[607087]: / equivariant_diffusion / en_diffusion.py

Download this file

1191 lines (964 with data), 49.4 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
import math
from typing import Dict
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
from torch_scatter import scatter_add, scatter_mean
import utils
class EnVariationalDiffusion(nn.Module):
"""
The E(n) Diffusion Module.
"""
def __init__(
self,
dynamics: nn.Module, atom_nf: int, residue_nf: int,
n_dims: int, size_histogram: Dict,
timesteps: int = 1000, parametrization='eps',
noise_schedule='learned', noise_precision=1e-4,
loss_type='vlb', norm_values=(1., 1.), norm_biases=(None, 0.),
virtual_node_idx=None):
super().__init__()
assert loss_type in {'vlb', 'l2'}
self.loss_type = loss_type
if noise_schedule == 'learned':
assert loss_type == 'vlb', 'A noise schedule can only be learned' \
' with a vlb objective.'
# Only supported parametrization.
assert parametrization == 'eps'
if noise_schedule == 'learned':
self.gamma = GammaNetwork()
else:
self.gamma = PredefinedNoiseSchedule(noise_schedule,
timesteps=timesteps,
precision=noise_precision)
# The network that will predict the denoising.
self.dynamics = dynamics
self.atom_nf = atom_nf
self.residue_nf = residue_nf
self.n_dims = n_dims
self.num_classes = self.atom_nf
self.T = timesteps
self.parametrization = parametrization
self.norm_values = norm_values
self.norm_biases = norm_biases
self.register_buffer('buffer', torch.zeros(1))
# distribution of nodes
self.size_distribution = DistributionNodes(size_histogram)
# indicate if virtual nodes are present
self.vnode_idx = virtual_node_idx
if noise_schedule != 'learned':
self.check_issues_norm_values()
def check_issues_norm_values(self, num_stdevs=8):
zeros = torch.zeros((1, 1))
gamma_0 = self.gamma(zeros)
sigma_0 = self.sigma(gamma_0, target_tensor=zeros).item()
# Checked if 1 / norm_value is still larger than 10 * standard
# deviation.
norm_value = self.norm_values[1]
if sigma_0 * num_stdevs > 1. / norm_value:
raise ValueError(
f'Value for normalization value {norm_value} probably too '
f'large with sigma_0 {sigma_0:.5f} and '
f'1 / norm_value = {1. / norm_value}')
def sigma_and_alpha_t_given_s(self, gamma_t: torch.Tensor,
gamma_s: torch.Tensor,
target_tensor: torch.Tensor):
"""
Computes sigma t given s, using gamma_t and gamma_s. Used during sampling.
These are defined as:
alpha t given s = alpha t / alpha s,
sigma t given s = sqrt(1 - (alpha t given s) ^2 ).
"""
sigma2_t_given_s = self.inflate_batch_array(
-torch.expm1(F.softplus(gamma_s) - F.softplus(gamma_t)), target_tensor
)
# alpha_t_given_s = alpha_t / alpha_s
log_alpha2_t = F.logsigmoid(-gamma_t)
log_alpha2_s = F.logsigmoid(-gamma_s)
log_alpha2_t_given_s = log_alpha2_t - log_alpha2_s
alpha_t_given_s = torch.exp(0.5 * log_alpha2_t_given_s)
alpha_t_given_s = self.inflate_batch_array(
alpha_t_given_s, target_tensor)
sigma_t_given_s = torch.sqrt(sigma2_t_given_s)
return sigma2_t_given_s, sigma_t_given_s, alpha_t_given_s
def kl_prior_with_pocket(self, xh_lig, xh_pocket, mask_lig, mask_pocket,
num_nodes):
"""Computes the KL between q(z1 | x) and the prior p(z1) = Normal(0, 1).
This is essentially a lot of work for something that is in practice
negligible in the loss. However, you compute it so that you see it when
you've made a mistake in your noise schedule.
"""
batch_size = len(num_nodes)
# Compute the last alpha value, alpha_T.
ones = torch.ones((batch_size, 1), device=xh_lig.device)
gamma_T = self.gamma(ones)
alpha_T = self.alpha(gamma_T, xh_lig)
# Compute means.
mu_T_lig = alpha_T[mask_lig] * xh_lig
mu_T_lig_x, mu_T_lig_h = mu_T_lig[:, :self.n_dims], \
mu_T_lig[:, self.n_dims:]
# Compute standard deviations (only batch axis for x-part, inflated for h-part).
sigma_T_x = self.sigma(gamma_T, mu_T_lig_x).squeeze()
sigma_T_h = self.sigma(gamma_T, mu_T_lig_h).squeeze()
# Compute means.
mu_T_pocket = alpha_T[mask_pocket] * xh_pocket
mu_T_pocket_x, mu_T_pocket_h = mu_T_pocket[:, :self.n_dims], \
mu_T_pocket[:, self.n_dims:]
# Compute KL for h-part.
zeros_lig = torch.zeros_like(mu_T_lig_h)
zeros_pocket = torch.zeros_like(mu_T_pocket_h)
ones = torch.ones_like(sigma_T_h)
mu_norm2 = self.sum_except_batch((mu_T_lig_h - zeros_lig) ** 2, mask_lig) + \
self.sum_except_batch((mu_T_pocket_h - zeros_pocket) ** 2, mask_pocket)
kl_distance_h = self.gaussian_KL(mu_norm2, sigma_T_h, ones, d=1)
# Compute KL for x-part.
zeros_lig = torch.zeros_like(mu_T_lig_x)
zeros_pocket = torch.zeros_like(mu_T_pocket_x)
ones = torch.ones_like(sigma_T_x)
mu_norm2 = self.sum_except_batch((mu_T_lig_x - zeros_lig) ** 2, mask_lig) + \
self.sum_except_batch((mu_T_pocket_x - zeros_pocket) ** 2, mask_pocket)
subspace_d = self.subspace_dimensionality(num_nodes)
kl_distance_x = self.gaussian_KL(mu_norm2, sigma_T_x, ones, subspace_d)
return kl_distance_x + kl_distance_h
def compute_x_pred(self, net_out, zt, gamma_t, batch_mask):
"""Commputes x_pred, i.e. the most likely prediction of x."""
