|
a |
|
b/equivariant_diffusion/conditional_model.py |
|
|
1 |
import math |
|
|
2 |
|
|
|
3 |
import numpy as np |
|
|
4 |
import torch |
|
|
5 |
import torch.nn.functional as F |
|
|
6 |
from torch_scatter import scatter_add, scatter_mean |
|
|
7 |
|
|
|
8 |
import utils |
|
|
9 |
from equivariant_diffusion.en_diffusion import EnVariationalDiffusion |
|
|
10 |
|
|
|
11 |
|
|
|
12 |
class ConditionalDDPM(EnVariationalDiffusion): |
|
|
13 |
""" |
|
|
14 |
Conditional Diffusion Module. |
|
|
15 |
""" |
|
|
16 |
def __init__(self, *args, **kwargs): |
|
|
17 |
super().__init__(*args, **kwargs) |
|
|
18 |
assert not self.dynamics.update_pocket_coords |
|
|
19 |
|
|
|
20 |
def kl_prior(self, xh_lig, mask_lig, num_nodes): |
|
|
21 |
"""Computes the KL between q(z1 | x) and the prior p(z1) = Normal(0, 1). |
|
|
22 |
|
|
|
23 |
This is essentially a lot of work for something that is in practice |
|
|
24 |
negligible in the loss. However, you compute it so that you see it when |
|
|
25 |
you've made a mistake in your noise schedule. |
|
|
26 |
""" |
|
|
27 |
batch_size = len(num_nodes) |
|
|
28 |
|
|
|
29 |
# Compute the last alpha value, alpha_T. |
|
|
30 |
ones = torch.ones((batch_size, 1), device=xh_lig.device) |
|
|
31 |
gamma_T = self.gamma(ones) |
|
|
32 |
alpha_T = self.alpha(gamma_T, xh_lig) |
|
|
33 |
|
|
|
34 |
# Compute means. |
|
|
35 |
mu_T_lig = alpha_T[mask_lig] * xh_lig |
|
|
36 |
mu_T_lig_x, mu_T_lig_h = \ |
|
|
37 |
mu_T_lig[:, :self.n_dims], mu_T_lig[:, self.n_dims:] |
|
|
38 |
|
|
|
39 |
# Compute standard deviations (only batch axis for x-part, inflated for h-part). |
|
|
40 |
sigma_T_x = self.sigma(gamma_T, mu_T_lig_x).squeeze() |
|
|
41 |
sigma_T_h = self.sigma(gamma_T, mu_T_lig_h).squeeze() |
|
|
42 |
|
|
|
43 |
# Compute KL for h-part. |
|
|
44 |
zeros = torch.zeros_like(mu_T_lig_h) |
|
|
45 |
ones = torch.ones_like(sigma_T_h) |
|
|
46 |
mu_norm2 = self.sum_except_batch((mu_T_lig_h - zeros) ** 2, mask_lig) |
|
|
47 |
kl_distance_h = self.gaussian_KL(mu_norm2, sigma_T_h, ones, d=1) |
|
|
48 |
|
|
|
49 |
# Compute KL for x-part. |
|
|
50 |
zeros = torch.zeros_like(mu_T_lig_x) |
|
|
51 |
ones = torch.ones_like(sigma_T_x) |
|
|
52 |
mu_norm2 = self.sum_except_batch((mu_T_lig_x - zeros) ** 2, mask_lig) |
|
|
53 |
subspace_d = self.subspace_dimensionality(num_nodes) |
|
|
54 |
kl_distance_x = self.gaussian_KL(mu_norm2, sigma_T_x, ones, subspace_d) |
|
|
55 |
|
|
|
56 |
return kl_distance_x + kl_distance_h |
|
|
57 |
|
|
|
58 |
def log_pxh_given_z0_without_constants(self, ligand, z_0_lig, eps_lig, |
|
|
59 |
net_out_lig, gamma_0, epsilon=1e-10): |
|
|
60 |
|
|
|
61 |
# Discrete properties are predicted directly from z_t. |
|
|
62 |
z_h_lig = z_0_lig[:, self.n_dims:] |
|
|
63 |
|
|
|
64 |
# Take only part over x. |
|
|
65 |
eps_lig_x = eps_lig[:, :self.n_dims] |
|
|
66 |
net_lig_x = net_out_lig[:, :self.n_dims] |
|
|
67 |
|
|
|
68 |
# Compute sigma_0 and rescale to the integer scale of the data. |
|
|
69 |
sigma_0 = self.sigma(gamma_0, target_tensor=z_0_lig) |
|
|
70 |
sigma_0_cat = sigma_0 * self.norm_values[1] |
|
|
71 |
|
|
|
72 |
# Computes the error for the distribution |
|
|
73 |
# N(x | 1 / alpha_0 z_0 + sigma_0/alpha_0 eps_0, sigma_0 / alpha_0), |
|
|
74 |
# the weighting in the epsilon parametrization is exactly '1'. |
|
|
75 |
squared_error = (eps_lig_x - net_lig_x) ** 2 |
|
|
76 |
if self.vnode_idx is not None: |
|
|
77 |
# coordinates of virtual atoms should not contribute to the error |
|
|
78 |
squared_error[ligand['one_hot'][:, self.vnode_idx].bool(), :self.n_dims] = 0 |
|
|
79 |
log_p_x_given_z0_without_constants_ligand = -0.5 * ( |
|
|
80 |
self.sum_except_batch(squared_error, ligand['mask']) |
|
|
81 |
) |
|
|
82 |
|
|
|
83 |
# Compute delta indicator masks. |
|
|
84 |
# un-normalize |
|
|
85 |
ligand_onehot = ligand['one_hot'] * self.norm_values[1] + self.norm_biases[1] |
|
|
86 |
|
|
|
87 |
estimated_ligand_onehot = z_h_lig * self.norm_values[1] + self.norm_biases[1] |
|
|
88 |
|
|
|
89 |
# Centered h_cat around 1, since onehot encoded. |
|
|
90 |
centered_ligand_onehot = estimated_ligand_onehot - 1 |
|
|
91 |
|
|
|
92 |
# Compute integrals from 0.5 to 1.5 of the normal distribution |
|
|
93 |
# N(mean=z_h_cat, stdev=sigma_0_cat) |
|
|
94 |
