss_type
self.eval_epochs = eval_epochs
self.visualize_sample_epoch = visualize_sample_epoch
self.visualize_chain_epoch = visualize_chain_epoch
self.eval_params = eval_params
self.num_workers = num_workers
self.augment_noise = augment_noise
self.augment_rotation = augment_rotation
self.dataset_info = dataset_params[dataset]
self.T = diffusion_params.diffusion_steps
self.clip_grad = clip_grad
if clip_grad:
self.gradnorm_queue = utils.Queue()
# Add large value that will be flushed.
self.gradnorm_queue.add(3000)
self.lig_type_encoder = self.dataset_info['atom_encoder']
self.lig_type_decoder = self.dataset_info['atom_decoder']
self.pocket_type_encoder = self.dataset_info['aa_encoder'] \
if self.pocket_representation == 'CA' \
else self.dataset_info['atom_encoder']
self.pocket_type_decoder = self.dataset_info['aa_decoder'] \
if self.pocket_representation == 'CA' \
else self.dataset_info['atom_decoder']
smiles_list = None if eval_params.smiles_file is None \
else np.load(eval_params.smiles_file)
self.ligand_metrics = BasicMolecularMetrics(self.dataset_info,
smiles_list)
self.molecule_properties = MoleculeProperties()
self.ligand_type_distribution = CategoricalDistribution(
self.dataset_info['atom_hist'], self.lig_type_encoder)
if self.pocket_representation == 'CA':
self.pocket_type_distribution = CategoricalDistribution(
self.dataset_info['aa_hist'], self.pocket_type_encoder)
else:
self.pocket_type_distribution = None
self.train_dataset = None
self.val_dataset = None
self.test_dataset = None
self.virtual_nodes = virtual_nodes
self.data_transform = None
self.max_num_nodes = len(node_histogram) - 1
if virtual_nodes:
# symbol = 'virtual'
symbol = 'Ne' # visualize as Neon atoms
self.lig_type_encoder[symbol] = len(self.lig_type_encoder)
self.virtual_atom = self.lig_type_encoder[symbol]
self.lig_type_decoder.append(symbol)
self.data_transform = utils.AppendVirtualNodes(
self.max_num_nodes, self.lig_type_encoder, symbol)
# Update dataset_info dictionary. This is necessary for using the
# visualization functions.
self.dataset_info['atom_encoder'] = self.lig_type_encoder
self.dataset_info['atom_decoder'] = self.lig_type_decoder
self.atom_nf = len(self.lig_type_decoder)
self.aa_nf = len(self.pocket_type_decoder)
self.x_dims = 3
net_dynamics = EGNNDynamics(
atom_nf=self.atom_nf,
residue_nf=self.aa_nf,
n_dims=self.x_dims,
joint_nf=egnn_params.joint_nf,
device=egnn_params.device if torch.cuda.is_available() else 'cpu',
hidden_nf=egnn_params.hidden_nf,
act_fn=torch.nn.SiLU(),
n_layers=egnn_params.n_layers,
attention=egnn_params.attention,
tanh=egnn_params.tanh,
norm_constant=egnn_params.norm_constant,
inv_sublayers=egnn_params.inv_sublayers,
sin_embedding=egnn_params.sin_embedding,
normalization_factor=egnn_params.normalization_factor,
aggregation_method=egnn_params.aggregation_method,
edge_cutoff_ligand=egnn_params.__dict__.get('edge_cutoff_ligand'),
edge_cutoff_pocket=egnn_params.__dict__.get('edge_cutoff_pocket'),
edge_cutoff_interaction=egnn_params.__dict__.get('edge_cutoff_interaction'),
update_pocket_coords=(self.mode == 'joint'),
reflection_equivariant=egnn_params.reflection_equivariant,
edge_embedding_dim=egnn_params.__dict__.get('edge_embedding_dim'),
)
self.ddpm = ddpm_models[self.mode](
dynamics=net_dynamics,
atom_nf=self.atom_nf,
residue_nf=self.aa_nf,
n_dims=self.x_dims,
timesteps=diffusion_params.diffusion_steps,
noise_schedule=diffusion_params.diffusion_noise_schedule,
noise_precision=diffusion_params.diffusion_noise_precision,