if self.parametrization == 'x':
x_pred = net_out
elif self.parametrization == 'eps':
sigma_t = self.sigma(gamma_t, target_tensor=net_out)
alpha_t = self.alpha(gamma_t, target_tensor=net_out)
eps_t = net_out
x_pred = 1. / alpha_t[batch_mask] * (zt - sigma_t[batch_mask] * eps_t)
else:
raise ValueError(self.parametrization)
return x_pred
def log_constants_p_x_given_z0(self, n_nodes, device):
"""Computes p(x|z0)."""
batch_size = len(n_nodes)
degrees_of_freedom_x = self.subspace_dimensionality(n_nodes)
zeros = torch.zeros((batch_size, 1), device=device)
gamma_0 = self.gamma(zeros)
# Recall that sigma_x = sqrt(sigma_0^2 / alpha_0^2) = SNR(-0.5 gamma_0).
log_sigma_x = 0.5 * gamma_0.view(batch_size)
return degrees_of_freedom_x * (- log_sigma_x - 0.5 * np.log(2 * np.pi))
def log_pxh_given_z0_without_constants(
self, ligand, z_0_lig, eps_lig, net_out_lig,
pocket, z_0_pocket, eps_pocket, net_out_pocket,
gamma_0, epsilon=1e-10):
# Discrete properties are predicted directly from z_t.
z_h_lig = z_0_lig[:, self.n_dims:]
z_h_pocket = z_0_pocket[:, self.n_dims:]
# Take only part over x.
eps_lig_x = eps_lig[:, :self.n_dims]
net_lig_x = net_out_lig[:, :self.n_dims]
eps_pocket_x = eps_pocket[:, :self.n_dims]
net_pocket_x = net_out_pocket[:, :self.n_dims]
# Compute sigma_0 and rescale to the integer scale of the data.
sigma_0 = self.sigma(gamma_0, target_tensor=z_0_lig)
sigma_0_cat = sigma_0 * self.norm_values[1]
# Computes the error for the distribution
# N(x | 1 / alpha_0 z_0 + sigma_0/alpha_0 eps_0, sigma_0 / alpha_0),
# the weighting in the epsilon parametrization is exactly '1'.
log_p_x_given_z0_without_constants_ligand = -0.5 * (
self.sum_except_batch((eps_lig_x - net_lig_x) ** 2, ligand['mask'])
)
log_p_x_given_z0_without_constants_pocket = -0.5 * (
self.sum_except_batch((eps_pocket_x - net_pocket_x) ** 2,
pocket['mask'])
)
# Compute delta indicator masks.
# un-normalize
ligand_onehot = ligand['one_hot'] * self.norm_values[1] + self.norm_biases[1]
pocket_onehot = pocket['one_hot'] * self.norm_values[1] + self.norm_biases[1]
estimated_ligand_onehot = z_h_lig * self.norm_values[1] + self.norm_biases[1]
estimated_pocket_onehot = z_h_pocket * self.norm_values[1] + self.norm_biases[1]
# Centered h_cat around 1, since onehot encoded.
centered_ligand_onehot = estimated_ligand_onehot - 1
centered_pocket_onehot = estimated_pocket_onehot - 1
# Compute integrals from 0.5 to 1.5 of the normal distribution
# N(mean=z_h_cat, stdev=sigma_0_cat)
log_ph_cat_proportional_ligand = torch.log(
self.cdf_standard_gaussian((centered_ligand_onehot + 0.5) / sigma_0_cat[ligand['mask']])
- self.cdf_standard_gaussian((centered_ligand_onehot - 0.5) / sigma_0_cat[ligand['mask']])
+ epsilon
)
log_ph_cat_proportional_pocket = torch.log(
self.cdf_standard_gaussian((centered_pocket_onehot + 0.5) / sigma_0_cat[pocket['mask']])
- self.cdf_standard_gaussian((centered_pocket_onehot - 0.5) / sigma_0_cat[pocket['mask']])
+ epsilon
)
# Normalize the distribution over the categories.
log_Z = torch.logsumexp(log_ph_cat_proportional_ligand, dim=1,
keepdim=True)
log_probabilities_ligand = log_ph_cat_proportional_ligand - log_Z
log_Z = torch.logsumexp(log_ph_cat_proportional_pocket, dim=1,
keepdim=True)
log_probabilities_pocket = log_ph_cat_proportional_pocket - log_Z
# Select the log_prob of the current category using the onehot
# representation.
log_ph_given_z0_ligand = self.sum_except_batch(
log_probabilities_ligand * ligand_onehot, ligand['mask'])
log_ph_given_z0_pocket = self.sum_except_batch(
log_probabilities_pocket * pocket_onehot, pocket['mask'])
# Combine log probabilities of ligand and pocket for h.
log_ph_given_z0 = log_ph_given_z0_ligand + log_ph_given_z0_pocket
return log_p_x_given_z0_without_constants_ligand, \
log_p_x_given_z0_without_constants_pocket, log_ph_given_z0
def sample_p_xh_given_z0(self, z0_lig, z0_pocket, lig_mask, pocket_mask,
batch_size, fix_noise=False):
"""Samples x ~ p(x|z0)."""
t_zeros = torch.zeros(size=(batch_size, 1), device=z0_lig.device)
gamma_0 = self.gamma(t_zeros)
# Computes sqrt(sigma_0^2 / alpha_0^2)
sigma_x = self.SNR(-0.5 * gamma_0)
net_out_lig, net_out_pocket = self.dynamics(
z0_lig, z0_pocket, t_zeros, lig_mask, pocket_mask)
# Compute mu for p(zs | zt).
mu_x_lig = self.compute_x_pred(net_out_lig, z0_lig, gamma_0, lig_mask)
mu_x_pocket = self.compute_x_pred(net_out_pocket, z0_pocket, gamma_0,
pocket_mask)
xh_lig, xh_pocket = self.sample_normal(mu_x_lig, mu_x_pocket, sigma_x,
lig_mask, pocket_mask, fix_noise)
x_lig, h_lig = self.unnormalize(
xh_lig[:, :self.n_dims], z0_lig[:, self.n_dims:])
x_pocket, h_pocket = self.unnormalize(
xh_pocket[:, :self.n_dims], z0_pocket[:, self.n_dims:])
h_lig = F.one_hot(torch.argmax(h_lig, dim=1), self.atom_nf)
h_pocket = F.one_hot(torch.argmax(h_pocket, dim=1), self.residue_nf)
return x_lig, h_lig, x_pocket, h_pocket
def sample_normal(self, mu_lig, mu_pocket, sigma, lig_mask, pocket_mask,
fix_noise=False):
"""Samples from a Normal distribution."""
