Switch to side-by-side view

--- a
+++ b/equivariant_diffusion/conditional_model.py
@@ -0,0 +1,746 @@
+import math
+
+import numpy as np
+import torch
+import torch.nn.functional as F
+from torch_scatter import scatter_add, scatter_mean
+
+import utils
+from equivariant_diffusion.en_diffusion import EnVariationalDiffusion
+
+
+class ConditionalDDPM(EnVariationalDiffusion):
+    """
+    Conditional Diffusion Module.
+    """
+    def __init__(self, *args, **kwargs):
+        super().__init__(*args, **kwargs)
+        assert not self.dynamics.update_pocket_coords
+
+    def kl_prior(self, xh_lig, mask_lig, num_nodes):
+        """Computes the KL between q(z1 | x) and the prior p(z1) = Normal(0, 1).
+
+        This is essentially a lot of work for something that is in practice
+        negligible in the loss. However, you compute it so that you see it when
+        you've made a mistake in your noise schedule.
+        """
+        batch_size = len(num_nodes)
+
+        # Compute the last alpha value, alpha_T.
+        ones = torch.ones((batch_size, 1), device=xh_lig.device)
+        gamma_T = self.gamma(ones)
+        alpha_T = self.alpha(gamma_T, xh_lig)
+
+        # Compute means.
+        mu_T_lig = alpha_T[mask_lig] * xh_lig
+        mu_T_lig_x, mu_T_lig_h = \
+            mu_T_lig[:, :self.n_dims], mu_T_lig[:, self.n_dims:]
+
+        # Compute standard deviations (only batch axis for x-part, inflated for h-part).
+        sigma_T_x = self.sigma(gamma_T, mu_T_lig_x).squeeze()
+        sigma_T_h = self.sigma(gamma_T, mu_T_lig_h).squeeze()
+
+        # Compute KL for h-part.
+        zeros = torch.zeros_like(mu_T_lig_h)
+        ones = torch.ones_like(sigma_T_h)
+        mu_norm2 = self.sum_except_batch((mu_T_lig_h - zeros) ** 2, mask_lig)
+        kl_distance_h = self.gaussian_KL(mu_norm2, sigma_T_h, ones, d=1)
+
+        # Compute KL for x-part.
+        zeros = torch.zeros_like(mu_T_lig_x)
+        ones = torch.ones_like(sigma_T_x)
+        mu_norm2 = self.sum_except_batch((mu_T_lig_x - zeros) ** 2, mask_lig)
+        subspace_d = self.subspace_dimensionality(num_nodes)
+        kl_distance_x = self.gaussian_KL(mu_norm2, sigma_T_x, ones, subspace_d)
+
+        return kl_distance_x + kl_distance_h
+
+    def log_pxh_given_z0_without_constants(self, ligand, z_0_lig, eps_lig,
+                                           net_out_lig, gamma_0, epsilon=1e-10):
+
+        # Discrete properties are predicted directly from z_t.
+        z_h_lig = z_0_lig[:, self.n_dims:]
+
+        # Take only part over x.
+        eps_lig_x = eps_lig[:, :self.n_dims]
+        net_lig_x = net_out_lig[:, :self.n_dims]
+
+        # Compute sigma_0 and rescale to the integer scale of the data.
+        sigma_0 = self.sigma(gamma_0, target_tensor=z_0_lig)
+        sigma_0_cat = sigma_0 * self.norm_values[1]
+
+        # Computes the error for the distribution
+        # N(x | 1 / alpha_0 z_0 + sigma_0/alpha_0 eps_0, sigma_0 / alpha_0),
+        # the weighting in the epsilon parametrization is exactly '1'.
+        squared_error = (eps_lig_x - net_lig_x) ** 2
+        if self.vnode_idx is not None:
+            # coordinates of virtual atoms should not contribute to the error
+            squared_error[ligand['one_hot'][:, self.vnode_idx].bool(), :self.n_dims] = 0
+        log_p_x_given_z0_without_constants_ligand = -0.5 * (
+            self.sum_except_batch(squared_error, ligand['mask'])
+        )
+
+        # Compute delta indicator masks.
+        # un-normalize
+        ligand_onehot = ligand['one_hot'] * self.norm_values[1] + self.norm_biases[1]
+
+        estimated_ligand_onehot = z_h_lig * self.norm_values[1] + self.norm_biases[1]
+
+        # Centered h_cat around 1, since onehot encoded.