loss_type=diffusion_params.diffusion_loss_type,
norm_values=diffusion_params.normalize_factors,
size_histogram=node_histogram,
virtual_node_idx=self.lig_type_encoder[symbol] if virtual_nodes else None
)
self.auxiliary_loss = auxiliary_loss
self.lj_rm = self.dataset_info['lennard_jones_rm']
if self.auxiliary_loss:
self.clamp_lj = loss_params.clamp_lj
self.auxiliary_weight_schedule = WeightSchedule(
T=diffusion_params.diffusion_steps,
max_weight=loss_params.max_weight, mode=loss_params.schedule)
def configure_optimizers(self):
return torch.optim.AdamW(self.ddpm.parameters(), lr=self.lr,
amsgrad=True, weight_decay=1e-12)
def setup(self, stage: Optional[str] = None):
if stage == 'fit':
self.train_dataset = ProcessedLigandPocketDataset(
Path(self.datadir, 'train.npz'), transform=self.data_transform)
self.val_dataset = ProcessedLigandPocketDataset(
Path(self.datadir, 'val.npz'), transform=self.data_transform)
elif stage == 'test':
self.test_dataset = ProcessedLigandPocketDataset(
Path(self.datadir, 'test.npz'), transform=self.data_transform)
else:
raise NotImplementedError
def train_dataloader(self):
return DataLoader(self.train_dataset, self.batch_size, shuffle=True,
num_workers=self.num_workers,
collate_fn=self.train_dataset.collate_fn,
pin_memory=True)
def val_dataloader(self):
return DataLoader(self.val_dataset, self.batch_size, shuffle=False,
num_workers=self.num_workers,
collate_fn=self.val_dataset.collate_fn,
pin_memory=True)
def test_dataloader(self):
return DataLoader(self.test_dataset, self.batch_size, shuffle=False,
num_workers=self.num_workers,
collate_fn=self.test_dataset.collate_fn,
pin_memory=True)
def get_ligand_and_pocket(self, data):
ligand = {
'x': data['lig_coords'].to(self.device, FLOAT_TYPE),
'one_hot': data['lig_one_hot'].to(self.device, FLOAT_TYPE),
'size': data['num_lig_atoms'].to(self.device, INT_TYPE),
'mask': data['lig_mask'].to(self.device, INT_TYPE),
}
if self.virtual_nodes:
ligand['num_virtual_atoms'] = data['num_virtual_atoms'].to(
self.device, INT_TYPE)
pocket = {
'x': data['pocket_coords'].to(self.device, FLOAT_TYPE),
'one_hot': data['pocket_one_hot'].to(self.device, FLOAT_TYPE),
'size': data['num_pocket_nodes'].to(self.device, INT_TYPE),
'mask': data['pocket_mask'].to(self.device, INT_TYPE)
}
return ligand, pocket
def forward(self, data):
ligand, pocket = self.get_ligand_and_pocket(data)
# Note: \mathcal{L} terms in the paper represent log-likelihoods while
# our loss terms are a negative(!) log-likelihoods
delta_log_px, error_t_lig, error_t_pocket, SNR_weight, \
loss_0_x_ligand, loss_0_x_pocket, loss_0_h, neg_log_const_0, \
kl_prior, log_pN, t_int, xh_lig_hat, info = \
self.ddpm(ligand, pocket, return_info=True)
if self.loss_type == 'l2' and self.training:
actual_ligand_size = ligand['size'] - ligand['num_virtual_atoms'] if self.virtual_nodes else ligand['size']
# normalize loss_t
denom_lig = self.x_dims * actual_ligand_size + \
self.ddpm.atom_nf * ligand['size']
error_t_lig = error_t_lig / denom_lig
denom_pocket = (self.x_dims + self.ddpm.residue_nf) * pocket['size']
error_t_pocket = error_t_pocket / denom_pocket
loss_t = 0.5 * (error_t_lig + error_t_pocket)
# normalize loss_0
loss_0_x_ligand = loss_0_x_ligand / (self.x_dims * actual_ligand_size)
loss_0_x_pocket = loss_0_x_pocket / (self.x_dims * pocket['size'])
loss_0 = loss_0_x_ligand + loss_0_x_pocket + loss_0_h
# VLB objective or evaluation step
else:
# Note: SNR_weight should be negative
loss_t = -self.T * 0.5 * SNR_weight * (error_t_lig + error_t_pocket)