log_ph_cat_proportional_ligand = torch.log( |
|
|
95 |
self.cdf_standard_gaussian((centered_ligand_onehot + 0.5) / sigma_0_cat[ligand['mask']]) |
|
|
96 |
- self.cdf_standard_gaussian((centered_ligand_onehot - 0.5) / sigma_0_cat[ligand['mask']]) |
|
|
97 |
+ epsilon |
|
|
98 |
) |
|
|
99 |
|
|
|
100 |
# Normalize the distribution over the categories. |
|
|
101 |
log_Z = torch.logsumexp(log_ph_cat_proportional_ligand, dim=1, |
|
|
102 |
keepdim=True) |
|
|
103 |
log_probabilities_ligand = log_ph_cat_proportional_ligand - log_Z |
|
|
104 |
|
|
|
105 |
# Select the log_prob of the current category using the onehot |
|
|
106 |
# representation. |
|
|
107 |
log_ph_given_z0_ligand = self.sum_except_batch( |
|
|
108 |
log_probabilities_ligand * ligand_onehot, ligand['mask']) |
|
|
109 |
|
|
|
110 |
return log_p_x_given_z0_without_constants_ligand, log_ph_given_z0_ligand |
|
|
111 |
|
|
|
112 |
def sample_p_xh_given_z0(self, z0_lig, xh0_pocket, lig_mask, pocket_mask, |
|
|
113 |
batch_size, fix_noise=False): |
|
|
114 |
"""Samples x ~ p(x|z0).""" |
|
|
115 |
t_zeros = torch.zeros(size=(batch_size, 1), device=z0_lig.device) |
|
|
116 |
gamma_0 = self.gamma(t_zeros) |
|
|
117 |
# Computes sqrt(sigma_0^2 / alpha_0^2) |
|
|
118 |
sigma_x = self.SNR(-0.5 * gamma_0) |
|
|
119 |
net_out_lig, _ = self.dynamics( |
|
|
120 |
z0_lig, xh0_pocket, t_zeros, lig_mask, pocket_mask) |
|
|
121 |
|
|
|
122 |
# Compute mu for p(zs | zt). |
|
|
123 |
mu_x_lig = self.compute_x_pred(net_out_lig, z0_lig, gamma_0, lig_mask) |
|
|
124 |
xh_lig, xh0_pocket = self.sample_normal_zero_com( |
|
|
125 |
mu_x_lig, xh0_pocket, sigma_x, lig_mask, pocket_mask, fix_noise) |
|
|
126 |
|
|
|
127 |
x_lig, h_lig = self.unnormalize( |
|
|
128 |
xh_lig[:, :self.n_dims], z0_lig[:, self.n_dims:]) |
|
|
129 |
x_pocket, h_pocket = self.unnormalize( |
|
|
130 |
xh0_pocket[:, :self.n_dims], xh0_pocket[:, self.n_dims:]) |
|
|
131 |
|
|
|
132 |
h_lig = F.one_hot(torch.argmax(h_lig, dim=1), self.atom_nf) |
|
|
133 |
# h_pocket = F.one_hot(torch.argmax(h_pocket, dim=1), self.residue_nf) |
|
|
134 |
|
|
|
135 |
return x_lig, h_lig, x_pocket, h_pocket |
|
|
136 |
|
|
|
137 |
def sample_normal(self, *args): |
|
|
138 |
raise NotImplementedError("Has been replaced by sample_normal_zero_com()") |
|
|
139 |
|
|
|
140 |
def sample_normal_zero_com(self, mu_lig, xh0_pocket, sigma, lig_mask, |
|
|
141 |
pocket_mask, fix_noise=False): |
|
|
142 |
"""Samples from a Normal distribution.""" |
|
|
143 |
if fix_noise: |
|
|
144 |
# bs = 1 if fix_noise else mu.size(0) |
|
|
145 |
raise NotImplementedError("fix_noise option isn't implemented yet") |
|
|
146 |
|
|
|
147 |
eps_lig = self.sample_gaussian( |
|
|
148 |
size=(len(lig_mask), self.n_dims + self.atom_nf), |
|
|
149 |
device=lig_mask.device) |
|
|
150 |
|
|
|
151 |
out_lig = mu_lig + sigma[lig_mask] * eps_lig |
|
|
152 |
|
|
|
153 |
# project to COM-free subspace |
|
|
154 |
xh_pocket = xh0_pocket.detach().clone() |
|
|
155 |
out_lig[:, :self.n_dims], xh_pocket[:, :self.n_dims] = \ |
|
|
156 |
self.remove_mean_batch(out_lig[:, :self.n_dims], |
|
|
157 |
xh0_pocket[:, :self.n_dims], |
|
|
158 |
lig_mask, pocket_mask) |
|
|
159 |
|
|
|
160 |
return out_lig, xh_pocket |
|
|
161 |
|
|
|
162 |
def noised_representation(self, xh_lig, xh0_pocket, lig_mask, pocket_mask, |
|
|
163 |
gamma_t): |
|
|
164 |
# Compute alpha_t and sigma_t from gamma. |
|
|
165 |
alpha_t = self.alpha(gamma_t, xh_lig) |
|
|
166 |
sigma_t = self.sigma(gamma_t, xh_lig) |
|
|
167 |
|
|
|
168 |
# Sample zt ~ Normal(alpha_t x, sigma_t) |
|
|
169 |
eps_lig = self.sample_gaussian( |
|
|
170 |
size=(len(lig_mask), self.n_dims + self.atom_nf), |
|
|
171 |
device=lig_mask.device) |
|
|
172 |
|
|
|
173 |
# Sample z_t given x, h for timestep t, from q(z_t | x, h) |
|
|
174 |
z_t_lig = alpha_t[lig_mask] * xh_lig + sigma_t[lig_mask] * eps_lig |
|
|
175 |
|
|
|
176 |
# project to COM-free subspace |
|
|
177 |
xh_pocket = xh0_pocket.detach().clone() |
|
|
178 |
z_t_lig[:, :self.n_dims], xh_pocket[:, :self.n_dims] = \ |
|
|
179 |
self.remove_mean_batch(z_t_lig[:, :self.n_dims], |
|
|
180 |
xh_pocket[:, :self.n_dims], |
|
|
181 |
lig_mask, pocket_mask) |
|
|
182 |
|
|
|
183 |
return z_t_lig, xh_pocket, eps_lig |
|
|
184 |
|
|
|
185 |
def log_pN(self, N_lig, N_pocket): |
