|
a |
|
b/dataset.py |
|
|
1 |
from itertools import accumulate |
|
|
2 |
import numpy as np |
|
|
3 |
import torch |
|
|
4 |
from torch.utils.data import Dataset |
|
|
5 |
|
|
|
6 |
|
|
|
7 |
class ProcessedLigandPocketDataset(Dataset): |
|
|
8 |
def __init__(self, npz_path, center=True, transform=None): |
|
|
9 |
|
|
|
10 |
self.transform = transform |
|
|
11 |
|
|
|
12 |
with np.load(npz_path, allow_pickle=True) as f: |
|
|
13 |
data = {key: val for key, val in f.items()} |
|
|
14 |
|
|
|
15 |
# split data based on mask |
|
|
16 |
self.data = {} |
|
|
17 |
for (k, v) in data.items(): |
|
|
18 |
if k == 'names' or k == 'receptors': |
|
|
19 |
self.data[k] = v |
|
|
20 |
continue |
|
|
21 |
|
|
|
22 |
sections = np.where(np.diff(data['lig_mask']))[0] + 1 \ |
|
|
23 |
if 'lig' in k \ |
|
|
24 |
else np.where(np.diff(data['pocket_mask']))[0] + 1 |
|
|
25 |
self.data[k] = [torch.from_numpy(x) for x in np.split(v, sections)] |
|
|
26 |
|
|
|
27 |
# add number of nodes for convenience |
|
|
28 |
if k == 'lig_mask': |
|
|
29 |
self.data['num_lig_atoms'] = \ |
|
|
30 |
torch.tensor([len(x) for x in self.data['lig_mask']]) |
|
|
31 |
elif k == 'pocket_mask': |
|
|
32 |
self.data['num_pocket_nodes'] = \ |
|
|
33 |
torch.tensor([len(x) for x in self.data['pocket_mask']]) |
|
|
34 |
|
|
|
35 |
if center: |
|
|
36 |
for i in range(len(self.data['lig_coords'])): |
|
|
37 |
mean = (self.data['lig_coords'][i].sum(0) + |
|
|
38 |
self.data['pocket_coords'][i].sum(0)) / \ |
|
|
39 |
(len(self.data['lig_coords'][i]) + len(self.data['pocket_coords'][i])) |
|
|
40 |
self.data['lig_coords'][i] = self.data['lig_coords'][i] - mean |
|
|
41 |
self.data['pocket_coords'][i] = self.data['pocket_coords'][i] - mean |
|
|
42 |
|
|
|
43 |
def __len__(self): |
|
|
44 |
return len(self.data['names']) |
|
|
45 |
|
|
|
46 |
def __getitem__(self, idx): |
|
|
47 |
data = {key: val[idx] for key, val in self.data.items()} |
|
|
48 |
if self.transform is not None: |
|
|
49 |
data = self.transform(data) |
|
|
50 |
return data |
|
|
51 |
|
|
|
52 |
@staticmethod |
|
|
53 |
def collate_fn(batch): |
|
|
54 |
out = {} |
|
|
55 |
for prop in batch[0].keys(): |
|
|
56 |
|
|
|
57 |
if prop == 'names' or prop == 'receptors': |
|
|
58 |
out[prop] = [x[prop] for x in batch] |
|
|
59 |
elif prop == 'num_lig_atoms' or prop == 'num_pocket_nodes' \ |
|
|
60 |
or prop == 'num_virtual_atoms': |
|
|
61 |
out[prop] = torch.tensor([x[prop] for x in batch]) |
|
|
62 |
elif 'mask' in prop: |
|
|
63 |
# make sure indices in batch start at zero (needed for |
|
|
64 |
# torch_scatter) |
|
|
65 |
out[prop] = torch.cat([i * torch.ones(len(x[prop])) |
|
|
66 |
for i, x in enumerate(batch)], dim=0) |
|
|
67 |
else: |
|
|
68 |
out[prop] = torch.cat([x[prop] for x in batch], dim=0) |
|
|
69 |
|
|
|
70 |
return out |