loss_0 = loss_0_x_ligand + loss_0_x_pocket + loss_0_h
loss_0 = loss_0 + neg_log_const_0
nll = loss_t + loss_0 + kl_prior
# Correct for normalization on x.
if not (self.loss_type == 'l2' and self.training):
nll = nll - delta_log_px
# always the same number of nodes if virtual nodes are added
if not self.virtual_nodes:
# Transform conditional nll into joint nll
# Note:
# loss = -log p(x,h|N) and log p(x,h,N) = log p(x,h|N) + log p(N)
# Therefore, log p(x,h|N) = -loss + log p(N)
# => loss_new = -log p(x,h,N) = loss - log p(N)
nll = nll - log_pN
# Add auxiliary loss term
if self.auxiliary_loss and self.loss_type == 'l2' and self.training:
x_lig_hat = xh_lig_hat[:, :self.x_dims]
h_lig_hat = xh_lig_hat[:, self.x_dims:]
weighted_lj_potential = \
self.auxiliary_weight_schedule(t_int.long()) * \
self.lj_potential(x_lig_hat, h_lig_hat, ligand['mask'])
nll = nll + weighted_lj_potential
info['weighted_lj'] = weighted_lj_potential.mean(0)
info['error_t_lig'] = error_t_lig.mean(0)
info['error_t_pocket'] = error_t_pocket.mean(0)
info['SNR_weight'] = SNR_weight.mean(0)
info['loss_0'] = loss_0.mean(0)
info['kl_prior'] = kl_prior.mean(0)
info['delta_log_px'] = delta_log_px.mean(0)
info['neg_log_const_0'] = neg_log_const_0.mean(0)
info['log_pN'] = log_pN.mean(0)
return nll, info
def lj_potential(self, atom_x, atom_one_hot, batch_mask):
adj = batch_mask[:, None] == batch_mask[None, :]
adj = adj ^ torch.diag(torch.diag(adj)) # remove self-edges
edges = torch.where(adj)
# Compute pair-wise potentials
r = torch.sum((atom_x[edges[0]] - atom_x[edges[1]])**2, dim=1).sqrt()
# Get optimal radii
lennard_jones_radii = torch.tensor(self.lj_rm, device=r.device)
# unit conversion pm -> A
lennard_jones_radii = lennard_jones_radii / 100.0
# normalization
lennard_jones_radii = lennard_jones_radii / self.ddpm.norm_values[0]
atom_type_idx = atom_one_hot.argmax(1)
rm = lennard_jones_radii[atom_type_idx[edges[0]],
atom_type_idx[edges[1]]]
sigma = 2 ** (-1 / 6) * rm
out = 4 * ((sigma / r) ** 12 - (sigma / r) ** 6)
if self.clamp_lj is not None:
out = torch.clamp(out, min=None, max=self.clamp_lj)
# Compute potential per atom
out = scatter_add(out, edges[0], dim=0, dim_size=len(atom_x))
# Sum potentials of all atoms
return scatter_add(out, batch_mask, dim=0)
def log_metrics(self, metrics_dict, split, batch_size=None, **kwargs):
for m, value in metrics_dict.items():
self.log(f'{m}/{split}', value, batch_size=batch_size, **kwargs)
def training_step(self, data, *args):
if self.augment_noise > 0:
