[607087]: / analysis / molecule_builder.py

Download this file

251 lines (198 with data), 7.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import warnings
import tempfile
import torch
import numpy as np
from rdkit import Chem
from rdkit.Chem.rdForceFieldHelpers import UFFOptimizeMolecule, UFFHasAllMoleculeParams
import openbabel
import utils
from constants import bonds1, bonds2, bonds3, margin1, margin2, margin3, \
bond_dict
def get_bond_order(atom1, atom2, distance):
distance = 100 * distance # We change the metric
if atom1 in bonds3 and atom2 in bonds3[atom1] and distance < bonds3[atom1][atom2] + margin3:
return 3 # Triple
if atom1 in bonds2 and atom2 in bonds2[atom1] and distance < bonds2[atom1][atom2] + margin2:
return 2 # Double
if atom1 in bonds1 and atom2 in bonds1[atom1] and distance < bonds1[atom1][atom2] + margin1:
return 1 # Single
return 0 # No bond
def get_bond_order_batch(atoms1, atoms2, distances, dataset_info):
if isinstance(atoms1, np.ndarray):
atoms1 = torch.from_numpy(atoms1)
if isinstance(atoms2, np.ndarray):
atoms2 = torch.from_numpy(atoms2)
if isinstance(distances, np.ndarray):
distances = torch.from_numpy(distances)
distances = 100 * distances # We change the metric
bonds1 = torch.tensor(dataset_info['bonds1'], device=atoms1.device)
bonds2 = torch.tensor(dataset_info['bonds2'], device=atoms1.device)
bonds3 = torch.tensor(dataset_info['bonds3'], device=atoms1.device)
bond_types = torch.zeros_like(atoms1) # 0: No bond
# Single
bond_types[distances < bonds1[atoms1, atoms2] + margin1] = 1
# Double (note that already assigned single bonds will be overwritten)
bond_types[distances < bonds2[atoms1, atoms2] + margin2] = 2
# Triple
bond_types[distances < bonds3[atoms1, atoms2] + margin3] = 3
return bond_types
def make_mol_openbabel(positions, atom_types, atom_decoder):
"""
Build an RDKit molecule using openbabel for creating bonds
Args:
positions: N x 3
atom_types: N
atom_decoder: maps indices to atom types
Returns:
rdkit molecule
"""
atom_types = [atom_decoder[x] for x in atom_types]
with tempfile.NamedTemporaryFile() as tmp:
tmp_file = tmp.name
# Write xyz file
utils.write_xyz_file(positions, atom_types, tmp_file)
# Convert to sdf file with openbabel
# openbabel will add bonds
obConversion = openbabel.OBConversion()
obConversion.SetInAndOutFormats("xyz", "sdf")
ob_mol = openbabel.OBMol()
obConversion.ReadFile(ob_mol, tmp_file)
obConversion.WriteFile(ob_mol, tmp_file)
# Read sdf file with RDKit
tmp_mol = Chem.SDMolSupplier(tmp_file, sanitize=False)[0]