+        centered_ligand_onehot = estimated_ligand_onehot - 1
+
+        # Compute integrals from 0.5 to 1.5 of the normal distribution
+        # N(mean=z_h_cat, stdev=sigma_0_cat)
+        log_ph_cat_proportional_ligand = torch.log(
+            self.cdf_standard_gaussian((centered_ligand_onehot + 0.5) / sigma_0_cat[ligand['mask']])
+            - self.cdf_standard_gaussian((centered_ligand_onehot - 0.5) / sigma_0_cat[ligand['mask']])
+            + epsilon
+        )
+
+        # Normalize the distribution over the categories.
+        log_Z = torch.logsumexp(log_ph_cat_proportional_ligand, dim=1,
+                                keepdim=True)
+        log_probabilities_ligand = log_ph_cat_proportional_ligand - log_Z
+
+        # Select the log_prob of the current category using the onehot
+        # representation.
+        log_ph_given_z0_ligand = self.sum_except_batch(
+            log_probabilities_ligand * ligand_onehot, ligand['mask'])
+
+        return log_p_x_given_z0_without_constants_ligand, log_ph_given_z0_ligand
+
+    def sample_p_xh_given_z0(self, z0_lig, xh0_pocket, lig_mask, pocket_mask,
+                             batch_size, fix_noise=False):
+        """Samples x ~ p(x|z0)."""
+        t_zeros = torch.zeros(size=(batch_size, 1), device=z0_lig.device)
+        gamma_0 = self.gamma(t_zeros)
+        # Computes sqrt(sigma_0^2 / alpha_0^2)
+        sigma_x = self.SNR(-0.5 * gamma_0)
+        net_out_lig, _ = self.dynamics(
+            z0_lig, xh0_pocket, t_zeros, lig_mask, pocket_mask)
+
+        # Compute mu for p(zs | zt).
+        mu_x_lig = self.compute_x_pred(net_out_lig, z0_lig, gamma_0, lig_mask)
+        xh_lig, xh0_pocket = self.sample_normal_zero_com(
+            mu_x_lig, xh0_pocket, sigma_x, lig_mask, pocket_mask, fix_noise)
+
+        x_lig, h_lig = self.unnormalize(
+            xh_lig[:, :self.n_dims], z0_lig[:, self.n_dims:])
+        x_pocket, h_pocket = self.unnormalize(
+            xh0_pocket[:, :self.n_dims], xh0_pocket[:, self.n_dims:])
+
+        h_lig = F.one_hot(torch.argmax(h_lig, dim=1), self.atom_nf)
+        # h_pocket = F.one_hot(torch.argmax(h_pocket, dim=1), self.residue_nf)
+
+        return x_lig, h_lig, x_pocket, h_pocket
+
+    def sample_normal(self, *args):
+        raise NotImplementedError("Has been replaced by sample_normal_zero_com()")
+
+    def sample_normal_zero_com(self, mu_lig, xh0_pocket, sigma, lig_mask,
+                               pocket_mask, fix_noise=False):
+        """Samples from a Normal distribution."""
+        if fix_noise:
+            # bs = 1 if fix_noise else mu.size(0)
+            raise NotImplementedError("fix_noise option isn't implemented yet")
+
+        eps_lig = self.sample_gaussian(
+            size=(len(lig_mask), self.n_dims + self.atom_nf),
+            device=lig_mask.device)
+
+        out_lig = mu_lig + sigma[lig_mask] * eps_lig
+
+        # project to COM-free subspace
+        xh_pocket = xh0_pocket.detach().clone()
+        out_lig[:, :self.n_dims], xh_pocket[:, :self.n_dims] = \
+            self.remove_mean_batch(out_lig[:, :self.n_dims],
+                                   xh0_pocket[:, :self.n_dims],
+                                   lig_mask, pocket_mask)
+
+        return out_lig, xh_pocket
+
+    def noised_representation(self, xh_lig, xh0_pocket, lig_mask, pocket_mask,
+                              gamma_t):
+        # Compute alpha_t and sigma_t from gamma.