raise NotImplementedError
# Add noise eps ~ N(0, augment_noise) around points.
eps = sample_center_gravity_zero_gaussian(x.size(), x.device)
x = x + eps * args.augment_noise
if self.augment_rotation:
raise NotImplementedError
x = utils.random_rotation(x).detach()
try:
nll, info = self.forward(data)
except RuntimeError as e:
# this is not supported for multi-GPU
if self.trainer.num_devices < 2 and 'out of memory' in str(e):
print('WARNING: ran out of memory, skipping to the next batch')
return None
else:
raise e
loss = nll.mean(0)
info['loss'] = loss
self.log_metrics(info, 'train', batch_size=len(data['num_lig_atoms']))
return info
def _shared_eval(self, data, prefix, *args):
nll, info = self.forward(data)
loss = nll.mean(0)
info['loss'] = loss
self.log_metrics(info, prefix, batch_size=len(data['num_lig_atoms']),
sync_dist=True)
return info
def validation_step(self, data, *args):
self._shared_eval(data, 'val', *args)
def test_step(self, data, *args):
self._shared_eval(data, 'test', *args)
def validation_epoch_end(self, validation_step_outputs):
# Perform validation on single GPU
if not self.trainer.is_global_zero:
return
suffix = '' if self.mode == 'joint' else '_given_pocket'
if (self.current_epoch + 1) % self.eval_epochs == 0:
tic = time()
sampling_results = getattr(self, 'sample_and_analyze' + suffix)(
self.eval_params.n_eval_samples, self.val_dataset,
batch_size=self.eval_batch_size)
self.log_metrics(sampling_results, 'val')
print(f'Evaluation took {time() - tic:.2f} seconds')
if (self.current_epoch + 1) % self.visualize_sample_epoch == 0:
tic = time()
getattr(self, 'sample_and_save' + suffix)(
self.eval_params.n_visualize_samples)
print(f'Sample visualization took {time() - tic:.2f} seconds')
if (self.current_epoch + 1) % self.visualize_chain_epoch == 0:
tic = time()
getattr(self, 'sample_chain_and_save' + suffix)(
self.eval_params.keep_frames)
print(f'Chain visualization took {time() - tic:.2f} seconds')
@torch.no_grad()
def sample_and_analyze(self, n_samples, dataset=None, batch_size=None):
print(f'Analyzing sampled molecules at epoch {self.current_epoch}...')
batch_size = self.batch_size if batch_size is None else batch_size
batch_size = min(batch_size, n_samples)
# each item in molecules is a tuple (position, atom_type_encoded)
molecules = []
atom_types = []
aa_types = []
for i in range(math.ceil(n_samples / batch_size)):
n_samples_batch = min(batch_size, n_samples - len(molecules))
num_nodes_lig, num_nodes_pocket = \
self.ddpm.size_distribution.sample(n_samples_batch)
xh_lig, xh_pocket, lig_mask, _ = self.ddpm.sample(
n_samples_batch, num_nodes_lig, num_nodes_pocket,
device=self.device)
x = xh_lig[:, :self.x_dims].detach().cpu()
atom_type = xh_lig[:, self.x_dims:].argmax(1).detach().cpu()
lig_mask = lig_mask.cpu()
molecules.extend(list(
zip(utils.batch_to_list(x, lig_mask),
utils.batch_to_list(atom_type, lig_mask))
))
atom_types.extend(atom_type.tolist())
aa_types.extend(
xh_pocket[:, self.x_dims:].argmax(1).detach().cpu().tolist())
return self.analyze_sample(molecules, atom_types, aa_types)
def analyze_sample(self, molecules, atom_types, aa_types, receptors=None):
# Distribution of node types
kl_div_atom = self.ligand_type_distribution.kl_divergence(atom_types) \
if self.ligand_type_distribution is not None else -1
kl_div_aa = self.pocket_type_distribution.kl_divergence(aa_types) \
if self.pocket_type_distribution is not None else -1
# Convert into rdmols
rdmols = [build_molecule(*graph, self.dataset_info) for graph in molecules]
# Other basic metrics
(validity, connectivity, uniqueness, novelty), (_, connected_mols) = \
self.ligand_metrics.evaluate_rdmols(rdmols)
qed, sa, logp, lipinski, diversity = \
self.molecule_properties.evaluate_mean(connected_mols)
out = {
'kl_div_atom_types': kl_div_atom,
'kl_div_residue_types': kl_div_aa,
'Validity': validity,
'Connectivity': connectivity,
'Uniqueness': uniqueness,
'Novelty': novelty,
'QED': qed,
'SA': sa,
'LogP': logp,
'Lipinski': lipinski,
'Diversity': diversity
}
# Simple docking score
if receptors is not None:
# out['smina_score'] = np.mean(smina_score(rdmols, receptors))
out['smina_score'] = np.mean(smina_score(connected_mols, receptors))
return out
def get_full_path(self, receptor_name):
pdb, suffix = receptor_name.split('.')
receptor_name = f'{pdb.upper()}-{suffix}.pdb'
return Path(self.datadir, 'val', receptor_name)
@torch.no_grad()
def sample_and_analyze_given_pocket(self, n_samples, dataset=None,
batch_size=None):
print(f'Analyzing sampled molecules given pockets at epoch '
f'{self.current_epoch}...')