# Build new molecule. This is a workaround to remove radicals.
mol = Chem.RWMol()
for atom in tmp_mol.GetAtoms():
mol.AddAtom(Chem.Atom(atom.GetSymbol()))
mol.AddConformer(tmp_mol.GetConformer(0))
for bond in tmp_mol.GetBonds():
mol.AddBond(bond.GetBeginAtomIdx(), bond.GetEndAtomIdx(),
bond.GetBondType())
return mol
def make_mol_edm(positions, atom_types, dataset_info, add_coords):
"""
Equivalent to EDM's way of building RDKit molecules
"""
n = len(positions)
# (X, A, E): atom_types, adjacency matrix, edge_types
# X: N (int)
# A: N x N (bool) -> (binary adjacency matrix)
# E: N x N (int) -> (bond type, 0 if no bond)
pos = positions.unsqueeze(0) # add batch dim
dists = torch.cdist(pos, pos, p=2).squeeze(0).view(-1) # remove batch dim & flatten
atoms1, atoms2 = torch.cartesian_prod(atom_types, atom_types).T
E_full = get_bond_order_batch(atoms1, atoms2, dists, dataset_info).view(n, n)
E = torch.tril(E_full, diagonal=-1) # Warning: the graph should be DIRECTED
A = E.bool()
X = atom_types
mol = Chem.RWMol()
for atom in X:
a = Chem.Atom(dataset_info["atom_decoder"][atom.item()])
mol.AddAtom(a)
all_bonds = torch.nonzero(A)
for bond in all_bonds:
mol.AddBond(bond[0].item(), bond[1].item(),
bond_dict[E[bond[0], bond[1]].item()])
if add_coords:
conf = Chem.Conformer(mol.GetNumAtoms())
for i in range(mol.GetNumAtoms()):
conf.SetAtomPosition(i, (positions[i, 0].item(),
positions[i, 1].item(),
positions[i, 2].item()))
mol.AddConformer(conf)
return mol
def build_molecule(positions, atom_types, dataset_info, add_coords=False,
use_openbabel=True):
"""
Build RDKit molecule
Args:
positions: N x 3
atom_types: N
dataset_info: dict
add_coords: Add conformer to mol (always added if use_openbabel=True)
use_openbabel: use OpenBabel to create bonds
Returns:
RDKit molecule
"""
if use_openbabel:
mol = make_mol_openbabel(positions, atom_types,
dataset_info["atom_decoder"])
else:
mol = make_mol_edm(positions, atom_types, dataset_info, add_coords)
return mol
def process_molecule(rdmol, add_hydrogens=False, sanitize=False, relax_iter=0,
largest_frag=False):
"""
Apply filters to an RDKit molecule. Makes a copy first.
Args:
rdmol: rdkit molecule
add_hydrogens
sanitize
relax_iter: maximum number of UFF optimization iterations
largest_frag: filter out the largest fragment in a set of disjoint
molecules
Returns:
RDKit molecule or None if it does not pass the filters
"""
# Create a copy
mol = Chem.Mol(rdmol)
if sanitize:
try:
Chem.SanitizeMol(mol)
except ValueError:
warnings.warn('Sanitization failed. Returning None.')
return None
if add_hydrogens:
mol = Chem.AddHs(mol, addCoords=(len(mol.GetConformers()) > 0))
if largest_frag:
mol_frags = Chem.GetMolFrags(mol, asMols=True, sanitizeFrags=False)
mol = max(mol_frags, default=mol, key=lambda m: m.GetNumAtoms())
if sanitize:
# sanitize the updated molecule
try:
Chem.SanitizeMol(mol)
except ValueError:
return None
if relax_iter > 0:
if not UFFHasAllMoleculeParams(mol):
warnings.warn('UFF parameters not available for all atoms. '
'Returning None.')
return None
try:
uff_relax(mol, relax_iter)
if sanitize:
# sanitize the updated molecule
Chem.SanitizeMol(mol)
except (RuntimeError, ValueError) as e:
return None
return mol
def uff_relax(mol, max_iter=200):
"""
Uses RDKit's universal force field (UFF) implementation to optimize a
molecule.
"""
more_iterations_required = UFFOptimizeMolecule(mol, maxIters=max_iter)
if more_iterations_required:
warnings.warn(f'Maximum number of FF iterations reached. '
f'Returning molecule after {max_iter} relaxation steps.')
return more_iterations_required
def filter_rd_mol(rdmol):
"""
Filter out RDMols if they have a 3-3 ring intersection
adapted from:
https://github.com/luost26/3D-Generative-SBDD/blob/main/utils/chem.py
"""
ring_info = rdmol.GetRingInfo()
ring_info.AtomRings()
rings = [set(r) for r in ring_info.AtomRings()]
# 3-3 ring intersection
for i, ring_a in enumerate(rings):
if len(ring_a) != 3:
continue
for j, ring_b in enumerate(rings):
if i <= j:
continue
inter = ring_a.intersection(ring_b)
if (len(ring_b) == 3) and (len(inter) > 0):
return False
return True