+        alpha_t = self.alpha(gamma_t, xh_lig)
+        sigma_t = self.sigma(gamma_t, xh_lig)
+
+        # Sample zt ~ Normal(alpha_t x, sigma_t)
+        eps_lig = self.sample_gaussian(
+            size=(len(lig_mask), self.n_dims + self.atom_nf),
+            device=lig_mask.device)
+
+        # Sample z_t given x, h for timestep t, from q(z_t | x, h)
+        z_t_lig = alpha_t[lig_mask] * xh_lig + sigma_t[lig_mask] * eps_lig
+
+        # project to COM-free subspace
+        xh_pocket = xh0_pocket.detach().clone()
+        z_t_lig[:, :self.n_dims], xh_pocket[:, :self.n_dims] = \
+            self.remove_mean_batch(z_t_lig[:, :self.n_dims],
+                                   xh_pocket[:, :self.n_dims],
+                                   lig_mask, pocket_mask)
+
+        return z_t_lig, xh_pocket, eps_lig
+
+    def log_pN(self, N_lig, N_pocket):
+        """
+        Prior on the sample size for computing
+        log p(x,h,N) = log p(x,h|N) + log p(N), where log p(x,h|N) is the
+        model's output
+        Args:
+            N: array of sample sizes
+        Returns:
+            log p(N)
+        """
+        log_pN = self.size_distribution.log_prob_n1_given_n2(N_lig, N_pocket)
+        return log_pN
+
+    def delta_log_px(self, num_nodes):
+        return -self.subspace_dimensionality(num_nodes) * \
+               np.log(self.norm_values[0])
+
+    def forward(self, ligand, pocket, return_info=False):
+        """
+        Computes the loss and NLL terms
+        """
+        # Normalize data, take into account volume change in x.
+        ligand, pocket = self.normalize(ligand, pocket)
+
+        # Likelihood change due to normalization
+        # if self.vnode_idx is not None:
+        #     delta_log_px = self.delta_log_px(ligand['size'] - ligand['num_virtual_atoms'] + pocket['size'])
+        # else:
+        delta_log_px = self.delta_log_px(ligand['size'])
+
+        # Sample a timestep t for each example in batch
+        # At evaluation time, loss_0 will be computed separately to decrease
+        # variance in the estimator (costs two forward passes)
+        lowest_t = 0 if self.training else 1
+        t_int = torch.randint(
+            lowest_t, self.T + 1, size=(ligand['size'].size(0), 1),
+            device=ligand['x'].device).float()
+        s_int = t_int - 1  # previous timestep
+
+        # Masks: important to compute log p(x | z0).
+        t_is_zero = (t_int == 0).float()
+        t_is_not_zero = 1 - t_is_zero
+
+        # Normalize t to [0, 1]. Note that the negative
+        # step of s will never be used, since then p(x | z0) is computed.
+        s = s_int / self.T
+        t = t_int / self.T
+
+        # Compute gamma_s and gamma_t via the network.
+        gamma_s = self.inflate_batch_array(self.gamma(s), ligand['x'])
+        gamma_t = self.inflate_batch_array(self.gamma(t), ligand['x'])
+
+        # Concatenate x, and h[categorical].
+        xh0_lig = torch.cat([ligand['x'], ligand['one_hot']], dim=1)
+        xh0_pocket = torch.cat([pocket['x'], pocket['one_hot']], dim=1)
+
+        # Center the input nodes
+        xh0_lig[:, :self.n_dims], xh0_pocket[:, :self.n_dims] = \
+            self.remove_mean_batch(xh0_lig[:, :self.n_dims],
+                                   xh0_pocket[:, :self.n_dims],
+                                   ligand['mask'], pocket['mask'])
+
+        # Find noised representation
+        z_t_lig, xh_pocket, eps_t_lig = \
+            self.noised_representation(xh0_lig, xh0_pocket, ligand['mask'],
+                                       pocket['mask'], gamma_t)
+
+        # Neural net prediction.
+        net_out_lig, _ = self.dynamics(
+            z_t_lig, xh_pocket, t, ligand['mask'], pocket['mask'])
+
+        # For LJ loss term
+        # xh_lig_hat does not need to be zero-centered as it is only used for
+        # computing relative distances
+        xh_lig_hat = self.xh_given_zt_and_epsilon(z_t_lig, net_out_lig, gamma_t,
+                                                  ligand['mask'])
+
+        # Compute the L2 error.
+        squared_error = (eps_t_lig - net_out_lig) ** 2
+        if self.vnode_idx is not None:
+            # coordinates of virtual atoms should not contribute to the error
+            squared_error[ligand['one_hot'][:, self.vnode_idx].bool(), :self.n_dims] = 0
+        error_t_lig = self.sum_except_batch(squared_error, ligand['mask'])
+
+        # Compute weighting with SNR: (1 - SNR(s-t)) for epsilon parametrization
+        SNR_weight = (1 - self.SNR(gamma_s - gamma_t)).squeeze(1)
+        assert error_t_lig.size() == SNR_weight.size()
+
+        # The _constants_ depending on sigma_0 from the
+        # cross entropy term E_q(z0 | x) [log p(x | z0)].