if fix_noise:
# bs = 1 if fix_noise else mu.size(0)
raise NotImplementedError("fix_noise option isn't implemented yet")
eps_lig, eps_pocket = self.sample_combined_position_feature_noise(
lig_mask, pocket_mask)
return mu_lig + sigma[lig_mask] * eps_lig, \
mu_pocket + sigma[pocket_mask] * eps_pocket
def noised_representation(self, xh_lig, xh_pocket, lig_mask, pocket_mask,
gamma_t):
# Compute alpha_t and sigma_t from gamma.
alpha_t = self.alpha(gamma_t, xh_lig)
sigma_t = self.sigma(gamma_t, xh_lig)
# Sample zt ~ Normal(alpha_t x, sigma_t)
eps_lig, eps_pocket = self.sample_combined_position_feature_noise(
lig_mask, pocket_mask)
# Sample z_t given x, h for timestep t, from q(z_t | x, h)
z_t_lig = alpha_t[lig_mask] * xh_lig + sigma_t[lig_mask] * eps_lig
z_t_pocket = alpha_t[pocket_mask] * xh_pocket + \
sigma_t[pocket_mask] * eps_pocket
return z_t_lig, z_t_pocket, eps_lig, eps_pocket
def log_pN(self, N_lig, N_pocket):
"""
Prior on the sample size for computing
log p(x,h,N) = log p(x,h|N) + log p(N), where log p(x,h|N) is the
model's output
Args:
N: array of sample sizes
Returns:
log p(N)
"""
log_pN = self.size_distribution.log_prob(N_lig, N_pocket)
return log_pN
def delta_log_px(self, num_nodes):
return -self.subspace_dimensionality(num_nodes) * \
np.log(self.norm_values[0])
def forward(self, ligand, pocket, return_info=False):
"""
Computes the loss and NLL terms
"""
# Normalize data, take into account volume change in x.
ligand, pocket = self.normalize(ligand, pocket)
# Likelihood change due to normalization
delta_log_px = self.delta_log_px(ligand['size'] + pocket['size'])
# Sample a timestep t for each example in batch
# At evaluation time, loss_0 will be computed separately to decrease
# variance in the estimator (costs two forward passes)
lowest_t = 0 if self.training else 1
t_int = torch.randint(
lowest_t, self.T + 1, size=(ligand['size'].size(0), 1),
device=ligand['x'].device).float()
s_int = t_int - 1 # previous timestep
# Masks: important to compute log p(x | z0).
t_is_zero = (t_int == 0).float()
t_is_not_zero = 1 - t_is_zero
# Normalize t to [0, 1]. Note that the negative
# step of s will never be used, since then p(x | z0) is computed.
s = s_int / self.T
t = t_int / self.T
# Compute gamma_s and gamma_t via the network.
gamma_s = self.inflate_batch_array(self.gamma(s), ligand['x'])
gamma_t = self.inflate_batch_array(self.gamma(t), ligand['x'])
# Concatenate x, and h[categorical].
xh_lig = torch.cat([ligand['x'], ligand['one_hot']], dim=1)
xh_pocket = torch.cat([pocket['x'], pocket['one_hot']], dim=1)
# Find noised representation
z_t_lig, z_t_pocket, eps_t_lig, eps_t_pocket = \
self.noised_representation(xh_lig, xh_pocket, ligand['mask'],
pocket['mask'], gamma_t)
# Neural net prediction.
net_out_lig, net_out_pocket = self.dynamics(
z_t_lig, z_t_pocket, t, ligand['mask'], pocket['mask'])
# For LJ loss term
xh_lig_hat = self.xh_given_zt_and_epsilon(z_t_lig, net_out_lig, gamma_t,
ligand['mask'])
# Compute the L2 error.
error_t_lig = self.sum_except_batch((eps_t_lig - net_out_lig) ** 2,
ligand['mask'])
error_t_pocket = self.sum_except_batch(
(eps_t_pocket - net_out_pocket) ** 2, pocket['mask'])
# Compute weighting with SNR: (1 - SNR(s-t)) for epsilon parametrization
SNR_weight = (1 - self.SNR(gamma_s - gamma_t)).squeeze(1)
assert error_t_lig.size() == SNR_weight.size()
# The _constants_ depending on sigma_0 from the
# cross entropy term E_q(z0 | x) [log p(x | z0)].
neg_log_constants = -self.log_constants_p_x_given_z0(
n_nodes=ligand['size'] + pocket['size'], device=error_t_lig.device)