batch_size = self.batch_size if batch_size is None else batch_size
batch_size = min(batch_size, n_samples)
# each item in molecules is a tuple (position, atom_type_encoded)
molecules = []
atom_types = []
aa_types = []
receptors = []
for i in range(math.ceil(n_samples / batch_size)):
n_samples_batch = min(batch_size, n_samples - len(molecules))
# Create a batch
batch = dataset.collate_fn(
[dataset[(i * batch_size + j) % len(dataset)]
for j in range(n_samples_batch)]
)
ligand, pocket = self.get_ligand_and_pocket(batch)
receptors.extend([self.get_full_path(x) for x in batch['receptors']])
if self.virtual_nodes:
num_nodes_lig = self.max_num_nodes
else:
num_nodes_lig = self.ddpm.size_distribution.sample_conditional(
n1=None, n2=pocket['size'])
xh_lig, xh_pocket, lig_mask, _ = self.ddpm.sample_given_pocket(
pocket, num_nodes_lig)
x = xh_lig[:, :self.x_dims].detach().cpu()
atom_type = xh_lig[:, self.x_dims:].argmax(1).detach().cpu()
lig_mask = lig_mask.cpu()
if self.virtual_nodes:
# Remove virtual nodes for analysis
vnode_mask = (atom_type == self.virtual_atom)
x = x[~vnode_mask, :]
atom_type = atom_type[~vnode_mask]
lig_mask = lig_mask[~vnode_mask]
molecules.extend(list(
zip(utils.batch_to_list(x, lig_mask),
utils.batch_to_list(atom_type, lig_mask))
))
atom_types.extend(atom_type.tolist())
aa_types.extend(
xh_pocket[:, self.x_dims:].argmax(1).detach().cpu().tolist())
return self.analyze_sample(molecules, atom_types, aa_types,
receptors=receptors)
def sample_and_save(self, n_samples):
num_nodes_lig, num_nodes_pocket = \
self.ddpm.size_distribution.sample(n_samples)
xh_lig, xh_pocket, lig_mask, pocket_mask = \
self.ddpm.sample(n_samples, num_nodes_lig, num_nodes_pocket,
device=self.device)
if self.pocket_representation == 'CA':
# convert residues into atom representation for visualization
x_pocket, one_hot_pocket = utils.residues_to_atoms(
xh_pocket[:, :self.x_dims], self.lig_type_encoder)
else:
x_pocket, one_hot_pocket = \
xh_pocket[:, :self.x_dims], xh_pocket[:, self.x_dims:]
x = torch.cat((xh_lig[:, :self.x_dims], x_pocket), dim=0)
one_hot = torch.cat((xh_lig[:, self.x_dims:], one_hot_pocket), dim=0)
outdir = Path(self.outdir, f'epoch_{self.current_epoch}')
save_xyz_file(str(outdir) + '/', one_hot, x, self.lig_type_decoder,
name='molecule',
batch_mask=torch.cat((lig_mask, pocket_mask)))
# visualize(str(outdir), dataset_info=self.dataset_info, wandb=wandb)
visualize(str(outdir), dataset_info=self.dataset_info, wandb=None)
def sample_and_save_given_pocket(self, n_samples):
batch = self.val_dataset.collate_fn(
[self.val_dataset[i] for i in torch.randint(len(self.val_dataset),
size=(n_samples,))]
)
ligand, pocket = self.get_ligand_and_pocket(batch)
if self.virtual_nodes:
num_nodes_lig = self.max_num_nodes
else:
num_nodes_lig = self.ddpm.size_distribution.sample_conditional(
n1=None, n2=pocket['size'])
xh_lig, xh_pocket, lig_mask, pocket_mask = \
self.ddpm.sample_given_pocket(pocket, num_nodes_lig)
if self.pocket_representation == 'CA':
# convert residues into atom representation for visualization
x_pocket, one_hot_pocket = utils.residues_to_atoms(
xh_pocket[:, :self.x_dims], self.lig_type_encoder)
else:
x_pocket, one_hot_pocket = \
xh_pocket[:, :self.x_dims], xh_pocket[:, self.x_dims:]
x = torch.cat((xh_lig[:, :self.x_dims], x_pocket), dim=0)
one_hot = torch.cat((xh_lig[:, self.x_dims:], one_hot_pocket), dim=0)
outdir = Path(self.outdir, f'epoch_{self.current_epoch}')
save_xyz_file(str(outdir) + '/', one_hot, x, self.lig_type_decoder,
name='molecule',
batch_mask=torch.cat((lig_mask, pocket_mask)))
# visualize(str(outdir), dataset_info=self.dataset_info, wandb=wandb)
visualize(str(outdir), dataset_info=self.dataset_info, wandb=None)
def sample_chain_and_save(self, keep_frames):
n_samples = 1
num_nodes_lig, num_nodes_pocket = \
self.ddpm.size_distribution.sample(n_samples)
chain_lig, chain_pocket, _, _ = self.ddpm.sample(
n_samples, num_nodes_lig, num_nodes_pocket,
return_frames=keep_frames, device=self.device)
chain_lig = utils.reverse_tensor(chain_lig)
chain_pocket = utils.reverse_tensor(chain_pocket)
