[607087]: / analysis / metrics.py

Download this file

252 lines (197 with data), 9.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import numpy as np
from tqdm import tqdm
from rdkit import Chem, DataStructs
from rdkit.Chem import Descriptors, Crippen, Lipinski, QED
from analysis.SA_Score.sascorer import calculateScore
from analysis.molecule_builder import build_molecule
from copy import deepcopy
class CategoricalDistribution:
EPS = 1e-10
def __init__(self, histogram_dict, mapping):
histogram = np.zeros(len(mapping))
for k, v in histogram_dict.items():
histogram[mapping[k]] = v
# Normalize histogram
self.p = histogram / histogram.sum()
self.mapping = deepcopy(mapping)
def kl_divergence(self, other_sample):
sample_histogram = np.zeros(len(self.mapping))
for x in other_sample:
# sample_histogram[self.mapping[x]] += 1
sample_histogram[x] += 1
# Normalize
q = sample_histogram / sample_histogram.sum()
return -np.sum(self.p * np.log(q / self.p + self.EPS))
def rdmol_to_smiles(rdmol):
mol = Chem.Mol(rdmol)
Chem.RemoveStereochemistry(mol)
mol = Chem.RemoveHs(mol)
return Chem.MolToSmiles(mol)
class BasicMolecularMetrics(object):
def __init__(self, dataset_info, dataset_smiles_list=None,
connectivity_thresh=1.0):
self.atom_decoder = dataset_info['atom_decoder']
if dataset_smiles_list is not None:
dataset_smiles_list = set(dataset_smiles_list)
self.dataset_smiles_list = dataset_smiles_list
self.dataset_info = dataset_info
self.connectivity_thresh = connectivity_thresh
def compute_validity(self, generated):
""" generated: list of couples (positions, atom_types)"""
if len(generated) < 1:
return [], 0.0
valid = []
for mol in generated:
try:
Chem.SanitizeMol(mol)
except ValueError:
continue
valid.append(mol)
return valid, len(valid) / len(generated)
def compute_connectivity(self, valid):
""" Consider molecule connected if its largest fragment contains at
least x% of all atoms, where x is determined by
self.connectivity_thresh (defaults to 100%). """
if len(valid) < 1:
return [], 0.0
connected = []
connected_smiles = []
for mol in valid:
mol_frags = Chem.rdmolops.GetMolFrags(mol, asMols=True)
largest_mol = \
max(mol_frags, default=mol, key=lambda m: m.GetNumAtoms())
if largest_mol.GetNumAtoms() / mol.GetNumAtoms() >= self.connectivity_thresh:
smiles = rdmol_to_smiles(largest_mol)
if smiles is not None:
connected_smiles.append(smiles)
connected.append(largest_mol)
return connected, len(connected_smiles) / len(valid), connected_smiles
def compute_uniqueness(self, connected):
""" valid: list of SMILES strings."""
if len(connected) < 1 or self.dataset_smiles_list is None:
return [], 0.0
return list(set(connected)), len(set(connected)) / len(connected)
def compute_novelty(self, unique):
if len(unique) < 1:
return [], 0.0
num_novel = 0
novel = []
for smiles in unique:
if smiles not in self.dataset_smiles_list:
novel.append(smiles)
num_novel += 1
return novel, num_novel / len(unique)
def evaluate_rdmols(self, rdmols):
valid, validity = self.compute_validity(rdmols)
print(f"Validity over {len(rdmols)} molecules: {validity * 100 :.2f}%")
connected, connectivity, connected_smiles = \
self.compute_connectivity(valid)
print(f"Connectivity over {len(valid)} valid molecules: "
f"{connectivity * 100 :.2f}%")
unique, uniqueness = self.compute_uniqueness(connected_smiles)
print(f"Uniqueness over {len(connected)} connected molecules: "
f"{uniqueness * 100 :.2f}%")
_, novelty = self.compute_novelty(unique)
print(f"Novelty over {len(unique)} unique connected molecules: "
f"{novelty * 100 :.2f}%")
return [validity, connectivity, uniqueness, novelty], [valid, connected]
def evaluate(self, generated):
""" generated: list of pairs (positions: n x 3, atom_types: n [int])