# The KL between q(zT | x) and p(zT) = Normal(0, 1).
# Should be close to zero.
kl_prior = self.kl_prior_with_pocket(
xh_lig, xh_pocket, ligand['mask'], pocket['mask'],
ligand['size'] + pocket['size'])
if self.training:
# Computes the L_0 term (even if gamma_t is not actually gamma_0)
# and this will later be selected via masking.
log_p_x_given_z0_without_constants_ligand, \
log_p_x_given_z0_without_constants_pocket, log_ph_given_z0 = \
self.log_pxh_given_z0_without_constants(
ligand, z_t_lig, eps_t_lig, net_out_lig,
pocket, z_t_pocket, eps_t_pocket, net_out_pocket, gamma_t)
loss_0_x_ligand = -log_p_x_given_z0_without_constants_ligand * \
t_is_zero.squeeze()
loss_0_x_pocket = -log_p_x_given_z0_without_constants_pocket * \
t_is_zero.squeeze()
loss_0_h = -log_ph_given_z0 * t_is_zero.squeeze()
# apply t_is_zero mask
error_t_lig = error_t_lig * t_is_not_zero.squeeze()
error_t_pocket = error_t_pocket * t_is_not_zero.squeeze()
else:
# Compute noise values for t = 0.
t_zeros = torch.zeros_like(s)
gamma_0 = self.inflate_batch_array(self.gamma(t_zeros), ligand['x'])
# Sample z_0 given x, h for timestep t, from q(z_t | x, h)
z_0_lig, z_0_pocket, eps_0_lig, eps_0_pocket = \
self.noised_representation(xh_lig, xh_pocket, ligand['mask'],
pocket['mask'], gamma_0)
net_out_0_lig, net_out_0_pocket = self.dynamics(
z_0_lig, z_0_pocket, t_zeros, ligand['mask'], pocket['mask'])
log_p_x_given_z0_without_constants_ligand, \
log_p_x_given_z0_without_constants_pocket, log_ph_given_z0 = \
self.log_pxh_given_z0_without_constants(
ligand, z_0_lig, eps_0_lig, net_out_0_lig,
pocket, z_0_pocket, eps_0_pocket, net_out_0_pocket, gamma_0)
loss_0_x_ligand = -log_p_x_given_z0_without_constants_ligand
loss_0_x_pocket = -log_p_x_given_z0_without_constants_pocket
loss_0_h = -log_ph_given_z0
# sample size prior
log_pN = self.log_pN(ligand['size'], pocket['size'])
info = {
'eps_hat_lig_x': scatter_mean(
net_out_lig[:, :self.n_dims].abs().mean(1), ligand['mask'],
dim=0).mean(),
'eps_hat_lig_h': scatter_mean(
net_out_lig[:, self.n_dims:].abs().mean(1), ligand['mask'],
dim=0).mean(),
'eps_hat_pocket_x': scatter_mean(
net_out_pocket[:, :self.n_dims].abs().mean(1), pocket['mask'],
dim=0).mean(),
'eps_hat_pocket_h': scatter_mean(
net_out_pocket[:, self.n_dims:].abs().mean(1), pocket['mask'],
dim=0).mean(),
}
loss_terms = (delta_log_px, error_t_lig, error_t_pocket, SNR_weight,
loss_0_x_ligand, loss_0_x_pocket, loss_0_h,
neg_log_constants, kl_prior, log_pN,
t_int.squeeze(), xh_lig_hat)
return (*loss_terms, info) if return_info else loss_terms
def xh_given_zt_and_epsilon(self, z_t, epsilon, gamma_t, batch_mask):
""" Equation (7) in the EDM paper """
alpha_t = self.alpha(gamma_t, z_t)
sigma_t = self.sigma(gamma_t, z_t)
xh = z_t / alpha_t[batch_mask] - epsilon * sigma_t[batch_mask] / \
alpha_t[batch_mask]
return xh
def sample_p_zt_given_zs(self, zs_lig, zs_pocket, ligand_mask, pocket_mask,
gamma_t, gamma_s, fix_noise=False):
sigma2_t_given_s, sigma_t_given_s, alpha_t_given_s = \
self.sigma_and_alpha_t_given_s(gamma_t, gamma_s, zs_lig)
mu_lig = alpha_t_given_s[ligand_mask] * zs_lig
mu_pocket = alpha_t_given_s[pocket_mask] * zs_pocket
zt_lig, zt_pocket = self.sample_normal(
mu_lig, mu_pocket, sigma_t_given_s, ligand_mask, pocket_mask,
fix_noise)
# Remove center of mass
zt_x = self.remove_mean_batch(
torch.cat((zt_lig[:, :self.n_dims], zt_pocket[:, :self.n_dims]),
dim=0),
torch.cat((ligand_mask, pocket_mask))
)
zt_lig = torch.cat((zt_x[:len(ligand_mask)],
zt_lig[:, self.n_dims:]), dim=1)
zt_pocket = torch.cat((zt_x[len(ligand_mask):],
zt_pocket[:, self.n_dims:]), dim=1)
return zt_lig, zt_pocket
def sample_p_zs_given_zt(self, s, t, zt_lig, zt_pocket, ligand_mask,
pocket_mask, fix_noise=False):
"""Samples from zs ~ p(zs | zt). Only used during sampling."""
gamma_s = self.gamma(s)
gamma_t = self.gamma(t)
sigma2_t_given_s, sigma_t_given_s, alpha_t_given_s = \
self.sigma_and_alpha_t_given_s(gamma_t, gamma_s, zt_lig)
sigma_s = self.sigma(gamma_s, target_tensor=zt_lig)
sigma_t = self.sigma(gamma_t, target_tensor=zt_lig)
# Neural net prediction.
eps_t_lig, eps_t_pocket = self.dynamics(
zt_lig, zt_pocket, t, ligand_mask, pocket_mask)
# Compute mu for p(zs | zt).
combined_mask = torch.cat((ligand_mask, pocket_mask))
self.assert_mean_zero_with_mask(
torch.cat((zt_lig[:, :self.n_dims],
zt_pocket[:, :self.n_dims]), dim=0),
combined_mask)
self.assert_mean_zero_with_mask(
torch.cat((eps_t_lig[:, :self.n_dims],
eps_t_pocket[:, :self.n_dims]), dim=0),
combined_mask)