+        neg_log_constants = -self.log_constants_p_x_given_z0(
+            n_nodes=ligand['size'], device=error_t_lig.device)
+
+        # The KL between q(zT | x) and p(zT) = Normal(0, 1).
+        # Should be close to zero.
+        kl_prior = self.kl_prior(xh0_lig, ligand['mask'], ligand['size'])
+
+        if self.training:
+            # Computes the L_0 term (even if gamma_t is not actually gamma_0)
+            # and this will later be selected via masking.
+            log_p_x_given_z0_without_constants_ligand, log_ph_given_z0 = \
+                self.log_pxh_given_z0_without_constants(
+                    ligand, z_t_lig, eps_t_lig, net_out_lig, gamma_t)
+
+            loss_0_x_ligand = -log_p_x_given_z0_without_constants_ligand * \
+                              t_is_zero.squeeze()
+            loss_0_h = -log_ph_given_z0 * t_is_zero.squeeze()
+
+            # apply t_is_zero mask
+            error_t_lig = error_t_lig * t_is_not_zero.squeeze()
+
+        else:
+            # Compute noise values for t = 0.
+            t_zeros = torch.zeros_like(s)
+            gamma_0 = self.inflate_batch_array(self.gamma(t_zeros), ligand['x'])
+
+            # Sample z_0 given x, h for timestep t, from q(z_t | x, h)
+            z_0_lig, xh_pocket, eps_0_lig = \
+                self.noised_representation(xh0_lig, xh0_pocket, ligand['mask'],
+                                           pocket['mask'], gamma_0)
+
+            net_out_0_lig, _ = self.dynamics(
+                z_0_lig, xh_pocket, t_zeros, ligand['mask'], pocket['mask'])
+
+            log_p_x_given_z0_without_constants_ligand, log_ph_given_z0 = \
+                self.log_pxh_given_z0_without_constants(
+                    ligand, z_0_lig, eps_0_lig, net_out_0_lig, gamma_0)
+            loss_0_x_ligand = -log_p_x_given_z0_without_constants_ligand
+            loss_0_h = -log_ph_given_z0
+
+        # sample size prior
+        log_pN = self.log_pN(ligand['size'], pocket['size'])
+
+        info = {
+            'eps_hat_lig_x': scatter_mean(
+                net_out_lig[:, :self.n_dims].abs().mean(1), ligand['mask'],
+                dim=0).mean(),
+            'eps_hat_lig_h': scatter_mean(
+                net_out_lig[:, self.n_dims:].abs().mean(1), ligand['mask'],
+                dim=0).mean(),
+        }
+        loss_terms = (delta_log_px, error_t_lig, torch.tensor(0.0), SNR_weight,
+                      loss_0_x_ligand, torch.tensor(0.0), loss_0_h,
+                      neg_log_constants, kl_prior, log_pN,
+                      t_int.squeeze(), xh_lig_hat)
+        return (*loss_terms, info) if return_info else loss_terms
+    
+    def partially_noised_ligand(self, ligand, pocket, noising_steps):
+        """
+        Partially noises a ligand to be later denoised.
+        """
+
+        # Inflate timestep into an array
+        t_int = torch.ones(size=(ligand['size'].size(0), 1),
+            device=ligand['x'].device).float() * noising_steps
+
+        # Normalize t to [0, 1].
+        t = t_int / self.T
+
+        # Compute gamma_s and gamma_t via the network.
+        gamma_t = self.inflate_batch_array(self.gamma(t), ligand['x'])
+
+        # Concatenate x, and h[categorical].
+        xh0_lig = torch.cat([ligand['x'], ligand['one_hot']], dim=1)
+        xh0_pocket = torch.cat([pocket['x'], pocket['one_hot']], dim=1)
+
+        # Center the input nodes
+        xh0_lig[:, :self.n_dims], xh0_pocket[:, :self.n_dims] = \
+            self.remove_mean_batch(xh0_lig[:, :self.n_dims],
+                                   xh0_pocket[:, :self.n_dims],
+                                   ligand['mask'], pocket['mask'])
+
+        # Find noised representation
+        z_t_lig, xh_pocket, eps_t_lig = \
+            self.noised_representation(xh0_lig, xh0_pocket, ligand['mask'],
+                                       pocket['mask'], gamma_t)
+            
+        return z_t_lig, xh_pocket, eps_t_lig
+
+    def diversify(self, ligand, pocket, noising_steps):
+        """
+        Diversifies a set of ligands via noise-denoising
+        """
+
+        # Normalize data, take into account volume change in x.