|
|
186 |
""" |
|
|
187 |
Prior on the sample size for computing |
|
|
188 |
log p(x,h,N) = log p(x,h|N) + log p(N), where log p(x,h|N) is the |
|
|
189 |
model's output |
|
|
190 |
Args: |
|
|
191 |
N: array of sample sizes |
|
|
192 |
Returns: |
|
|
193 |
log p(N) |
|
|
194 |
""" |
|
|
195 |
log_pN = self.size_distribution.log_prob_n1_given_n2(N_lig, N_pocket) |
|
|
196 |
return log_pN |
|
|
197 |
|
|
|
198 |
def delta_log_px(self, num_nodes): |
|
|
199 |
return -self.subspace_dimensionality(num_nodes) * \ |
|
|
200 |
np.log(self.norm_values[0]) |
|
|
201 |
|
|
|
202 |
def forward(self, ligand, pocket, return_info=False): |
|
|
203 |
""" |
|
|
204 |
Computes the loss and NLL terms |
|
|
205 |
""" |
|
|
206 |
# Normalize data, take into account volume change in x. |
|
|
207 |
ligand, pocket = self.normalize(ligand, pocket) |
|
|
208 |
|
|
|
209 |
# Likelihood change due to normalization |
|
|
210 |
# if self.vnode_idx is not None: |
|
|
211 |
# delta_log_px = self.delta_log_px(ligand['size'] - ligand['num_virtual_atoms'] + pocket['size']) |
|
|
212 |
# else: |
|
|
213 |
delta_log_px = self.delta_log_px(ligand['size']) |
|
|
214 |
|
|
|
215 |
# Sample a timestep t for each example in batch |
|
|
216 |
# At evaluation time, loss_0 will be computed separately to decrease |
|
|
217 |
# variance in the estimator (costs two forward passes) |
|
|
218 |
lowest_t = 0 if self.training else 1 |
|
|
219 |
t_int = torch.randint( |
|
|
220 |
lowest_t, self.T + 1, size=(ligand['size'].size(0), 1), |
|
|
221 |
device=ligand['x'].device).float() |
|
|
222 |
s_int = t_int - 1 # previous timestep |
|
|
223 |
|
|
|
224 |
# Masks: important to compute log p(x | z0). |
|
|
225 |
t_is_zero = (t_int == 0).float() |
|
|
226 |
t_is_not_zero = 1 - t_is_zero |
|
|
227 |
|
|
|
228 |
# Normalize t to [0, 1]. Note that the negative |
|
|
229 |
# step of s will never be used, since then p(x | z0) is computed. |
|
|
230 |
s = s_int / self.T |
|
|
231 |
t = t_int / self.T |
|
|
232 |
|
|
|
233 |
# Compute gamma_s and gamma_t via the network. |
|
|
234 |
gamma_s = self.inflate_batch_array(self.gamma(s), ligand['x']) |
|
|
235 |
gamma_t = self.inflate_batch_array(self.gamma(t), ligand['x']) |
|
|
236 |
|
|
|
237 |
# Concatenate x, and h[categorical]. |
|
|
238 |
xh0_lig = torch.cat([ligand['x'], ligand['one_hot']], dim=1) |
|
|
239 |
xh0_pocket = torch.cat([pocket['x'], pocket['one_hot']], dim=1) |
|
|
240 |
|
|
|
241 |
# Center the input nodes |
|
|
242 |
xh0_lig[:, :self.n_dims], xh0_pocket[:, :self.n_dims] = \ |
|
|
243 |
self.remove_mean_batch(xh0_lig[:, :self.n_dims], |
|
|
244 |
xh0_pocket[:, :self.n_dims], |
|
|
245 |
ligand['mask'], pocket['mask']) |
|
|
246 |
|
|
|
247 |
# Find noised representation |
|
|
248 |
z_t_lig, xh_pocket, eps_t_lig = \ |
|
|
249 |
self.noised_representation(xh0_lig, xh0_pocket, ligand['mask'], |
|
|
250 |
pocket['mask'], gamma_t) |
|
|
251 |
|
|
|
252 |
# Neural net prediction. |
|
|
253 |
net_out_lig, _ = self.dynamics( |
|
|
254 |
z_t_lig, xh_pocket, t, ligand['mask'], pocket['mask']) |
|
|
255 |
|
|
|
256 |
# For LJ loss term |
|
|
257 |
# xh_lig_hat does not need to be zero-centered as it is only used for |
|
|
258 |
# computing relative distances |
|
|
259 |
xh_lig_hat = self.xh_given_zt_and_epsilon(z_t_lig, net_out_lig, gamma_t, |
|
|
260 |
ligand['mask']) |
|
|
261 |
|
|
|
262 |
# Compute the L2 error. |
|
|
263 |
squared_error = (eps_t_lig - net_out_lig) ** 2 |
|
|
264 |
if self.vnode_idx is not None: |
|
|
265 |
# coordinates of virtual atoms should not contribute to the error |
|
|
266 |
squared_error[ligand['one_hot'][:, self.vnode_idx].bool(), :self.n_dims] = 0 |
|
|
267 |
error_t_lig = self.sum_except_batch(squared_error, ligand['mask']) |
|
|
268 |
|
|
|
269 |
# Compute weighting with SNR: (1 - SNR(s-t)) for epsilon parametrization |
|
|
270 |
SNR_weight = (1 - self.SNR(gamma_s - gamma_t)).squeeze(1) |
|
|
271 |
assert error_t_lig.size() == SNR_weight.size() |
|
|
272 |
|
|
|
273 |
# The _constants_ depending on sigma_0 from the |
|
|
274 |
# cross entropy term E_q(z0 | x) [log p(x | z0)]. |
|
|
275 |
neg_log_constants = -self.log_constants_p_x_given_z0( |
|
|
276 |
n_nodes=ligand['size'], device=error_t_lig.device) |
|
|
277 |
|
|
|
278 |