# Note: mu_{t->s} = 1 / alpha_{t|s} z_t - sigma_{t|s}^2 / sigma_t / alpha_{t|s} epsilon
# follows from the definition of mu_{t->s} and Equ. (7) in the EDM paper
mu_lig = zt_lig / alpha_t_given_s[ligand_mask] - \
(sigma2_t_given_s / alpha_t_given_s / sigma_t)[ligand_mask] * \
eps_t_lig
mu_pocket = zt_pocket / alpha_t_given_s[pocket_mask] - \
(sigma2_t_given_s / alpha_t_given_s / sigma_t)[pocket_mask] * \
eps_t_pocket
# Compute sigma for p(zs | zt).
sigma = sigma_t_given_s * sigma_s / sigma_t
# Sample zs given the paramters derived from zt.
zs_lig, zs_pocket = self.sample_normal(mu_lig, mu_pocket, sigma,
ligand_mask, pocket_mask,
fix_noise)
# Project down to avoid numerical runaway of the center of gravity.
zs_x = self.remove_mean_batch(
torch.cat((zs_lig[:, :self.n_dims],
zs_pocket[:, :self.n_dims]), dim=0),
torch.cat((ligand_mask, pocket_mask))
)
zs_lig = torch.cat((zs_x[:len(ligand_mask)],
zs_lig[:, self.n_dims:]), dim=1)
zs_pocket = torch.cat((zs_x[len(ligand_mask):],
zs_pocket[:, self.n_dims:]), dim=1)
return zs_lig, zs_pocket
def sample_combined_position_feature_noise(self, lig_indices,
pocket_indices):
"""
Samples mean-centered normal noise for z_x, and standard normal noise
for z_h.
"""
z_x = self.sample_center_gravity_zero_gaussian_batch(
size=(len(lig_indices) + len(pocket_indices), self.n_dims),
lig_indices=lig_indices,
pocket_indices=pocket_indices
)
z_h_lig = self.sample_gaussian(
size=(len(lig_indices), self.atom_nf),
device=lig_indices.device)
z_lig = torch.cat([z_x[:len(lig_indices)], z_h_lig], dim=1)
z_h_pocket = self.sample_gaussian(
size=(len(pocket_indices), self.residue_nf),
device=pocket_indices.device)
z_pocket = torch.cat([z_x[len(lig_indices):], z_h_pocket], dim=1)
return z_lig, z_pocket
@torch.no_grad()
def sample(self, n_samples, num_nodes_lig, num_nodes_pocket,
return_frames=1, timesteps=None, device='cpu'):
"""
Draw samples from the generative model. Optionally, return intermediate
states for visualization purposes.
"""
timesteps = self.T if timesteps is None else timesteps
assert 0 < return_frames <= timesteps
assert timesteps % return_frames == 0
lig_mask = utils.num_nodes_to_batch_mask(n_samples, num_nodes_lig,
device)
pocket_mask = utils.num_nodes_to_batch_mask(n_samples, num_nodes_pocket,
device)
combined_mask = torch.cat((lig_mask, pocket_mask))
z_lig, z_pocket = self.sample_combined_position_feature_noise(
lig_mask, pocket_mask)
self.assert_mean_zero_with_mask(
torch.cat((z_lig[:, :self.n_dims], z_pocket[:, :self.n_dims]), dim=0),
combined_mask
)
out_lig = torch.zeros((return_frames,) + z_lig.size(),
device=z_lig.device)
out_pocket = torch.zeros((return_frames,) + z_pocket.size(),
device=z_pocket.device)
# Iteratively sample p(z_s | z_t) for t = 1, ..., T, with s = t - 1.
for s in reversed(range(0, timesteps)):
s_array = torch.full((n_samples, 1), fill_value=s,
device=z_lig.device)
t_array = s_array + 1
s_array = s_array / timesteps
t_array = t_array / timesteps
z_lig, z_pocket = self.sample_p_zs_given_zt(
s_array, t_array, z_lig, z_pocket, lig_mask, pocket_mask)
# save frame
if (s * return_frames) % timesteps == 0:
idx = (s * return_frames) // timesteps
out_lig[idx], out_pocket[idx] = \
self.unnormalize_z(z_lig, z_pocket)
# Finally sample p(x, h | z_0).
x_lig, h_lig, x_pocket, h_pocket = self.sample_p_xh_given_z0(
z_lig, z_pocket, lig_mask, pocket_mask, n_samples)
self.assert_mean_zero_with_mask(
torch.cat((x_lig, x_pocket), dim=0), combined_mask
)
# Correct CoM drift for examples without intermediate states
if return_frames == 1:
x = torch.cat((x_lig, x_pocket))
max_cog = scatter_add(x, combined_mask, dim=0).abs().max().item()
if max_cog > 5e-2:
print(f'Warning CoG drift with error {max_cog:.3f}. Projecting '
f'the positions down.')
x = self.remove_mean_batch(x, combined_mask)
x_lig, x_pocket = x[:len(x_lig)], x[len(x_lig):]
# Overwrite last frame with the resulting x and h.
out_lig[0] = torch.cat([x_lig, h_lig], dim=1)
out_pocket[0] = torch.cat([x_pocket, h_pocket], dim=1)
# remove frame dimension if only the final molecule is returned
return out_lig.squeeze(0), out_pocket.squeeze(0), lig_mask, pocket_mask
def get_repaint_schedule(self, resamplings, jump_length, timesteps):
""" Each integer in the schedule list describes how many denoising steps
need to be applied before jumping back """
repaint_schedule = []
curr_t = 0
while curr_t < timesteps:
if curr_t + jump_length < timesteps:
if len(repaint_schedule) > 0:
repaint_schedule[-1] += jump_length
repaint_schedule.extend([jump_length] * (resamplings - 1))
else:
repaint_schedule.extend([jump_length] * resamplings)
curr_t += jump_length
else:
residual = (timesteps - curr_t)
if len(repaint_schedule) > 0:
repaint_schedule[-1] += residual
else:
repaint_schedule.append(residual)
curr_t += residual
return list(reversed(repaint_schedule))
@torch.no_grad()
def inpaint(self, ligand, pocket, lig_fixed, pocket_fixed, resamplings=1,
jump_length=1, return_frames=1, timesteps=None):
"""
Draw samples from the generative model while fixing parts of the input.
Optionally, return intermediate states for visualization purposes.
See:
Lugmayr, Andreas, et al.
"Repaint: Inpainting using denoising diffusion probabilistic models."
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2022.