+        ligand, pocket = self.normalize(ligand, pocket)
+
+        z_lig, xh_pocket, _ = self.partially_noised_ligand(ligand, pocket, noising_steps)
+
+        timesteps = self.T
+        n_samples = len(pocket['size'])
+        device = pocket['x'].device
+
+        # xh0_pocket is the original pocket while xh_pocket might be a
+        # translated version of it
+        xh0_pocket = torch.cat([pocket['x'], pocket['one_hot']], dim=1)
+
+        lig_mask = ligand['mask']
+
+        self.assert_mean_zero_with_mask(z_lig[:, :self.n_dims], lig_mask)
+
+        # Iteratively sample p(z_s | z_t) for t = 1, ..., T, with s = t - 1.
+
+        for s in reversed(range(0, noising_steps)):
+            s_array = torch.full((n_samples, 1), fill_value=s,
+                                 device=z_lig.device)
+            t_array = s_array + 1
+            s_array = s_array / timesteps
+            t_array = t_array / timesteps
+
+            z_lig, xh_pocket = self.sample_p_zs_given_zt(
+                s_array, t_array, z_lig.detach(), xh_pocket.detach(), lig_mask, pocket['mask'])
+
+        # Finally sample p(x, h | z_0).
+        x_lig, h_lig, x_pocket, h_pocket = self.sample_p_xh_given_z0(
+            z_lig, xh_pocket, lig_mask, pocket['mask'], n_samples)
+
+        self.assert_mean_zero_with_mask(x_lig, lig_mask)
+
+        # Overwrite last frame with the resulting x and h.
+        out_lig = torch.cat([x_lig, h_lig], dim=1)
+        out_pocket = torch.cat([x_pocket, h_pocket], dim=1)
+
+        # remove frame dimension if only the final molecule is returned
+        return out_lig, out_pocket, lig_mask, pocket['mask']
+
+
+    def xh_given_zt_and_epsilon(self, z_t, epsilon, gamma_t, batch_mask):
+        """ Equation (7) in the EDM paper """
+        alpha_t = self.alpha(gamma_t, z_t)
+        sigma_t = self.sigma(gamma_t, z_t)
+        xh = z_t / alpha_t[batch_mask] - epsilon * sigma_t[batch_mask] / \
+             alpha_t[batch_mask]
+        return xh
+
+    def sample_p_zt_given_zs(self, zs_lig, xh0_pocket, ligand_mask, pocket_mask,
+                             gamma_t, gamma_s, fix_noise=False):
+        sigma2_t_given_s, sigma_t_given_s, alpha_t_given_s = \
+            self.sigma_and_alpha_t_given_s(gamma_t, gamma_s, zs_lig)
+
+        mu_lig = alpha_t_given_s[ligand_mask] * zs_lig
+        zt_lig, xh0_pocket = self.sample_normal_zero_com(
+            mu_lig, xh0_pocket, sigma_t_given_s, ligand_mask, pocket_mask,
+            fix_noise)
+
+        return zt_lig, xh0_pocket
+
+    def sample_p_zs_given_zt(self, s, t, zt_lig, xh0_pocket, ligand_mask,
+                             pocket_mask, fix_noise=False):
+        """Samples from zs ~ p(zs | zt). Only used during sampling."""
+        gamma_s = self.gamma(s)
+        gamma_t = self.gamma(t)
+
+        sigma2_t_given_s, sigma_t_given_s, alpha_t_given_s = \
+            self.sigma_and_alpha_t_given_s(gamma_t, gamma_s, zt_lig)
+
+        sigma_s = self.sigma(gamma_s, target_tensor=zt_lig)
+        sigma_t = self.sigma(gamma_t, target_tensor=zt_lig)
+
+        # Neural net prediction.
+        eps_t_lig, _ = self.dynamics(
+            zt_lig, xh0_pocket, t, ligand_mask, pocket_mask)
+
+        # Compute mu for p(zs | zt).
+        # Note: mu_{t->s} = 1 / alpha_{t|s} z_t - sigma_{t|s}^2 / sigma_t / alpha_{t|s} epsilon
+        # follows from the definition of mu_{t->s} and Equ. (7) in the EDM paper
+        mu_lig = zt_lig / alpha_t_given_s[ligand_mask] - \
+                 (sigma2_t_given_s / alpha_t_given_s / sigma_t)[ligand_mask] * \
+                 eps_t_lig
+
+        # Compute sigma for p(zs | zt).