# The KL between q(zT | x) and p(zT) = Normal(0, 1). |
|
|
279 |
# Should be close to zero. |
|
|
280 |
kl_prior = self.kl_prior(xh0_lig, ligand['mask'], ligand['size']) |
|
|
281 |
|
|
|
282 |
if self.training: |
|
|
283 |
# Computes the L_0 term (even if gamma_t is not actually gamma_0) |
|
|
284 |
# and this will later be selected via masking. |
|
|
285 |
log_p_x_given_z0_without_constants_ligand, log_ph_given_z0 = \ |
|
|
286 |
self.log_pxh_given_z0_without_constants( |
|
|
287 |
ligand, z_t_lig, eps_t_lig, net_out_lig, gamma_t) |
|
|
288 |
|
|
|
289 |
loss_0_x_ligand = -log_p_x_given_z0_without_constants_ligand * \ |
|
|
290 |
t_is_zero.squeeze() |
|
|
291 |
loss_0_h = -log_ph_given_z0 * t_is_zero.squeeze() |
|
|
292 |
|
|
|
293 |
# apply t_is_zero mask |
|
|
294 |
error_t_lig = error_t_lig * t_is_not_zero.squeeze() |
|
|
295 |
|
|
|
296 |
else: |
|
|
297 |
# Compute noise values for t = 0. |
|
|
298 |
t_zeros = torch.zeros_like(s) |
|
|
299 |
gamma_0 = self.inflate_batch_array(self.gamma(t_zeros), ligand['x']) |
|
|
300 |
|
|
|
301 |
# Sample z_0 given x, h for timestep t, from q(z_t | x, h) |
|
|
302 |
z_0_lig, xh_pocket, eps_0_lig = \ |
|
|
303 |
self.noised_representation(xh0_lig, xh0_pocket, ligand['mask'], |
|
|
304 |
pocket['mask'], gamma_0) |
|
|
305 |
|
|
|
306 |
net_out_0_lig, _ = self.dynamics( |
|
|
307 |
z_0_lig, xh_pocket, t_zeros, ligand['mask'], pocket['mask']) |
|
|
308 |
|
|
|
309 |
log_p_x_given_z0_without_constants_ligand, log_ph_given_z0 = \ |
|
|
310 |
self.log_pxh_given_z0_without_constants( |
|
|
311 |
ligand, z_0_lig, eps_0_lig, net_out_0_lig, gamma_0) |
|
|
312 |
loss_0_x_ligand = -log_p_x_given_z0_without_constants_ligand |
|
|
313 |
loss_0_h = -log_ph_given_z0 |
|
|
314 |
|
|
|
315 |
# sample size prior |
|
|
316 |
log_pN = self.log_pN(ligand['size'], pocket['size']) |
|
|
317 |
|
|
|
318 |
info = { |
|
|
319 |
'eps_hat_lig_x': scatter_mean( |
|
|
320 |
net_out_lig[:, :self.n_dims].abs().mean(1), ligand['mask'], |
|
|
321 |
dim=0).mean(), |
|
|
322 |
'eps_hat_lig_h': scatter_mean( |
|
|
323 |
net_out_lig[:, self.n_dims:].abs().mean(1), ligand['mask'], |
|
|
324 |
dim=0).mean(), |
|
|
325 |
} |
|
|
326 |
loss_terms = (delta_log_px, error_t_lig, torch.tensor(0.0), SNR_weight, |
|
|
327 |
loss_0_x_ligand, torch.tensor(0.0), loss_0_h, |
|
|
328 |
neg_log_constants, kl_prior, log_pN, |
|
|
329 |
t_int.squeeze(), xh_lig_hat) |
|
|
330 |
return (*loss_terms, info) if return_info else loss_terms |
|
|
331 |
|
|
|
332 |
def partially_noised_ligand(self, ligand, pocket, noising_steps): |
|
|
333 |
""" |
|
|
334 |
Partially noises a ligand to be later denoised. |
|
|
335 |
""" |
|
|
336 |
|
|
|
337 |
# Inflate timestep into an array |
|
|
338 |
t_int = torch.ones(size=(ligand['size'].size(0), 1), |
|
|
339 |
device=ligand['x'].device).float() * noising_steps |
|
|
340 |
|
|
|
341 |
# Normalize t to [0, 1]. |
|
|
342 |
t = t_int / self.T |
|
|
343 |
|
|
|
344 |
# Compute gamma_s and gamma_t via the network. |
|
|
345 |
gamma_t = self.inflate_batch_array(self.gamma(t), ligand['x']) |
|
|
346 |
|
|
|
347 |
# Concatenate x, and h[categorical]. |
|
|
348 |
xh0_lig = torch.cat([ligand['x'], ligand['one_hot']], dim=1) |
|
|
349 |
xh0_pocket = torch.cat([pocket['x'], pocket['one_hot']], dim=1) |
|
|
350 |
|
|
|
351 |
# Center the input nodes |
|
|
352 |
xh0_lig[:, :self.n_dims], xh0_pocket[:, :self.n_dims] = \ |
|
|
353 |
self.remove_mean_batch(xh0_lig[:, :self.n_dims], |
|
|
354 |
xh0_pocket[:, :self.n_dims], |
|
|
355 |
ligand['mask'], pocket['mask']) |
|
|
356 |
|
|
|
357 |
# Find noised representation |
|
|
358 |
z_t_lig, xh_pocket, eps_t_lig = \ |
|
|
359 |
self.noised_representation(xh0_lig, xh0_pocket, ligand['mask'], |
|
|
360 |
pocket['mask'], gamma_t) |
|
|
361 |
|
|
|
362 |
return z_t_lig, xh_pocket, eps_t_lig |
|
|
363 |
|
|
|
364 |
def diversify(self, ligand, pocket, noising_steps): |
|
|
365 |
""" |
|
|
366 |
Diversifies a set of ligands via noise-denoising |
|
|
367 |
""" |
|
|
368 |
|
|
|
369 |
# Normalize data, take into account volume change in x. |
|
|
370 |
ligand, pocket = self.normalize(ligand, pocket) |
|
|
371 |
|
|
|
372 |
z_lig, xh_pocket, _ = self.partially_noised_ligand(ligand, pocket, noising_steps) |
|
|
373 |
|
|
|
374 |
timesteps = self.T |
|
|
375 |