"""
timesteps = self.T if timesteps is None else timesteps
assert 0 < return_frames <= timesteps
assert timesteps % return_frames == 0
assert jump_length == 1 or return_frames == 1, \
"Chain visualization is only implemented for jump_length=1"
if len(lig_fixed.size()) == 1:
lig_fixed = lig_fixed.unsqueeze(1)
if len(pocket_fixed.size()) == 1:
pocket_fixed = pocket_fixed.unsqueeze(1)
ligand, pocket = self.normalize(ligand, pocket)
n_samples = len(ligand['size'])
combined_mask = torch.cat((ligand['mask'], pocket['mask']))
xh0_lig = torch.cat([ligand['x'], ligand['one_hot']], dim=1)
xh0_pocket = torch.cat([pocket['x'], pocket['one_hot']], dim=1)
# Center initial system, subtract COM of known parts
mean_known = scatter_mean(
torch.cat((ligand['x'][lig_fixed.bool().view(-1)],
pocket['x'][pocket_fixed.bool().view(-1)])),
torch.cat((ligand['mask'][lig_fixed.bool().view(-1)],
pocket['mask'][pocket_fixed.bool().view(-1)])),
dim=0
)
xh0_lig[:, :self.n_dims] = \
xh0_lig[:, :self.n_dims] - mean_known[ligand['mask']]
xh0_pocket[:, :self.n_dims] = \
xh0_pocket[:, :self.n_dims] - mean_known[pocket['mask']]
# Noised representation at step t=T
z_lig, z_pocket = self.sample_combined_position_feature_noise(
ligand['mask'], pocket['mask'])
# Output tensors
out_lig = torch.zeros((return_frames,) + z_lig.size(),
device=z_lig.device)
out_pocket = torch.zeros((return_frames,) + z_pocket.size(),
device=z_pocket.device)
# Iteratively sample according to a pre-defined schedule
schedule = self.get_repaint_schedule(resamplings, jump_length, timesteps)
s = timesteps - 1
for i, n_denoise_steps in enumerate(schedule):
for j in range(n_denoise_steps):
# Denoise one time step: t -> s
s_array = torch.full((n_samples, 1), fill_value=s,
device=z_lig.device)
t_array = s_array + 1
s_array = s_array / timesteps
t_array = t_array / timesteps
# sample known nodes from the input
gamma_s = self.inflate_batch_array(self.gamma(s_array),
ligand['x'])
z_lig_known, z_pocket_known, _, _ = self.noised_representation(
xh0_lig, xh0_pocket, ligand['mask'], pocket['mask'], gamma_s)
# sample inpainted part
z_lig_unknown, z_pocket_unknown = self.sample_p_zs_given_zt(
s_array, t_array, z_lig, z_pocket, ligand['mask'],
pocket['mask'])
# move center of mass of the noised part to the center of mass
# of the corresponding denoised part before combining them
# -> the resulting system should be COM-free
com_noised = scatter_mean(
torch.cat((z_lig_known[:, :self.n_dims][lig_fixed.bool().view(-1)],
z_pocket_known[:, :self.n_dims][pocket_fixed.bool().view(-1)])),
torch.cat((ligand['mask'][lig_fixed.bool().view(-1)],
pocket['mask'][pocket_fixed.bool().view(-1)])),
dim=0
)
com_denoised = scatter_mean(
torch.cat((z_lig_unknown[:, :self.n_dims][lig_fixed.bool().view(-1)],
z_pocket_unknown[:, :self.n_dims][pocket_fixed.bool().view(-1)])),
torch.cat((ligand['mask'][lig_fixed.bool().view(-1)],
pocket['mask'][pocket_fixed.bool().view(-1)])),
dim=0
)
z_lig_known[:, :self.n_dims] = \
z_lig_known[:, :self.n_dims] + (com_denoised - com_noised)[ligand['mask']]
z_pocket_known[:, :self.n_dims] = \
z_pocket_known[:, :self.n_dims] + (com_denoised - com_noised)[pocket['mask']]
# combine
z_lig = z_lig_known * lig_fixed + \
z_lig_unknown * (1 - lig_fixed)
z_pocket = z_pocket_known * pocket_fixed + \
z_pocket_unknown * (1 - pocket_fixed)
self.assert_mean_zero_with_mask(
torch.cat((z_lig[:, :self.n_dims],
z_pocket[:, :self.n_dims]), dim=0), combined_mask
)
# save frame at the end of a resample cycle
if n_denoise_steps > jump_length or i == len(schedule) - 1:
if (s * return_frames) % timesteps == 0:
idx = (s * return_frames) // timesteps
out_lig[idx], out_pocket[idx] = \
self.unnormalize_z(z_lig, z_pocket)
# Noise combined representation
if j == n_denoise_steps - 1 and i < len(schedule) - 1:
# Go back jump_length steps
t = s + jump_length
t_array = torch.full((n_samples, 1), fill_value=t,
device=z_lig.device)
t_array = t_array / timesteps
gamma_s = self.inflate_batch_array(self.gamma(s_array),
ligand['x'])
gamma_t = self.inflate_batch_array(self.gamma(t_array),
ligand['x'])
z_lig, z_pocket = self.sample_p_zt_given_zs(
z_lig, z_pocket, ligand['mask'], pocket['mask'],
gamma_t, gamma_s)
s = t
s -= 1
# Finally sample p(x, h | z_0).
x_lig, h_lig, x_pocket, h_pocket = self.sample_p_xh_given_z0(
z_lig, z_pocket, ligand['mask'], pocket['mask'], n_samples)
self.assert_mean_zero_with_mask(
torch.cat((x_lig, x_pocket), dim=0), combined_mask
)
# Correct CoM drift for examples without intermediate states
if return_frames == 1:
x = torch.cat((x_lig, x_pocket))
max_cog = scatter_add(x, combined_mask, dim=0).abs().max().item()
if max_cog > 5e-2:
print(f'Warning CoG drift with error {max_cog:.3f}. Projecting '
f'the positions down.')
x = self.remove_mean_batch(x, combined_mask)
x_lig, x_pocket = x[:len(x_lig)], x[len(x_lig):]
# Overwrite last frame with the resulting x and h.
out_lig[0] = torch.cat([x_lig, h_lig], dim=1)
out_pocket[0] = torch.cat([x_pocket, h_pocket], dim=1)
# remove frame dimension if only the final molecule is returned
return out_lig.squeeze(0), out_pocket.squeeze(0), ligand['mask'], \
pocket['mask']
@staticmethod
def gaussian_KL(q_mu_minus_p_mu_squared, q_sigma, p_sigma, d):
"""Computes the KL distance between two normal distributions.