+        sigma = sigma_t_given_s * sigma_s / sigma_t
+
+        # Sample zs given the parameters derived from zt.
+        zs_lig, xh0_pocket = self.sample_normal_zero_com(
+            mu_lig, xh0_pocket, sigma, ligand_mask, pocket_mask, fix_noise)
+
+        self.assert_mean_zero_with_mask(zt_lig[:, :self.n_dims], ligand_mask)
+
+        return zs_lig, xh0_pocket
+
+    def sample_combined_position_feature_noise(self, lig_indices, xh0_pocket,
+                                               pocket_indices):
+        """
+        Samples mean-centered normal noise for z_x, and standard normal noise
+        for z_h.
+        """
+        raise NotImplementedError("Use sample_normal_zero_com() instead.")
+
+    def sample(self, *args):
+        raise NotImplementedError("Conditional model does not support sampling "
+                                  "without given pocket.")
+
+    @torch.no_grad()
+    def sample_given_pocket(self, pocket, num_nodes_lig, return_frames=1,
+                            timesteps=None):
+        """
+        Draw samples from the generative model. Optionally, return intermediate
+        states for visualization purposes.
+        """
+        timesteps = self.T if timesteps is None else timesteps
+        assert 0 < return_frames <= timesteps
+        assert timesteps % return_frames == 0
+
+        n_samples = len(pocket['size'])
+        device = pocket['x'].device
+
+        _, pocket = self.normalize(pocket=pocket)
+
+        # xh0_pocket is the original pocket while xh_pocket might be a
+        # translated version of it
+        xh0_pocket = torch.cat([pocket['x'], pocket['one_hot']], dim=1)
+
+        lig_mask = utils.num_nodes_to_batch_mask(
+            n_samples, num_nodes_lig, device)
+
+        # Sample from Normal distribution in the pocket center
+        mu_lig_x = scatter_mean(pocket['x'], pocket['mask'], dim=0)
+        mu_lig_h = torch.zeros((n_samples, self.atom_nf), device=device)
+        mu_lig = torch.cat((mu_lig_x, mu_lig_h), dim=1)[lig_mask]
+        sigma = torch.ones_like(pocket['size']).unsqueeze(1)
+
+        z_lig, xh_pocket = self.sample_normal_zero_com(
+            mu_lig, xh0_pocket, sigma, lig_mask, pocket['mask'])
+
+        self.assert_mean_zero_with_mask(z_lig[:, :self.n_dims], lig_mask)
+
+        out_lig = torch.zeros((return_frames,) + z_lig.size(),
+                              device=z_lig.device)
+        out_pocket = torch.zeros((return_frames,) + xh_pocket.size(),
+                                 device=device)
+
+        # Iteratively sample p(z_s | z_t) for t = 1, ..., T, with s = t - 1.
+        for s in reversed(range(0, timesteps)):
+            s_array = torch.full((n_samples, 1), fill_value=s,
+                                 device=z_lig.device)
+            t_array = s_array + 1
+            s_array = s_array / timesteps
+            t_array = t_array / timesteps
+
+            z_lig, xh_pocket = self.sample_p_zs_given_zt(
+                s_array, t_array, z_lig, xh_pocket, lig_mask, pocket['mask'])
+
+            # save frame
+            if (s * return_frames) % timesteps == 0:
+                idx = (s * return_frames) // timesteps
+                out_lig[idx], out_pocket[idx] = \
+                    self.unnormalize_z(z_lig, xh_pocket)
+
+        # Finally sample p(x, h | z_0).
+        x_lig, h_lig, x_pocket, h_pocket = self.sample_p_xh_given_z0(
+            z_lig, xh_pocket, lig_mask, pocket['mask'], n_samples)
+
+        self.assert_mean_zero_with_mask(x_lig, lig_mask)
+
+        # Correct CoM drift for examples without intermediate states
+        if return_frames == 1:
+            max_cog = scatter_add(x_lig, lig_mask, dim=0).abs().max().item()
+            if max_cog > 5e-2:
+                print(f'Warning CoG drift with error {max_cog:.3f}. Projecting '
+                      f'the positions down.')
+                x_lig, x_pocket = self.remove_mean_batch(
+                    x_lig, x_pocket, lig_mask, pocket['mask'])
+
+        # Overwrite last frame with the resulting x and h.