the positions and atom types should already be masked. """
rdmols = [build_molecule(*graph, self.dataset_info)
for graph in generated]
return self.evaluate_rdmols(rdmols)
class MoleculeProperties:
@staticmethod
def calculate_qed(rdmol):
return QED.qed(rdmol)
@staticmethod
def calculate_sa(rdmol):
sa = calculateScore(rdmol)
return round((10 - sa) / 9, 2) # from pocket2mol
@staticmethod
def calculate_logp(rdmol):
return Crippen.MolLogP(rdmol)
@staticmethod
def calculate_lipinski(rdmol):
rule_1 = Descriptors.ExactMolWt(rdmol) < 500
rule_2 = Lipinski.NumHDonors(rdmol) <= 5
rule_3 = Lipinski.NumHAcceptors(rdmol) <= 10
rule_4 = (logp := Crippen.MolLogP(rdmol) >= -2) & (logp <= 5)
rule_5 = Chem.rdMolDescriptors.CalcNumRotatableBonds(rdmol) <= 10
return np.sum([int(a) for a in [rule_1, rule_2, rule_3, rule_4, rule_5]])
@classmethod
def calculate_diversity(cls, pocket_mols):
if len(pocket_mols) < 2:
return 0.0
div = 0
total = 0
for i in range(len(pocket_mols)):
for j in range(i + 1, len(pocket_mols)):
div += 1 - cls.similarity(pocket_mols[i], pocket_mols[j])
total += 1
return div / total
@staticmethod
def similarity(mol_a, mol_b):
# fp1 = AllChem.GetMorganFingerprintAsBitVect(
# mol_a, 2, nBits=2048, useChirality=False)
# fp2 = AllChem.GetMorganFingerprintAsBitVect(
# mol_b, 2, nBits=2048, useChirality=False)
fp1 = Chem.RDKFingerprint(mol_a)
fp2 = Chem.RDKFingerprint(mol_b)
return DataStructs.TanimotoSimilarity(fp1, fp2)
def evaluate(self, pocket_rdmols):
"""
Run full evaluation
Args:
pocket_rdmols: list of lists, the inner list contains all RDKit
molecules generated for a pocket
Returns:
QED, SA, LogP, Lipinski (per molecule), and Diversity (per pocket)
"""
for pocket in pocket_rdmols:
for mol in pocket:
Chem.SanitizeMol(mol)
assert mol is not None, "only evaluate valid molecules"
all_qed = []
all_sa = []
all_logp = []
all_lipinski = []
per_pocket_diversity = []
for pocket in tqdm(pocket_rdmols):
all_qed.append([self.calculate_qed(mol) for mol in pocket])
all_sa.append([self.calculate_sa(mol) for mol in pocket])
all_logp.append([self.calculate_logp(mol) for mol in pocket])
all_lipinski.append([self.calculate_lipinski(mol) for mol in pocket])
per_pocket_diversity.append(self.calculate_diversity(pocket))
print(f"{sum([len(p) for p in pocket_rdmols])} molecules from "
f"{len(pocket_rdmols)} pockets evaluated.")
qed_flattened = [x for px in all_qed for x in px]
print(f"QED: {np.mean(qed_flattened):.3f} \pm {np.std(qed_flattened):.2f}")
sa_flattened = [x for px in all_sa for x in px]
print(f"SA: {np.mean(sa_flattened):.3f} \pm {np.std(sa_flattened):.2f}")
logp_flattened = [x for px in all_logp for x in px]
print(f"LogP: {np.mean(logp_flattened):.3f} \pm {np.std(logp_flattened):.2f}")
lipinski_flattened = [x for px in all_lipinski for x in px]
print(f"Lipinski: {np.mean(lipinski_flattened):.3f} \pm {np.std(lipinski_flattened):.2f}")
print(f"Diversity: {np.mean(per_pocket_diversity):.3f} \pm {np.std(per_pocket_diversity):.2f}")
return all_qed, all_sa, all_logp, all_lipinski, per_pocket_diversity
def evaluate_mean(self, rdmols):
"""
Run full evaluation and return mean of each property
Args:
rdmols: list of RDKit molecules
Returns:
QED, SA, LogP, Lipinski, and Diversity
"""
if len(rdmols) < 1:
return 0.0, 0.0, 0.0, 0.0, 0.0
for mol in rdmols:
Chem.SanitizeMol(mol)
assert mol is not None, "only evaluate valid molecules"
qed = np.mean([self.calculate_qed(mol) for mol in rdmols])
sa = np.mean([self.calculate_sa(mol) for mol in rdmols])
logp = np.mean([self.calculate_logp(mol) for mol in rdmols])
lipinski = np.mean([self.calculate_lipinski(mol) for mol in rdmols])
diversity = self.calculate_diversity(rdmols)
return qed, sa, logp, lipinski, diversity