Args:
q_mu_minus_p_mu_squared: Squared difference between mean of
distribution q and distribution p: ||mu_q - mu_p||^2
q_sigma: Standard deviation of distribution q.
p_sigma: Standard deviation of distribution p.
d: dimension
Returns:
The KL distance
"""
return d * torch.log(p_sigma / q_sigma) + \
0.5 * (d * q_sigma ** 2 + q_mu_minus_p_mu_squared) / \
(p_sigma ** 2) - 0.5 * d
@staticmethod
def inflate_batch_array(array, target):
"""
Inflates the batch array (array) with only a single axis
(i.e. shape = (batch_size,), or possibly more empty axes
(i.e. shape (batch_size, 1, ..., 1)) to match the target shape.
"""
target_shape = (array.size(0),) + (1,) * (len(target.size()) - 1)
return array.view(target_shape)
def sigma(self, gamma, target_tensor):
"""Computes sigma given gamma."""
return self.inflate_batch_array(torch.sqrt(torch.sigmoid(gamma)),
target_tensor)
def alpha(self, gamma, target_tensor):
"""Computes alpha given gamma."""
return self.inflate_batch_array(torch.sqrt(torch.sigmoid(-gamma)),
target_tensor)
@staticmethod
def SNR(gamma):
"""Computes signal to noise ratio (alpha^2/sigma^2) given gamma."""
return torch.exp(-gamma)
def normalize(self, ligand=None, pocket=None):
if ligand is not None:
ligand['x'] = ligand['x'] / self.norm_values[0]
# Casting to float in case h still has long or int type.
ligand['one_hot'] = \
(ligand['one_hot'].float() - self.norm_biases[1]) / \
self.norm_values[1]
if pocket is not None:
pocket['x'] = pocket['x'] / self.norm_values[0]
pocket['one_hot'] = \
(pocket['one_hot'].float() - self.norm_biases[1]) / \
self.norm_values[1]
return ligand, pocket
def unnormalize(self, x, h_cat):
x = x * self.norm_values[0]
h_cat = h_cat * self.norm_values[1] + self.norm_biases[1]
return x, h_cat
def unnormalize_z(self, z_lig, z_pocket):
# Parse from z
x_lig, h_lig = z_lig[:, :self.n_dims], z_lig[:, self.n_dims:]
x_pocket, h_pocket = z_pocket[:, :self.n_dims], z_pocket[:, self.n_dims:]
# Unnormalize
x_lig, h_lig = self.unnormalize(x_lig, h_lig)
x_pocket, h_pocket = self.unnormalize(x_pocket, h_pocket)
return torch.cat([x_lig, h_lig], dim=1), \
torch.cat([x_pocket, h_pocket], dim=1)
def subspace_dimensionality(self, input_size):
"""Compute the dimensionality on translation-invariant linear subspace
where distributions on x are defined."""
return (input_size - 1) * self.n_dims
@staticmethod
def remove_mean_batch(x, indices):
mean = scatter_mean(x, indices, dim=0)
x = x - mean[indices]
return x
@staticmethod
def assert_mean_zero_with_mask(x, node_mask, eps=1e-10):
largest_value = x.abs().max().item()
error = scatter_add(x, node_mask, dim=0).abs().max().item()
rel_error = error / (largest_value + eps)
assert rel_error < 1e-2, f'Mean is not zero, relative_error {rel_error}'
@staticmethod
def sample_center_gravity_zero_gaussian_batch(size, lig_indices,
pocket_indices):
assert len(size) == 2
x = torch.randn(size, device=lig_indices.device)
# This projection only works because Gaussian is rotation invariant
# around zero and samples are independent!
x_projected = EnVariationalDiffusion.remove_mean_batch(
x, torch.cat((lig_indices, pocket_indices)))
return x_projected
@staticmethod
def sum_except_batch(x, indices):
return scatter_add(x.sum(-1), indices, dim=0)
@staticmethod
def cdf_standard_gaussian(x):
return 0.5 * (1. + torch.erf(x / math.sqrt(2)))
@staticmethod
def sample_gaussian(size, device):
x = torch.randn(size, device=device)
return x
class DistributionNodes:
def __init__(self, histogram):
histogram = torch.tensor(histogram).float()
histogram = histogram + 1e-3 # for numerical stability
prob = histogram / histogram.sum()
self.idx_to_n_nodes = torch.tensor(
[[(i, j) for j in range(prob.shape[1])] for i in range(prob.shape[0])]
).view(-1, 2)
self.n_nodes_to_idx = {tuple(x.tolist()): i
for i, x in enumerate(self.idx_to_n_nodes)}
self.prob = prob
self.m = torch.distributions.Categorical(self.prob.view(-1),
validate_args=True)
self.n1_given_n2 = \
[torch.distributions.Categorical(prob[:, j], validate_args=True)
for j in range(prob.shape[1])]
self.n2_given_n1 = \
[torch.distributions.Categorical(prob[i, :], validate_args=True)
for i in range(prob.shape[0])]
# entropy = -torch.sum(self.prob.view(-1) * torch.log(self.prob.view(-1) + 1e-30))
entropy = self.m.entropy()
print("Entropy of n_nodes: H[N]", entropy.item())
def sample(self, n_samples=1):
idx = self.m.sample((n_samples,))
num_nodes_lig, num_nodes_pocket = self.idx_to_n_nodes[idx].T
return num_nodes_lig, num_nodes_pocket
def sample_conditional(self, n1=None, n2=None):
assert (n1 is None) ^ (n2 is None), \
"Exactly one input argument must be None"
m = self.n1_given_n2 if n2 is not None else self.n2_given_n1
c = n2 if n2 is not None else n1
return torch.tensor([m[i].sample() for i in c], device=c.device)
def log_prob(self, batch_n_nodes_1, batch_n_nodes_2):
assert len(batch_n_nodes_1.size()) == 1
assert len(batch_n_nodes_2.size()) == 1
idx = torch.tensor(
[self.n_nodes_to_idx[(n1, n2)]
for n1, n2 in zip(batch_n_nodes_1.tolist(), batch_n_nodes_2.tolist())]
)
# log_probs = torch.log(self.prob.view(-1)[idx] + 1e-30)
log_probs = self.m.log_prob(idx)
return log_probs.to(batch_n_nodes_1.device)
def log_prob_n1_given_n2(self, n1, n2):
assert len(n1.size()) == 1
assert len(n2.size()) == 1
log_probs = torch.stack([self.n1_given_n2[c].log_prob(i.cpu())
for i, c in zip(n1, n2)])
return log_probs.to(n1.device)
def log_prob_n2_given_n1(self, n2, n1):
assert len(n2.size()) == 1
assert len(n1.size()) == 1
log_probs = torch.stack([self.n2_given_n1[c].log_prob(i.cpu())
for i, c in zip(n2, n1)])
return log_probs.to(n2.device)
class PositiveLinear(torch.nn.Module):
"""Linear layer with weights forced to be positive."""
