--- a +++ b/geometry_utils.py @@ -0,0 +1,141 @@ +import numpy as np + +from constants import CA_C_DIST, N_CA_DIST, N_CA_C_ANGLE + + +def rotation_matrix(angle, axis): + """ + Args: + angle: (n,) + axis: 0=x, 1=y, 2=z + Returns: + (n, 3, 3) + """ + n = len(angle) + R = np.eye(3)[None, :, :].repeat(n, axis=0) + + axis = 2 - axis + start = axis // 2 + step = axis % 2 + 1 + s = slice(start, start + step + 1, step) + + R[:, s, s] = np.array( + [[np.cos(angle), (-1) ** (axis + 1) * np.sin(angle)], + [(-1) ** axis * np.sin(angle), np.cos(angle)]] + ).transpose(2, 0, 1) + return R + + +def get_bb_transform(n_xyz, ca_xyz, c_xyz): + """ + Compute translation and rotation of the canoncical backbone frame (triangle N-Ca-C) from a position with + Ca at the origin, N on the x-axis and C in the xy-plane to the global position of the backbone frame + + Args: + n_xyz: (n, 3) + ca_xyz: (n, 3) + c_xyz: (n, 3) + + Returns: + quaternion represented as array of shape (n, 4) + translation vector which is an array of shape (n, 3) + """ + + translation = ca_xyz + n_xyz = n_xyz - translation + c_xyz = c_xyz - translation + + # Find rotation matrix that aligns the coordinate systems + # rotate around y-axis to move N into the xy-plane + theta_y = np.arctan2(n_xyz[:, 2], -n_xyz[:, 0]) + Ry = rotation_matrix(theta_y, 1) + n_xyz = np.einsum('noi,ni->no', Ry.transpose(0, 2, 1), n_xyz) + + # rotate around z-axis to move N onto the x-axis + theta_z = np.arctan2(n_xyz[:, 1], n_xyz[:, 0]) + Rz = rotation_matrix(theta_z, 2) + # n_xyz = np.einsum('noi,ni->no', Rz.transpose(0, 2, 1), n_xyz) + + # rotate around x-axis to move C into the xy-plane + c_xyz = np.einsum('noj,nji,ni->no', Rz.transpose(0, 2, 1), + Ry.transpose(0, 2, 1), c_xyz) + theta_x = np.arctan2(c_xyz[:, 2], c_xyz[:, 1]) + Rx = rotation_matrix(theta_x, 0) + + # Final rotation matrix + R = np.einsum('nok,nkj,nji->noi', Ry, Rz, Rx) + + # Convert to quaternion + # q = w + i*u_x + j*u_y + k * u_z + quaternion = rotation_matrix_to_quaternion(R) + + return quaternion, translation + + +def get_bb_coords_from_transform(ca_coords, quaternion): + """ + Args: + ca_coords: (n, 3) + quaternion: (n, 4) + Returns: + backbone coords (n*3, 3), order is [N, CA, C] + backbone atom types as a list of length n*3 + """ + R = quaternion_to_rotation_matrix(quaternion) + bb_coords = np.tile(np.array( + [[N_CA_DIST, 0, 0], + [0, 0, 0], + [CA_C_DIST * np.cos(N_CA_C_ANGLE), CA_C_DIST * np.sin(N_CA_C_ANGLE), 0]]), + [len(ca_coords), 1]) + bb_coords = np.einsum('noi,ni->no', R.repeat(3, axis=0), bb_coords) + ca_coords.repeat(3, axis=0) + bb_atom_types = [t for _ in range(len(ca_coords)) for t in ['N', 'C', 'C']] + + return bb_coords, bb_atom_types + + +def quaternion_to_rotation_matrix(q): + """ + x_rot = R x + + Args: + q: (n, 4) + Returns: + R: (n, 3, 3) + """ + # Normalize + q = q / (q ** 2).sum(1, keepdims=True) ** 0.5 + + # https://en.wikipedia.org/wiki/Rotation_matrix#Quaternion + w, x, y, z = q[:, 0], q[:, 1], q[:, 2], q[:, 3] + R = np.stack([ + np.stack([1 - 2 * y ** 2 - 2 * z ** 2, 2 * x * y - 2 * z * w, + 2 * x * z + 2 * y * w], axis=1), + np.stack([2 * x * y + 2 * z * w, 1 - 2 * x ** 2 - 2 * z ** 2, + 2 * y * z - 2 * x * w], axis=1), + np.stack([2 * x * z - 2 * y * w, 2 * y * z + 2 * x * w, + 1 - 2 * x ** 2 - 2 * y ** 2], axis=1) + ], axis=1) + + return R + + +def rotation_matrix_to_quaternion(R): + """ + https://en.wikipedia.org/wiki/Rotation_matrix#Quaternion + Args: + R: (n, 3, 3) + Returns: + q: (n, 4) + """ + + t = R[:, 0, 0] + R[:, 1, 1] + R[:, 2, 2] + r = np.sqrt(1 + t) + w = 0.5 * r + x = np.sign(R[:, 2, 1] - R[:, 1, 2]) * np.abs( + 0.5 * np.sqrt(1 + R[:, 0, 0] - R[:, 1, 1] - R[:, 2, 2])) + y = np.sign(R[:, 0, 2] - R[:, 2, 0]) * np.abs( + 0.5 * np.sqrt(1 - R[:, 0, 0] + R[:, 1, 1] - R[:, 2, 2])) + z = np.sign(R[:, 1, 0] - R[:, 0, 1]) * np.abs( + 0.5 * np.sqrt(1 - R[:, 0, 0] - R[:, 1, 1] + R[:, 2, 2])) + + return np.stack((w, x, y, z), axis=1)