[607087]: / analysis / docking.py

Download this file

198 lines (161 with data), 7.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import os
import re
import tempfile
import numpy as np
import torch
from pathlib import Path
import argparse
import pandas as pd
from rdkit import Chem
from tqdm import tqdm
try:
import utils
except ModuleNotFoundError as e:
print(e)
def calculate_smina_score(pdb_file, sdf_file):
# add '-o <name>_smina.sdf' if you want to see the output
out = os.popen(f'smina.static -l {sdf_file} -r {pdb_file} '
f'--score_only').read()
matches = re.findall(
r"Affinity:[ ]+([+-]?[0-9]*[.]?[0-9]+)[ ]+\(kcal/mol\)", out)
return [float(x) for x in matches]
def smina_score(rdmols, receptor_file):
"""
Calculate smina score
:param rdmols: List of RDKit molecules
:param receptor_file: Receptor pdb/pdbqt file or list of receptor files
:return: Smina score for each input molecule (list)
"""
if isinstance(receptor_file, list):
scores = []
for mol, rec_file in zip(rdmols, receptor_file):
with tempfile.NamedTemporaryFile(suffix='.sdf') as tmp:
tmp_file = tmp.name
utils.write_sdf_file(tmp_file, [mol])
scores.extend(calculate_smina_score(rec_file, tmp_file))
# Use same receptor file for all molecules
else:
with tempfile.NamedTemporaryFile(suffix='.sdf') as tmp:
tmp_file = tmp.name
utils.write_sdf_file(tmp_file, rdmols)
scores = calculate_smina_score(receptor_file, tmp_file)
return scores
def sdf_to_pdbqt(sdf_file, pdbqt_outfile, mol_id):
os.popen(f'obabel {sdf_file} -O {pdbqt_outfile} '
f'-f {mol_id + 1} -l {mol_id + 1}').read()
return pdbqt_outfile
def calculate_qvina2_score(receptor_file, sdf_file, out_dir, size=20,
exhaustiveness=16, return_rdmol=False):
receptor_file = Path(receptor_file)
sdf_file = Path(sdf_file)
if receptor_file.suffix == '.pdb':
# prepare receptor, requires Python 2.7
receptor_pdbqt_file = Path(out_dir, receptor_file.stem + '.pdbqt')
os.popen(f'prepare_receptor4.py -r {receptor_file} -O {receptor_pdbqt_file}')
else:
receptor_pdbqt_file = receptor_file
scores = []
rdmols = [] # for if return rdmols
suppl = Chem.SDMolSupplier(str(sdf_file), sanitize=False)
for i, mol in enumerate(suppl): # sdf file may contain several ligands
ligand_name = f'{sdf_file.stem}_{i}'
# prepare ligand
ligand_pdbqt_file = Path(out_dir, ligand_name + '.pdbqt')
out_sdf_file = Path(out_dir, ligand_name + '_out.sdf')
if out_sdf_file.exists():
with open(out_sdf_file, 'r') as f:
scores.append(
min([float(x.split()[2]) for x in f.readlines()
if x.startswith(' VINA RESULT:')])
)
else:
sdf_to_pdbqt(sdf_file, ligand_pdbqt_file, i)
# center box at ligand's center of mass
cx, cy, cz = mol.GetConformer().GetPositions().mean(0)
# run QuickVina 2
out = os.popen(
f'qvina2.1 --receptor {receptor_pdbqt_file} '
f'--ligand {ligand_pdbqt_file} '
f'--center_x {cx:.4f} --center_y {cy:.4f} --center_z {cz:.4f} '
f'--size_x {size} --size_y {size} --size_z {size} '
f'--exhaustiveness {exhaustiveness}'
).read()
# clean up
ligand_pdbqt_file.unlink()
if '-----+------------+----------+----------' not in out:
scores.append(np.nan)
continue
out_split = out.splitlines()
best_idx = out_split.index('-----+------------+----------+----------') + 1
best_line = out_split[best_idx].split()
assert best_line[0] == '1'
scores.append(float(best_line[1]))
out_pdbqt_file = Path(out_dir, ligand_name + '_out.pdbqt')
if out_pdbqt_file.exists():
os.popen(f'obabel {out_pdbqt_file} -O {out_sdf_file}').read()
# clean up
out_pdbqt_file.unlink()
if return_rdmol:
rdmol = Chem.SDMolSupplier(str(out_sdf_file))[0]
rdmols.append(rdmol)
if return_rdmol:
return scores, rdmols
else:
return scores
if __name__ == '__main__':
parser = argparse.ArgumentParser('QuickVina evaluation')
parser.add_argument('--pdbqt_dir', type=Path,
help='Receptor files in pdbqt format')
parser.add_argument('--sdf_dir', type=Path, default=None,
help='Ligand files in sdf format')
parser.add_argument('--sdf_files', type=Path, nargs='+', default=None)
parser.add_argument('--out_dir', type=Path)
parser.add_argument('--write_csv', action='store_true')
parser.add_argument('--write_dict', action='store_true')
parser.add_argument('--dataset', type=str, default='moad')
args = parser.parse_args()
assert (args.sdf_dir is not None) ^ (args.sdf_files is not None)
args.out_dir.mkdir(exist_ok=True)
results = {'receptor': [], 'ligand': [], 'scores': []}
results_dict = {}
sdf_files = list(args.sdf_dir.glob('[!.]*.sdf')) \
if args.sdf_dir is not None else args.sdf_files
pbar = tqdm(sdf_files)
for sdf_file in pbar:
pbar.set_description(f'Processing {sdf_file.name}')
if args.dataset == 'moad':
"""
Ligand file names should be of the following form:
<receptor-name>_<pocket-id>_<some-suffix>.sdf
where <receptor-name> and <pocket-id> cannot contain any
underscores, e.g.: 1abc-bio1_pocket0_gen.sdf
"""
ligand_name = sdf_file.stem
receptor_name, pocket_id, *suffix = ligand_name.split('_')
suffix = '_'.join(suffix)
receptor_file = Path(args.pdbqt_dir, receptor_name + '.pdbqt')
elif args.dataset == 'crossdocked':
ligand_name = sdf_file.stem
receptor_name = ligand_name[:-4]
receptor_file = Path(args.pdbqt_dir, receptor_name + '.pdbqt')
# try:
scores, rdmols = calculate_qvina2_score(
receptor_file, sdf_file, args.out_dir, return_rdmol=True)
# except AttributeError as e:
# print(e)
# continue
results['receptor'].append(str(receptor_file))
results['ligand'].append(str(sdf_file))
results['scores'].append(scores)
if args.write_dict:
results_dict[ligand_name] = {
'receptor': str(receptor_file),
'ligand': str(sdf_file),
'scores': scores,
'rmdols': rdmols
}
if args.write_csv:
df = pd.DataFrame.from_dict(results)
df.to_csv(Path(args.out_dir, 'qvina2_scores.csv'))
if args.write_dict:
torch.save(results_dict, Path(args.out_dir, 'qvina2_scores.pt'))