def __init__(self, in_features: int, out_features: int, bias: bool = True,
weight_init_offset: int = -2):
super(PositiveLinear, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = torch.nn.Parameter(
torch.empty((out_features, in_features)))
if bias:
self.bias = torch.nn.Parameter(torch.empty(out_features))
else:
self.register_parameter('bias', None)
self.weight_init_offset = weight_init_offset
self.reset_parameters()
def reset_parameters(self) -> None:
torch.nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
with torch.no_grad():
self.weight.add_(self.weight_init_offset)
if self.bias is not None:
fan_in, _ = torch.nn.init._calculate_fan_in_and_fan_out(self.weight)
bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
torch.nn.init.uniform_(self.bias, -bound, bound)
def forward(self, input):
positive_weight = F.softplus(self.weight)
return F.linear(input, positive_weight, self.bias)
class GammaNetwork(torch.nn.Module):
"""The gamma network models a monotonic increasing function.
Construction as in the VDM paper."""
def __init__(self):
super().__init__()
self.l1 = PositiveLinear(1, 1)
self.l2 = PositiveLinear(1, 1024)
self.l3 = PositiveLinear(1024, 1)
self.gamma_0 = torch.nn.Parameter(torch.tensor([-5.]))
self.gamma_1 = torch.nn.Parameter(torch.tensor([10.]))
self.show_schedule()
def show_schedule(self, num_steps=50):
t = torch.linspace(0, 1, num_steps).view(num_steps, 1)
gamma = self.forward(t)
print('Gamma schedule:')
print(gamma.detach().cpu().numpy().reshape(num_steps))
def gamma_tilde(self, t):
l1_t = self.l1(t)
return l1_t + self.l3(torch.sigmoid(self.l2(l1_t)))
def forward(self, t):
zeros, ones = torch.zeros_like(t), torch.ones_like(t)
# Not super efficient.
gamma_tilde_0 = self.gamma_tilde(zeros)
gamma_tilde_1 = self.gamma_tilde(ones)
gamma_tilde_t = self.gamma_tilde(t)
# Normalize to [0, 1]
normalized_gamma = (gamma_tilde_t - gamma_tilde_0) / (
gamma_tilde_1 - gamma_tilde_0)
# Rescale to [gamma_0, gamma_1]
gamma = self.gamma_0 + (self.gamma_1 - self.gamma_0) * normalized_gamma
return gamma
def cosine_beta_schedule(timesteps, s=0.008, raise_to_power: float = 1):
"""
cosine schedule
as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
"""
steps = timesteps + 2
x = np.linspace(0, steps, steps)
alphas_cumprod = np.cos(((x / steps) + s) / (1 + s) * np.pi * 0.5) ** 2
alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
betas = np.clip(betas, a_min=0, a_max=0.999)
alphas = 1. - betas
alphas_cumprod = np.cumprod(alphas, axis=0)
if raise_to_power != 1:
alphas_cumprod = np.power(alphas_cumprod, raise_to_power)
return alphas_cumprod
def clip_noise_schedule(alphas2, clip_value=0.001):
"""
For a noise schedule given by alpha^2, this clips alpha_t / alpha_t-1.
This may help improve stability during
sampling.
"""
alphas2 = np.concatenate([np.ones(1), alphas2], axis=0)
alphas_step = (alphas2[1:] / alphas2[:-1])
alphas_step = np.clip(alphas_step, a_min=clip_value, a_max=1.)
alphas2 = np.cumprod(alphas_step, axis=0)
return alphas2
def polynomial_schedule(timesteps: int, s=1e-4, power=3.):
"""
A noise schedule based on a simple polynomial equation: 1 - x^power.
"""
steps = timesteps + 1
x = np.linspace(0, steps, steps)
alphas2 = (1 - np.power(x / steps, power))**2
alphas2 = clip_noise_schedule(alphas2, clip_value=0.001)
precision = 1 - 2 * s
alphas2 = precision * alphas2 + s
return alphas2
class PredefinedNoiseSchedule(torch.nn.Module):
"""
Predefined noise schedule. Essentially creates a lookup array for predefined
(non-learned) noise schedules.
"""
def __init__(self, noise_schedule, timesteps, precision):
super(PredefinedNoiseSchedule, self).__init__()
self.timesteps = timesteps
if noise_schedule == 'cosine':
alphas2 = cosine_beta_schedule(timesteps)
elif 'polynomial' in noise_schedule:
splits = noise_schedule.split('_')
assert len(splits) == 2
power = float(splits[1])
alphas2 = polynomial_schedule(timesteps, s=precision, power=power)
else:
raise ValueError(noise_schedule)
sigmas2 = 1 - alphas2
log_alphas2 = np.log(alphas2)
log_sigmas2 = np.log(sigmas2)
log_alphas2_to_sigmas2 = log_alphas2 - log_sigmas2
self.gamma = torch.nn.Parameter(
torch.from_numpy(-log_alphas2_to_sigmas2).float(),
requires_grad=False)
def forward(self, t):
t_int = torch.round(t * self.timesteps).long()
return self.gamma[t_int]