# Repeat last frame to see final sample better.
chain_lig = torch.cat([chain_lig, chain_lig[-1:].repeat(10, 1, 1)],
dim=0)
chain_pocket = torch.cat(
[chain_pocket, chain_pocket[-1:].repeat(10, 1, 1)], dim=0)
# Prepare entire chain.
x_lig = chain_lig[:, :, :self.x_dims]
one_hot_lig = chain_lig[:, :, self.x_dims:]
one_hot_lig = F.one_hot(
torch.argmax(one_hot_lig, dim=2),
num_classes=len(self.lig_type_decoder))
x_pocket = chain_pocket[:, :, :self.x_dims]
one_hot_pocket = chain_pocket[:, :, self.x_dims:]
one_hot_pocket = F.one_hot(
torch.argmax(one_hot_pocket, dim=2),
num_classes=len(self.pocket_type_decoder))
if self.pocket_representation == 'CA':
# convert residues into atom representation for visualization
x_pocket, one_hot_pocket = utils.residues_to_atoms(
x_pocket, self.lig_type_encoder)
x = torch.cat((x_lig, x_pocket), dim=1)
one_hot = torch.cat((one_hot_lig, one_hot_pocket), dim=1)
# flatten (treat frame (chain dimension) as batch for visualization)
x_flat = x.view(-1, x.size(-1))
one_hot_flat = one_hot.view(-1, one_hot.size(-1))
mask_flat = torch.arange(x.size(0)).repeat_interleave(x.size(1))
outdir = Path(self.outdir, f'epoch_{self.current_epoch}', 'chain')
save_xyz_file(str(outdir), one_hot_flat, x_flat, self.lig_type_decoder,
name='/chain', batch_mask=mask_flat)
visualize_chain(str(outdir), self.dataset_info, wandb=wandb)
def sample_chain_and_save_given_pocket(self, keep_frames):
n_samples = 1
batch = self.val_dataset.collate_fn([
self.val_dataset[torch.randint(len(self.val_dataset), size=(1,))]
])
ligand, pocket = self.get_ligand_and_pocket(batch)
if self.virtual_nodes:
num_nodes_lig = self.max_num_nodes
else:
num_nodes_lig = self.ddpm.size_distribution.sample_conditional(
n1=None, n2=pocket['size'])
chain_lig, chain_pocket, _, _ = self.ddpm.sample_given_pocket(
pocket, num_nodes_lig, return_frames=keep_frames)
chain_lig = utils.reverse_tensor(chain_lig)
chain_pocket = utils.reverse_tensor(chain_pocket)
# Repeat last frame to see final sample better.
chain_lig = torch.cat([chain_lig, chain_lig[-1:].repeat(10, 1, 1)],
dim=0)
chain_pocket = torch.cat(
[chain_pocket, chain_pocket[-1:].repeat(10, 1, 1)], dim=0)