n_samples = len(pocket['size']) |
|
|
376 |
device = pocket['x'].device |
|
|
377 |
|
|
|
378 |
# xh0_pocket is the original pocket while xh_pocket might be a |
|
|
379 |
# translated version of it |
|
|
380 |
xh0_pocket = torch.cat([pocket['x'], pocket['one_hot']], dim=1) |
|
|
381 |
|
|
|
382 |
lig_mask = ligand['mask'] |
|
|
383 |
|
|
|
384 |
self.assert_mean_zero_with_mask(z_lig[:, :self.n_dims], lig_mask) |
|
|
385 |
|
|
|
386 |
# Iteratively sample p(z_s | z_t) for t = 1, ..., T, with s = t - 1. |
|
|
387 |
|
|
|
388 |
for s in reversed(range(0, noising_steps)): |
|
|
389 |
s_array = torch.full((n_samples, 1), fill_value=s, |
|
|
390 |
device=z_lig.device) |
|
|
391 |
t_array = s_array + 1 |
|
|
392 |
s_array = s_array / timesteps |
|
|
393 |
t_array = t_array / timesteps |
|
|
394 |
|
|
|
395 |
z_lig, xh_pocket = self.sample_p_zs_given_zt( |
|
|
396 |
s_array, t_array, z_lig.detach(), xh_pocket.detach(), lig_mask, pocket['mask']) |
|
|
397 |
|
|
|
398 |
# Finally sample p(x, h | z_0). |
|
|
399 |
x_lig, h_lig, x_pocket, h_pocket = self.sample_p_xh_given_z0( |
|
|
400 |
z_lig, xh_pocket, lig_mask, pocket['mask'], n_samples) |
|
|
401 |
|
|
|
402 |
self.assert_mean_zero_with_mask(x_lig, lig_mask) |
|
|
403 |
|
|
|
404 |
# Overwrite last frame with the resulting x and h. |
|
|
405 |
out_lig = torch.cat([x_lig, h_lig], dim=1) |
|
|
406 |
out_pocket = torch.cat([x_pocket, h_pocket], dim=1) |
|
|
407 |
|
|
|
408 |
# remove frame dimension if only the final molecule is returned |
|
|
409 |
return out_lig, out_pocket, lig_mask, pocket['mask'] |
|
|
410 |
|
|
|
411 |
|
|
|
412 |
def xh_given_zt_and_epsilon(self, z_t, epsilon, gamma_t, batch_mask): |
|
|
413 |
""" Equation (7) in the EDM paper """ |
|
|
414 |
alpha_t = self.alpha(gamma_t, z_t) |
|
|
415 |
sigma_t = self.sigma(gamma_t, z_t) |
|
|
416 |
xh = z_t / alpha_t[batch_mask] - epsilon * sigma_t[batch_mask] / \ |
|
|
417 |
alpha_t[batch_mask] |
|
|
418 |
return xh |
|
|
419 |
|
|
|
420 |
def sample_p_zt_given_zs(self, zs_lig, xh0_pocket, ligand_mask, pocket_mask, |
|
|
421 |
gamma_t, gamma_s, fix_noise=False): |
|
|
422 |
sigma2_t_given_s, sigma_t_given_s, alpha_t_given_s = \ |
|
|
423 |
self.sigma_and_alpha_t_given_s(gamma_t, gamma_s, zs_lig) |
|
|
424 |
|
|
|
425 |
mu_lig = alpha_t_given_s[ligand_mask] * zs_lig |
|
|
426 |
zt_lig, xh0_pocket = self.sample_normal_zero_com( |
|
|
427 |
mu_lig, xh0_pocket, sigma_t_given_s, ligand_mask, pocket_mask, |
|
|
428 |
fix_noise) |
|
|
429 |
|
|
|
430 |
return zt_lig, xh0_pocket |
|
|
431 |
|
|
|
432 |
def sample_p_zs_given_zt(self, s, t, zt_lig, xh0_pocket, ligand_mask, |
|
|
433 |
pocket_mask, fix_noise=False): |
|
|
434 |
"""Samples from zs ~ p(zs | zt). Only used during sampling.""" |
|
|
435 |
gamma_s = self.gamma(s) |
|
|
436 |
gamma_t = self.gamma(t) |
|
|
437 |
|
|
|
438 |
sigma2_t_given_s, sigma_t_given_s, alpha_t_given_s = \ |
|
|
439 |
self.sigma_and_alpha_t_given_s(gamma_t, gamma_s, zt_lig) |
|
|
440 |
|
|
|
441 |
sigma_s = self.sigma(gamma_s, target_tensor=zt_lig) |
|
|
442 |
sigma_t = self.sigma(gamma_t, target_tensor=zt_lig) |
|
|
443 |
|
|
|
444 |
# Neural net prediction. |
|
|
445 |
eps_t_lig, _ = self.dynamics( |
|
|
446 |
zt_lig, xh0_pocket, t, ligand_mask, pocket_mask) |
|
|
447 |
|
|
|
448 |
# Compute mu for p(zs | zt). |
|
|
449 |
# Note: mu_{t->s} = 1 / alpha_{t|s} z_t - sigma_{t|s}^2 / sigma_t / alpha_{t|s} epsilon |
|
|
450 |
# follows from the definition of mu_{t->s} and Equ. (7) in the EDM paper |
|
|
451 |
mu_lig = zt_lig / alpha_t_given_s[ligand_mask] - \ |
|
|
452 |
(sigma2_t_given_s / alpha_t_given_s / sigma_t)[ligand_mask] * \ |
|
|
453 |
eps_t_lig |
|
|
454 |
|
|
|
455 |
# Compute sigma for p(zs | zt). |
|
|
456 |
sigma = sigma_t_given_s * sigma_s / sigma_t |
|
|
457 |
|
|
|
458 |
# Sample zs given the parameters derived from zt. |
|
|
459 |
zs_lig, xh0_pocket = self.sample_normal_zero_com( |
|
|
460 |
mu_lig, xh0_pocket, sigma, ligand_mask, pocket_mask, fix_noise) |
|
|
461 |
|
|
|
462 |
self.assert_mean_zero_with_mask(zt_lig[:, :self.n_dims], ligand_mask) |
|
|
463 |
|
|
|
464 |
return zs_lig, xh0_pocket |
|
|
465 |
|
|
|
466 |
def sample_combined_position_feature_noise(self, lig_indices, xh0_pocket, |
|
|
467 |
pocket_indices): |
|
|
468 |
""" |
|
|