+        out_lig[0] = torch.cat([x_lig, h_lig], dim=1)
+        out_pocket[0] = torch.cat([x_pocket, h_pocket], dim=1)
+
+        # remove frame dimension if only the final molecule is returned
+        return out_lig.squeeze(0), out_pocket.squeeze(0), lig_mask, \
+               pocket['mask']
+
+    @torch.no_grad()
+    def inpaint(self, ligand, pocket, lig_fixed, resamplings=1, return_frames=1,
+                timesteps=None, center='ligand'):
+        """
+        Draw samples from the generative model while fixing parts of the input.
+        Optionally, return intermediate states for visualization purposes.
+        Inspired by Algorithm 1 in:
+        Lugmayr, Andreas, et al.
+        "Repaint: Inpainting using denoising diffusion probabilistic models."
+        Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
+        Recognition. 2022.
+        """
+        timesteps = self.T if timesteps is None else timesteps
+        assert 0 < return_frames <= timesteps
+        assert timesteps % return_frames == 0
+
+        if len(lig_fixed.size()) == 1:
+            lig_fixed = lig_fixed.unsqueeze(1)
+
+        n_samples = len(ligand['size'])
+        device = pocket['x'].device
+
+        # Normalize
+        ligand, pocket = self.normalize(ligand, pocket)
+
+        # xh0_pocket is the original pocket while xh_pocket might be a
+        # translated version of it
+        xh0_pocket = torch.cat([pocket['x'], pocket['one_hot']], dim=1)
+        com_pocket_0 = scatter_mean(pocket['x'], pocket['mask'], dim=0)
+        xh0_ligand = torch.cat([ligand['x'], ligand['one_hot']], dim=1)
+        xh_ligand = xh0_ligand.clone()
+
+        # Center initial system, subtract COM of known parts
+        if center == 'ligand':
+            mean_known = scatter_mean(ligand['x'][lig_fixed.bool().view(-1)],
+                                      ligand['mask'][lig_fixed.bool().view(-1)],
+                                      dim=0)
+        elif center == 'pocket':
+            mean_known = scatter_mean(pocket['x'], pocket['mask'], dim=0)
+        else:
+            raise NotImplementedError(
+                f"Centering option {center} not implemented")
+
+        # Sample from Normal distribution in the ligand center
+        mu_lig_x = mean_known
+        mu_lig_h = torch.zeros((n_samples, self.atom_nf), device=device)
+        mu_lig = torch.cat((mu_lig_x, mu_lig_h), dim=1)[ligand['mask']]
+        sigma = torch.ones_like(pocket['size']).unsqueeze(1)
+
+        z_lig, xh_pocket = self.sample_normal_zero_com(
+            mu_lig, xh0_pocket, sigma, ligand['mask'], pocket['mask'])
+
+        # Output tensors
+        out_lig = torch.zeros((return_frames,) + z_lig.size(),
+                              device=z_lig.device)
+        out_pocket = torch.zeros((return_frames,) + xh_pocket.size(),
+                                 device=device)
+
+        # Iteratively sample with resampling iterations
+        for s in reversed(range(0, timesteps)):
+
+            # resampling iterations
+            for u in range(resamplings):
+
+                # Denoise one time step: t -> s
+                s_array = torch.full((n_samples, 1), fill_value=s,
+                                     device=device)
+                t_array = s_array + 1
+                s_array = s_array / timesteps
+                t_array = t_array / timesteps
+
+                gamma_t = self.gamma(t_array)
+                gamma_s = self.gamma(s_array)
+
+                # sample inpainted part
+                z_lig_unknown, xh_pocket = self.sample_p_zs_given_zt(
+                    s_array, t_array, z_lig, xh_pocket, ligand['mask'],
+                    pocket['mask'])
+
+                # sample known nodes from the input
+                com_pocket = scatter_mean(xh_pocket[:, :self.n_dims],
+                                          pocket['mask'], dim=0)
+                xh_ligand[:, :self.n_dims] = \
+                    ligand['x'] + (com_pocket - com_pocket_0)[ligand['mask']]
+                z_lig_known, xh_pocket, _ = self.noised_representation(
+                    xh_ligand, xh_pocket, ligand['mask'], pocket['mask'],
+                    gamma_s)
+
+                # move center of mass of the noised part to the center of mass
+                # of the corresponding denoised part before combining them
+                # -> the resulting system should be COM-free