# Prepare entire chain.
x_lig = chain_lig[:, :, :self.x_dims]
one_hot_lig = chain_lig[:, :, self.x_dims:]
one_hot_lig = F.one_hot(
torch.argmax(one_hot_lig, dim=2),
num_classes=len(self.lig_type_decoder))
x_pocket = chain_pocket[:, :, :3]
one_hot_pocket = chain_pocket[:, :, 3:]
one_hot_pocket = F.one_hot(
torch.argmax(one_hot_pocket, dim=2),
num_classes=len(self.pocket_type_decoder))
if self.pocket_representation == 'CA':
# convert residues into atom representation for visualization
x_pocket, one_hot_pocket = utils.residues_to_atoms(
x_pocket, self.lig_type_encoder)
x = torch.cat((x_lig, x_pocket), dim=1)
one_hot = torch.cat((one_hot_lig, one_hot_pocket), dim=1)
# flatten (treat frame (chain dimension) as batch for visualization)
x_flat = x.view(-1, x.size(-1))
one_hot_flat = one_hot.view(-1, one_hot.size(-1))
mask_flat = torch.arange(x.size(0)).repeat_interleave(x.size(1))
outdir = Path(self.outdir, f'epoch_{self.current_epoch}', 'chain')
save_xyz_file(str(outdir), one_hot_flat, x_flat, self.lig_type_decoder,
name='/chain', batch_mask=mask_flat)
visualize_chain(str(outdir), self.dataset_info, wandb=wandb)
def prepare_pocket(self, biopython_residues, repeats=1):
if self.pocket_representation == 'CA':
pocket_coord = torch.tensor(np.array(
[res['CA'].get_coord() for res in biopython_residues]),
device=self.device, dtype=FLOAT_TYPE)
pocket_types = torch.tensor(
[self.pocket_type_encoder[three_to_one(res.get_resname())]
for res in biopython_residues], device=self.device)
else:
pocket_atoms = [a for res in biopython_residues
for a in res.get_atoms()
if (a.element.capitalize() in self.pocket_type_encoder or a.element != 'H')]
pocket_coord = torch.tensor(np.array(
[a.get_coord() for a in pocket_atoms]),
device=self.device, dtype=FLOAT_TYPE)
pocket_types = torch.tensor(
[self.pocket_type_encoder[a.element.capitalize()]
for a in pocket_atoms], device=self.device)
pocket_one_hot = F.one_hot(
pocket_types, num_classes=len(self.pocket_type_encoder)
)
pocket_size = torch.tensor([len(pocket_coord)] * repeats,
device=self.device, dtype=INT_TYPE)
pocket_mask = torch.repeat_interleave(
torch.arange(repeats, device=self.device, dtype=INT_TYPE),
len(pocket_coord)
)
pocket = {
'x': pocket_coord.repeat(repeats, 1),
'one_hot': pocket_one_hot.repeat(repeats, 1),
'size': pocket_size,
'mask': pocket_mask
}
return pocket
def generate_ligands(self, pdb_file, n_samples, pocket_ids=None,
ref_ligand=None, num_nodes_lig=None, sanitize=False,
largest_frag=False, relax_iter=0, timesteps=None,
n_nodes_bias=0, n_nodes_min=0, **kwargs):
"""
Generate ligands given a pocket
Args:
pdb_file: PDB filename
n_samples: number of samples
pocket_ids: list of pocket residues in <chain>:<resi> format
ref_ligand: alternative way of defining the pocket based on a
reference ligand given in <chain>:<resi> format if the ligand is
contained in the PDB file, or path to an SDF file that
contains the ligand
num_nodes_lig: number of ligand nodes for each sample (list of
integers), sampled randomly if 'None'
sanitize: whether to sanitize molecules or not
largest_frag: only return the largest fragment
relax_iter: number of force field optimization steps
timesteps: number of denoising steps, use training value if None
n_nodes_bias: added to the sampled (or provided) number of nodes
n_nodes_min: lower bound on the number of sampled nodes
kwargs: additional inpainting parameters
Returns:
list of molecules
"""
assert (pocket_ids is None) ^ (ref_ligand is None)
self.ddpm.eval()
# Load PDB
pdb_struct = PDBParser(QUIET=True).get_structure('', pdb_file)[0]
if pocket_ids is not None:
# define pocket with list of residues
residues = [