469 |
Samples mean-centered normal noise for z_x, and standard normal noise |
|
|
470 |
for z_h. |
|
|
471 |
""" |
|
|
472 |
raise NotImplementedError("Use sample_normal_zero_com() instead.") |
|
|
473 |
|
|
|
474 |
def sample(self, *args): |
|
|
475 |
raise NotImplementedError("Conditional model does not support sampling " |
|
|
476 |
"without given pocket.") |
|
|
477 |
|
|
|
478 |
@torch.no_grad() |
|
|
479 |
def sample_given_pocket(self, pocket, num_nodes_lig, return_frames=1, |
|
|
480 |
timesteps=None): |
|
|
481 |
""" |
|
|
482 |
Draw samples from the generative model. Optionally, return intermediate |
|
|
483 |
states for visualization purposes. |
|
|
484 |
""" |
|
|
485 |
timesteps = self.T if timesteps is None else timesteps |
|
|
486 |
assert 0 < return_frames <= timesteps |
|
|
487 |
assert timesteps % return_frames == 0 |
|
|
488 |
|
|
|
489 |
n_samples = len(pocket['size']) |
|
|
490 |
device = pocket['x'].device |
|
|
491 |
|
|
|
492 |
_, pocket = self.normalize(pocket=pocket) |
|
|
493 |
|
|
|
494 |
# xh0_pocket is the original pocket while xh_pocket might be a |
|
|
495 |
# translated version of it |
|
|
496 |
xh0_pocket = torch.cat([pocket['x'], pocket['one_hot']], dim=1) |
|
|
497 |
|
|
|
498 |
lig_mask = utils.num_nodes_to_batch_mask( |
|
|
499 |
n_samples, num_nodes_lig, device) |
|
|
500 |
|
|
|
501 |
# Sample from Normal distribution in the pocket center |
|
|
502 |
mu_lig_x = scatter_mean(pocket['x'], pocket['mask'], dim=0) |
|
|
503 |
mu_lig_h = torch.zeros((n_samples, self.atom_nf), device=device) |
|
|
504 |
mu_lig = torch.cat((mu_lig_x, mu_lig_h), dim=1)[lig_mask] |
|
|
505 |
sigma = torch.ones_like(pocket['size']).unsqueeze(1) |
|
|
506 |
|
|
|
507 |
z_lig, xh_pocket = self.sample_normal_zero_com( |
|
|
508 |
mu_lig, xh0_pocket, sigma, lig_mask, pocket['mask']) |
|
|
509 |
|
|
|
510 |
self.assert_mean_zero_with_mask(z_lig[:, :self.n_dims], lig_mask) |
|
|
511 |
|
|
|
512 |
out_lig = torch.zeros((return_frames,) + z_lig.size(), |
|
|
513 |
device=z_lig.device) |
|
|
514 |
out_pocket = torch.zeros((return_frames,) + xh_pocket.size(), |
|
|
515 |
device=device) |
|
|
516 |
|
|
|
517 |
# Iteratively sample p(z_s | z_t) for t = 1, ..., T, with s = t - 1. |
|
|
518 |
for s in reversed(range(0, timesteps)): |
|
|
519 |
s_array = torch.full((n_samples, 1), fill_value=s, |
|
|
520 |
device=z_lig.device) |
|
|
521 |
t_array = s_array + 1 |
|
|
522 |
s_array = s_array / timesteps |
|
|
523 |
t_array = t_array / timesteps |
|
|
524 |
|
|
|
525 |
z_lig, xh_pocket = self.sample_p_zs_given_zt( |
|
|
526 |
s_array, t_array, z_lig, xh_pocket, lig_mask, pocket['mask']) |
|
|
527 |
|
|
|
528 |
# save frame |
|
|
529 |
if (s * return_frames) % timesteps == 0: |
|
|
530 |
idx = (s * return_frames) // timesteps |
|
|
531 |
out_lig[idx], out_pocket[idx] = \ |
|
|
532 |
self.unnormalize_z(z_lig, xh_pocket) |
|
|
533 |
|
|
|
534 |
# Finally sample p(x, h | z_0). |
|
|
535 |
x_lig, h_lig, x_pocket, h_pocket = self.sample_p_xh_given_z0( |
|
|
536 |
z_lig, xh_pocket, lig_mask, pocket['mask'], n_samples) |
|
|
537 |
|
|
|
538 |
self.assert_mean_zero_with_mask(x_lig, lig_mask) |
|
|
539 |
|
|
|
540 |
# Correct CoM drift for examples without intermediate states |
|
|
541 |
if return_frames == 1: |
|
|
542 |
max_cog = scatter_add(x_lig, lig_mask, dim=0).abs().max().item() |
|
|
543 |
if max_cog > 5e-2: |
|
|
544 |
print(f'Warning CoG drift with error {max_cog:.3f}. Projecting ' |
|
|
545 |
f'the positions down.') |
|
|
546 |
x_lig, x_pocket = self.remove_mean_batch( |
|
|
547 |
x_lig, x_pocket, lig_mask, pocket['mask']) |
|
|
548 |
|
|
|
549 |
# Overwrite last frame with the resulting x and h. |
|
|
550 |
out_lig[0] = torch.cat([x_lig, h_lig], dim=1) |
|
|
551 |
out_pocket[0] = torch.cat([x_pocket, h_pocket], dim=1) |
|
|
552 |
|
|
|
553 |
# remove frame dimension if only the final molecule is returned |
|
|
554 |
return out_lig.squeeze(0), out_pocket.squeeze(0), lig_mask, \ |
|
|
555 |
pocket['mask'] |
|
|
556 |
|
|
|
557 |
@torch.no_grad() |
|
|
558 |
def inpaint(self, ligand, pocket, lig_fixed, resamplings=1, return_frames=1, |
|
|
559 |
timesteps=None, center='ligand'): |
|
|
560 |
""" |
|
|
561 |
Draw samples from the generative model while fixing parts of the input. |
|
|
562 |
