--- a +++ b/equivariant_diffusion/dynamics.py @@ -0,0 +1,187 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F +from equivariant_diffusion.egnn_new import EGNN, GNN +from equivariant_diffusion.en_diffusion import EnVariationalDiffusion +remove_mean_batch = EnVariationalDiffusion.remove_mean_batch +import numpy as np + + +class EGNNDynamics(nn.Module): + def __init__(self, atom_nf, residue_nf, + n_dims, joint_nf=16, hidden_nf=64, device='cpu', + act_fn=torch.nn.SiLU(), n_layers=4, attention=False, + condition_time=True, tanh=False, mode='egnn_dynamics', + norm_constant=0, inv_sublayers=2, sin_embedding=False, + normalization_factor=100, aggregation_method='sum', + update_pocket_coords=True, edge_cutoff_ligand=None, + edge_cutoff_pocket=None, edge_cutoff_interaction=None, + reflection_equivariant=True, edge_embedding_dim=None): + super().__init__() + self.mode = mode + self.edge_cutoff_l = edge_cutoff_ligand + self.edge_cutoff_p = edge_cutoff_pocket + self.edge_cutoff_i = edge_cutoff_interaction + self.edge_nf = edge_embedding_dim + + self.atom_encoder = nn.Sequential( + nn.Linear(atom_nf, 2 * atom_nf), + act_fn, + nn.Linear(2 * atom_nf, joint_nf) + ) + + self.atom_decoder = nn.Sequential( + nn.Linear(joint_nf, 2 * atom_nf), + act_fn, + nn.Linear(2 * atom_nf, atom_nf) + ) + + self.residue_encoder = nn.Sequential( + nn.Linear(residue_nf, 2 * residue_nf), + act_fn, + nn.Linear(2 * residue_nf, joint_nf) + ) + + self.residue_decoder = nn.Sequential( + nn.Linear(joint_nf, 2 * residue_nf), + act_fn, + nn.Linear(2 * residue_nf, residue_nf) + ) + + self.edge_embedding = nn.Embedding(3, self.edge_nf) \ + if self.edge_nf is not None else None + self.edge_nf = 0 if self.edge_nf is None else self.edge_nf + + if condition_time: + dynamics_node_nf = joint_nf + 1 + else: + print('Warning: dynamics model is _not_ conditioned on time.') + dynamics_node_nf = joint_nf + + if mode == 'egnn_dynamics': + self.egnn = EGNN( + in_node_nf=dynamics_node_nf, in_edge_nf=self.edge_nf, + hidden_nf=hidden_nf, device=device, act_fn=act_fn, + n_layers=n_layers, attention=attention, tanh=tanh, + norm_constant=norm_constant, + inv_sublayers=inv_sublayers, sin_embedding=sin_embedding, + normalization_factor=normalization_factor, + aggregation_method=aggregation_method, + reflection_equiv=reflection_equivariant + ) + self.node_nf = dynamics_node_nf + self.update_pocket_coords = update_pocket_coords + + elif mode == 'gnn_dynamics': + self.gnn = GNN( + in_node_nf=dynamics_node_nf + n_dims, in_edge_nf=self.edge_nf, + hidden_nf=hidden_nf, out_node_nf=n_dims + dynamics_node_nf, + device=device, act_fn=act_fn, n_layers=n_layers, + attention=attention, normalization_factor=normalization_factor, + aggregation_method=aggregation_method) + + self.device = device + self.n_dims = n_dims + self.condition_time = condition_time + + def forward(self, xh_atoms, xh_residues, t, mask_atoms, mask_residues): + + x_atoms = xh_atoms[:, :self.n_dims].clone() + h_atoms = xh_atoms[:, self.n_dims:].clone() + + x_residues = xh_residues[:, :self.n_dims].clone() + h_residues = xh_residues[:, self.n_dims:].clone() + + # embed atom features and residue features in a shared space + h_atoms = self.atom_encoder(h_atoms) + h_residues = self.residue_encoder(h_residues) + + # combine the two node types + x = torch.cat((x_atoms, x_residues), dim=0) + h = torch.cat((h_atoms, h_residues), dim=0) + mask = torch.cat([mask_atoms, mask_residues]) + + if self.condition_time: + if np.prod(t.size()) == 1: + # t is the same for all elements in batch. + h_time = torch.empty_like(h[:, 0:1]).fill_(t.item()) + else: + # t is different over the batch dimension. + h_time = t[mask] + h = torch.cat([h, h_time], dim=1) + + # get edges of a complete graph + edges = self.get_edges(mask_atoms, mask_residues, x_atoms, x_residues) + assert torch.all(mask[edges[0]] == mask[edges[1]]) + + # Get edge types + if self.edge_nf > 0: + # 0: ligand-pocket, 1: ligand-ligand, 2: pocket-pocket + edge_types = torch.zeros(edges.size(1), dtype=int, device=edges.device) + edge_types[(edges[0] < len(mask_atoms)) & (edges[1] < len(mask_atoms))] = 1 + edge_types[(edges[0] >= len(mask_atoms)) & (edges[1] >= len(mask_atoms))] = 2 + + # Learnable embedding + edge_types = self.edge_embedding(edge_types) + else: + edge_types = None + + if self.mode == 'egnn_dynamics': + update_coords_mask = None if self.update_pocket_coords \ + else torch.cat((torch.ones_like(mask_atoms), + torch.zeros_like(mask_residues))).unsqueeze(1) + h_final, x_final = self.egnn(h, x, edges, + update_coords_mask=update_coords_mask, + batch_mask=mask, edge_attr=edge_types) + vel = (x_final - x) + + elif self.mode == 'gnn_dynamics': + xh = torch.cat([x, h], dim=1) + output = self.gnn(xh, edges, node_mask=None, edge_attr=edge_types) + vel = output[:, :3] + h_final = output[:, 3:] + + else: + raise Exception("Wrong mode %s" % self.mode) + + if self.condition_time: + # Slice off last dimension which represented time. + h_final = h_final[:, :-1] + + # decode atom and residue features + h_final_atoms = self.atom_decoder(h_final[:len(mask_atoms)]) + h_final_residues = self.residue_decoder(h_final[len(mask_atoms):]) + + if torch.any(torch.isnan(vel)): + if self.training: + vel[torch.isnan(vel)] = 0.0 + else: + raise ValueError("NaN detected in EGNN output") + + if self.update_pocket_coords: + # in case of unconditional joint distribution, include this as in + # the original code + vel = remove_mean_batch(vel, mask) + + return torch.cat([vel[:len(mask_atoms)], h_final_atoms], dim=-1), \ + torch.cat([vel[len(mask_atoms):], h_final_residues], dim=-1) + + def get_edges(self, batch_mask_ligand, batch_mask_pocket, x_ligand, x_pocket): + adj_ligand = batch_mask_ligand[:, None] == batch_mask_ligand[None, :] + adj_pocket = batch_mask_pocket[:, None] == batch_mask_pocket[None, :] + adj_cross = batch_mask_ligand[:, None] == batch_mask_pocket[None, :] + + if self.edge_cutoff_l is not None: + adj_ligand = adj_ligand & (torch.cdist(x_ligand, x_ligand) <= self.edge_cutoff_l) + + if self.edge_cutoff_p is not None: + adj_pocket = adj_pocket & (torch.cdist(x_pocket, x_pocket) <= self.edge_cutoff_p) + + if self.edge_cutoff_i is not None: + adj_cross = adj_cross & (torch.cdist(x_ligand, x_pocket) <= self.edge_cutoff_i) + + adj = torch.cat((torch.cat((adj_ligand, adj_cross), dim=1), + torch.cat((adj_cross.T, adj_pocket), dim=1)), dim=0) + edges = torch.stack(torch.where(adj), dim=0) + + return edges