+                com_noised = scatter_mean(
+                    z_lig_known[lig_fixed.bool().view(-1)][:, :self.n_dims],
+                    ligand['mask'][lig_fixed.bool().view(-1)], dim=0)
+                com_denoised = scatter_mean(
+                    z_lig_unknown[lig_fixed.bool().view(-1)][:, :self.n_dims],
+                    ligand['mask'][lig_fixed.bool().view(-1)], dim=0)
+                dx = com_denoised - com_noised
+                z_lig_known[:, :self.n_dims] = z_lig_known[:, :self.n_dims] + dx[ligand['mask']]
+                xh_pocket[:, :self.n_dims] = xh_pocket[:, :self.n_dims] + dx[pocket['mask']]
+
+                # combine
+                z_lig = z_lig_known * lig_fixed + z_lig_unknown * (
+                            1 - lig_fixed)
+
+                if u < resamplings - 1:
+                    # Noise the sample
+                    z_lig, xh_pocket = self.sample_p_zt_given_zs(
+                        z_lig, xh_pocket, ligand['mask'], pocket['mask'],
+                        gamma_t, gamma_s)
+
+                # save frame at the end of a resampling cycle
+                if u == resamplings - 1:
+                    if (s * return_frames) % timesteps == 0:
+                        idx = (s * return_frames) // timesteps
+
+                        out_lig[idx], out_pocket[idx] = \
+                            self.unnormalize_z(z_lig, xh_pocket)
+
+        # Finally sample p(x, h | z_0).
+        x_lig, h_lig, x_pocket, h_pocket = self.sample_p_xh_given_z0(
+            z_lig, xh_pocket, ligand['mask'], pocket['mask'], n_samples)
+
+        # Overwrite last frame with the resulting x and h.
+        out_lig[0] = torch.cat([x_lig, h_lig], dim=1)
+        out_pocket[0] = torch.cat([x_pocket, h_pocket], dim=1)
+
+        # remove frame dimension if only the final molecule is returned
+        return out_lig.squeeze(0), out_pocket.squeeze(0), ligand['mask'], \
+               pocket['mask']
+
+    @classmethod
+    def remove_mean_batch(cls, x_lig, x_pocket, lig_indices, pocket_indices):
+
+        # Just subtract the center of mass of the sampled part
+        mean = scatter_mean(x_lig, lig_indices, dim=0)
+
+        x_lig = x_lig - mean[lig_indices]
+        x_pocket = x_pocket - mean[pocket_indices]
+        return x_lig, x_pocket
+
+
+# ------------------------------------------------------------------------------
+# The same model without subspace-trick
+# ------------------------------------------------------------------------------
+class SimpleConditionalDDPM(ConditionalDDPM):
+    """
+    Simpler conditional diffusion module without subspace-trick.
+    - rotational equivariance is guaranteed by construction
+    - translationally equivariant likelihood is achieved by first mapping
+      samples to a space where the context is COM-free and evaluating the
+      likelihood there
+    - molecule generation is equivariant because we can first sample in the
+      space where the context is COM-free and translate the whole system back to
+      the original position of the context later
+    """
+    def subspace_dimensionality(self, input_size):
+        """ Override because we don't use the linear subspace anymore. """
+        return input_size * self.n_dims
+
+    @classmethod
+    def remove_mean_batch(cls, x_lig, x_pocket, lig_indices, pocket_indices):
+        """ Hacky way of removing the centering steps without changing too much
+        code. """
+        return x_lig, x_pocket
+
+    @staticmethod
+    def assert_mean_zero_with_mask(x, node_mask, eps=1e-10):
+        return
+
+    def forward(self, ligand, pocket, return_info=False):
+
+        # Subtract pocket center of mass
+        pocket_com = scatter_mean(pocket['x'], pocket['mask'], dim=0)
+        ligand['x'] = ligand['x'] - pocket_com[ligand['mask']]
+        pocket['x'] = pocket['x'] - pocket_com[pocket['mask']]
+
+        return super(SimpleConditionalDDPM, self).forward(
+            ligand, pocket, return_info)
+
+    @torch.no_grad()
+    def sample_given_pocket(self, pocket, num_nodes_lig, return_frames=1,
+                            timesteps=None):
+
+        # Subtract pocket center of mass
+        pocket_com = scatter_mean(pocket['x'], pocket['mask'], dim=0)
+        pocket['x'] = pocket['x'] - pocket_com[pocket['mask']]
+
+        return super(SimpleConditionalDDPM, self).sample_given_pocket(
+            pocket, num_nodes_lig, return_frames, timesteps)