Optionally, return intermediate states for visualization purposes. |
|
|
563 |
Inspired by Algorithm 1 in: |
|
|
564 |
Lugmayr, Andreas, et al. |
|
|
565 |
"Repaint: Inpainting using denoising diffusion probabilistic models." |
|
|
566 |
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern |
|
|
567 |
Recognition. 2022. |
|
|
568 |
""" |
|
|
569 |
timesteps = self.T if timesteps is None else timesteps |
|
|
570 |
assert 0 < return_frames <= timesteps |
|
|
571 |
assert timesteps % return_frames == 0 |
|
|
572 |
|
|
|
573 |
if len(lig_fixed.size()) == 1: |
|
|
574 |
lig_fixed = lig_fixed.unsqueeze(1) |
|
|
575 |
|
|
|
576 |
n_samples = len(ligand['size']) |
|
|
577 |
device = pocket['x'].device |
|
|
578 |
|
|
|
579 |
# Normalize |
|
|
580 |
ligand, pocket = self.normalize(ligand, pocket) |
|
|
581 |
|
|
|
582 |
# xh0_pocket is the original pocket while xh_pocket might be a |
|
|
583 |
# translated version of it |
|
|
584 |
xh0_pocket = torch.cat([pocket['x'], pocket['one_hot']], dim=1) |
|
|
585 |
com_pocket_0 = scatter_mean(pocket['x'], pocket['mask'], dim=0) |
|
|
586 |
xh0_ligand = torch.cat([ligand['x'], ligand['one_hot']], dim=1) |
|
|
587 |
xh_ligand = xh0_ligand.clone() |
|
|
588 |
|
|
|
589 |
# Center initial system, subtract COM of known parts |
|
|
590 |
if center == 'ligand': |
|
|
591 |
mean_known = scatter_mean(ligand['x'][lig_fixed.bool().view(-1)], |
|
|
592 |
ligand['mask'][lig_fixed.bool().view(-1)], |
|
|
593 |
dim=0) |
|
|
594 |
elif center == 'pocket': |
|
|
595 |
mean_known = scatter_mean(pocket['x'], pocket['mask'], dim=0) |
|
|
596 |
else: |
|
|
597 |
raise NotImplementedError( |
|
|
598 |
f"Centering option {center} not implemented") |
|
|
599 |
|
|
|
600 |
# Sample from Normal distribution in the ligand center |
|
|
601 |
mu_lig_x = mean_known |
|
|
602 |
mu_lig_h = torch.zeros((n_samples, self.atom_nf), device=device) |
|
|
603 |
mu_lig = torch.cat((mu_lig_x, mu_lig_h), dim=1)[ligand['mask']] |
|
|
604 |
sigma = torch.ones_like(pocket['size']).unsqueeze(1) |
|
|
605 |
|
|
|
606 |
z_lig, xh_pocket = self.sample_normal_zero_com( |
|
|
607 |
mu_lig, xh0_pocket, sigma, ligand['mask'], pocket['mask']) |
|
|
608 |
|
|
|
609 |
# Output tensors |
|
|
610 |
out_lig = torch.zeros((return_frames,) + z_lig.size(), |
|
|
611 |
device=z_lig.device) |
|
|
612 |
out_pocket = torch.zeros((return_frames,) + xh_pocket.size(), |
|
|
613 |
device=device) |
|
|
614 |
|
|
|
615 |
# Iteratively sample with resampling iterations |
|
|
616 |
for s in reversed(range(0, timesteps)): |
|
|
617 |
|
|
|
618 |
# resampling iterations |
|
|
619 |
for u in range(resamplings): |
|
|
620 |
|
|
|
621 |
# Denoise one time step: t -> s |
|
|
622 |
s_array = torch.full((n_samples, 1), fill_value=s, |
|
|
623 |
device=device) |
|
|
624 |
t_array = s_array + 1 |
|
|
625 |
s_array = s_array / timesteps |
|
|
626 |
t_array = t_array / timesteps |
|
|
627 |
|
|
|
628 |
gamma_t = self.gamma(t_array) |
|
|
629 |
gamma_s = self.gamma(s_array) |
|
|
630 |
|
|
|
631 |
# sample inpainted part |
|
|
632 |
z_lig_unknown, xh_pocket = self.sample_p_zs_given_zt( |
|
|
633 |
s_array, t_array, z_lig, xh_pocket, ligand['mask'], |
|
|
634 |
pocket['mask']) |
|
|
635 |
|
|
|
636 |
# sample known nodes from the input |
|
|
637 |
com_pocket = scatter_mean(xh_pocket[:, :self.n_dims], |
|
|
638 |
pocket['mask'], dim=0) |
|
|
639 |
xh_ligand[:, :self.n_dims] = \ |
|
|
640 |
ligand['x'] + (com_pocket - com_pocket_0)[ligand['mask']] |
|
|
641 |
z_lig_known, xh_pocket, _ = self.noised_representation( |
|
|
642 |
xh_ligand, xh_pocket, ligand['mask'], pocket['mask'], |
|
|
643 |
gamma_s) |
|
|
644 |
|
|
|
645 |
# move center of mass of the noised part to the center of mass |
|
|
646 |
# of the corresponding denoised part before combining them |
|
|
647 |
# -> the resulting system should be COM-free |
|
|
648 |
com_noised = scatter_mean( |
|
|
649 |
z_lig_known[lig_fixed.bool().view(-1)][:, :self.n_dims], |
|
|
650 |
ligand['mask'][lig_fixed.bool().view(-1)], dim=0) |
|
|
651 |
com_denoised = scatter_mean( |
|
|
652 |
z_lig_unknown[lig_fixed.bool().view(-1)][:, :self.n_dims], |
|
|
653 |
ligand['mask'][lig_fixed.bool().view(-1)], dim=0) |
|
|
654 |
dx = com_denoised - com_noised |
|
|
655 |