pdb_struct[x.split(':')[0]][(' ', int(x.split(':')[1]), ' ')]
for x in pocket_ids]
else:
# define pocket with reference ligand
residues = utils.get_pocket_from_ligand(pdb_struct, ref_ligand)
pocket = self.prepare_pocket(residues, repeats=n_samples)
# Pocket's center of mass
pocket_com_before = scatter_mean(pocket['x'], pocket['mask'], dim=0)
# Create dummy ligands
if num_nodes_lig is None:
num_nodes_lig = self.ddpm.size_distribution.sample_conditional(
n1=None, n2=pocket['size'])
# Add bias
num_nodes_lig = num_nodes_lig + n_nodes_bias
# Apply minimum ligand size
num_nodes_lig = torch.clamp(num_nodes_lig, min=n_nodes_min)
# Use inpainting
if type(self.ddpm) == EnVariationalDiffusion:
lig_mask = utils.num_nodes_to_batch_mask(
len(num_nodes_lig), num_nodes_lig, self.device)
ligand = {
'x': torch.zeros((len(lig_mask), self.x_dims),
device=self.device, dtype=FLOAT_TYPE),
'one_hot': torch.zeros((len(lig_mask), self.atom_nf),
device=self.device, dtype=FLOAT_TYPE),
'size': num_nodes_lig,
'mask': lig_mask
}
# Fix all pocket nodes but sample
lig_mask_fixed = torch.zeros(len(lig_mask), device=self.device)
pocket_mask_fixed = torch.ones(len(pocket['mask']),
device=self.device)
xh_lig, xh_pocket, lig_mask, pocket_mask = self.ddpm.inpaint(
ligand, pocket, lig_mask_fixed, pocket_mask_fixed,
timesteps=timesteps, **kwargs)
# Use conditional generation
elif type(self.ddpm) == ConditionalDDPM:
xh_lig, xh_pocket, lig_mask, pocket_mask = \
self.ddpm.sample_given_pocket(pocket, num_nodes_lig,
timesteps=timesteps)
else:
raise NotImplementedError
# Move generated molecule back to the original pocket position
pocket_com_after = scatter_mean(
xh_pocket[:, :self.x_dims], pocket_mask, dim=0)
xh_pocket[:, :self.x_dims] += \
(pocket_com_before - pocket_com_after)[pocket_mask]
xh_lig[:, :self.x_dims] += \
(pocket_com_before - pocket_com_after)[lig_mask]
# Build mol objects
x = xh_lig[:, :self.x_dims].detach().cpu()
atom_type = xh_lig[:, self.x_dims:].argmax(1).detach().cpu()
lig_mask = lig_mask.cpu()
molecules = []
for mol_pc in zip(utils.batch_to_list(x, lig_mask),
utils.batch_to_list(atom_type, lig_mask)):
mol = build_molecule(*mol_pc, self.dataset_info, add_coords=True)
mol = process_molecule(mol,
add_hydrogens=False,
sanitize=sanitize,
relax_iter=relax_iter,
largest_frag=largest_frag)
if mol is not None:
molecules.append(mol)
return molecules
def configure_gradient_clipping(self, optimizer, optimizer_idx,
gradient_clip_val, gradient_clip_algorithm):
if not self.clip_grad:
return
# Allow gradient norm to be 150% + 2 * stdev of the recent history.
max_grad_norm = 1.5 * self.gradnorm_queue.mean() + \
2 * self.gradnorm_queue.std()
# Get current grad_norm
params = [p for g in optimizer.param_groups for p in g['params']]
grad_norm = utils.get_grad_norm(params)
# Lightning will handle the gradient clipping
self.clip_gradients(optimizer, gradient_clip_val=max_grad_norm,
gradient_clip_algorithm='norm')
if float(grad_norm) > max_grad_norm:
self.gradnorm_queue.add(float(max_grad_norm))
else:
self.gradnorm_queue.add(float(grad_norm))
if float(grad_norm) > max_grad_norm:
print(f'Clipped gradient with value {grad_norm:.1f} '
f'while allowed {max_grad_norm:.1f}')
class WeightSchedule:
def __init__(self, T, max_weight, mode='linear'):
if mode == 'linear':
self.weights = torch.linspace(max_weight, 0, T + 1)
elif mode == 'constant':
self.weights = max_weight * torch.ones(T + 1)
else:
raise NotImplementedError(f'{mode} weight schedule is not '
f'available.')
def __call__(self, t_array):
""" all values in t_array are assumed to be integers in [0, T] """
return self.weights[t_array].to(t_array.device)