z_lig_known[:, :self.n_dims] = z_lig_known[:, :self.n_dims] + dx[ligand['mask']] |
|
|
656 |
xh_pocket[:, :self.n_dims] = xh_pocket[:, :self.n_dims] + dx[pocket['mask']] |
|
|
657 |
|
|
|
658 |
# combine |
|
|
659 |
z_lig = z_lig_known * lig_fixed + z_lig_unknown * ( |
|
|
660 |
1 - lig_fixed) |
|
|
661 |
|
|
|
662 |
if u < resamplings - 1: |
|
|
663 |
# Noise the sample |
|
|
664 |
z_lig, xh_pocket = self.sample_p_zt_given_zs( |
|
|
665 |
z_lig, xh_pocket, ligand['mask'], pocket['mask'], |
|
|
666 |
gamma_t, gamma_s) |
|
|
667 |
|
|
|
668 |
# save frame at the end of a resampling cycle |
|
|
669 |
if u == resamplings - 1: |
|
|
670 |
if (s * return_frames) % timesteps == 0: |
|
|
671 |
idx = (s * return_frames) // timesteps |
|
|
672 |
|
|
|
673 |
out_lig[idx], out_pocket[idx] = \ |
|
|
674 |
self.unnormalize_z(z_lig, xh_pocket) |
|
|
675 |
|
|
|
676 |
# Finally sample p(x, h | z_0). |
|
|
677 |
x_lig, h_lig, x_pocket, h_pocket = self.sample_p_xh_given_z0( |
|
|
678 |
z_lig, xh_pocket, ligand['mask'], pocket['mask'], n_samples) |
|
|
679 |
|
|
|
680 |
# Overwrite last frame with the resulting x and h. |
|
|
681 |
out_lig[0] = torch.cat([x_lig, h_lig], dim=1) |
|
|
682 |
out_pocket[0] = torch.cat([x_pocket, h_pocket], dim=1) |
|
|
683 |
|
|
|
684 |
# remove frame dimension if only the final molecule is returned |
|
|
685 |
return out_lig.squeeze(0), out_pocket.squeeze(0), ligand['mask'], \ |
|
|
686 |
pocket['mask'] |
|
|
687 |
|
|
|
688 |
@classmethod |
|
|
689 |
def remove_mean_batch(cls, x_lig, x_pocket, lig_indices, pocket_indices): |
|
|
690 |
|
|
|
691 |
# Just subtract the center of mass of the sampled part |
|
|
692 |
mean = scatter_mean(x_lig, lig_indices, dim=0) |
|
|
693 |
|
|
|
694 |
x_lig = x_lig - mean[lig_indices] |
|
|
695 |
x_pocket = x_pocket - mean[pocket_indices] |
|
|
696 |
return x_lig, x_pocket |
|
|
697 |
|
|
|
698 |
|
|
|
699 |
# ------------------------------------------------------------------------------ |
|
|
700 |
# The same model without subspace-trick |
|
|
701 |
# ------------------------------------------------------------------------------ |
|
|
702 |
class SimpleConditionalDDPM(ConditionalDDPM): |
|
|
703 |
""" |
|
|
704 |
Simpler conditional diffusion module without subspace-trick. |
|
|
705 |
- rotational equivariance is guaranteed by construction |
|
|
706 |
- translationally equivariant likelihood is achieved by first mapping |
|
|
707 |
samples to a space where the context is COM-free and evaluating the |
|
|
708 |
likelihood there |
|
|
709 |
- molecule generation is equivariant because we can first sample in the |
|
|
710 |
space where the context is COM-free and translate the whole system back to |
|
|
711 |
the original position of the context later |
|
|
712 |
""" |
|
|
713 |
def subspace_dimensionality(self, input_size): |
|
|
714 |
""" Override because we don't use the linear subspace anymore. """ |
|
|
715 |
return input_size * self.n_dims |
|
|
716 |
|
|
|
717 |
@classmethod |
|
|
718 |
def remove_mean_batch(cls, x_lig, x_pocket, lig_indices, pocket_indices): |
|
|
719 |
""" Hacky way of removing the centering steps without changing too much |
|
|
720 |
code. """ |
|
|
721 |
return x_lig, x_pocket |
|
|
722 |
|
|
|
723 |
@staticmethod |
|
|
724 |
def assert_mean_zero_with_mask(x, node_mask, eps=1e-10): |
|
|
725 |
return |
|
|
726 |
|
|
|
727 |
def forward(self, ligand, pocket, return_info=False): |
|
|
728 |
|
|
|
729 |
# Subtract pocket center of mass |
|
|
730 |
pocket_com = scatter_mean(pocket['x'], pocket['mask'], dim=0) |
|
|
731 |
ligand['x'] = ligand['x'] - pocket_com[ligand['mask']] |
|
|
732 |
pocket['x'] = pocket['x'] - pocket_com[pocket['mask']] |
|
|
733 |
|
|
|
734 |
return super(SimpleConditionalDDPM, self).forward( |
|
|
735 |
ligand, pocket, return_info) |
|
|
736 |
|
|
|
737 |
@torch.no_grad() |
|
|
738 |
def sample_given_pocket(self, pocket, num_nodes_lig, return_frames=1, |
|
|
739 |
timesteps=None): |
|
|
740 |
|
|
|
741 |
# Subtract pocket center of mass |
|
|
742 |
pocket_com = scatter_mean(pocket['x'], pocket['mask'], dim=0) |
|
|
743 |
pocket['x'] = pocket['x'] - pocket_com[pocket['mask']] |
|
|
744 |
|
|
|
745 |
return super(SimpleConditionalDDPM, self).sample_given_pocket( |
|
|
746 |
pocket, num_nodes_lig, return_frames, timesteps) |