generate_config generate all the configuration that can be used in learning and inference.
utils.generate_config( drug_encoding, target_encoding, result_folder = "./result/", input_dim_drug = 1024, input_dim_protein = 8420, hidden_dim_drug = 256, hidden_dim_protein = 256, cls_hidden_dims = [1024, 1024, 512], mlp_hidden_dims_drug = [1024, 256, 64], mlp_hidden_dims_target = [1024, 256, 64], batch_size = 256, train_epoch = 10, test_every_X_epoch = 20, LR = 1e-4, transformer_emb_size_drug = 128, transformer_intermediate_size_drug = 512, transformer_num_attention_heads_drug = 8, transformer_n_layer_drug = 8, transformer_emb_size_target = 128, transformer_intermediate_size_target = 512, transformer_num_attention_heads_target = 8, transformer_n_layer_target = 4, transformer_dropout_rate = 0.1, transformer_attention_probs_dropout = 0.1, transformer_hidden_dropout_rate = 0.1, mpnn_hidden_size = 50, mpnn_depth = 3, cnn_drug_filters = [32,64,96], cnn_drug_kernels = [4,6,8], cnn_target_filters = [32,64,96], cnn_target_kernels = [4,8,12], rnn_Use_GRU_LSTM_drug = 'GRU', rnn_drug_hid_dim = 64, rnn_drug_n_layers = 2, rnn_drug_bidirectional = True, rnn_Use_GRU_LSTM_target = 'GRU', rnn_target_hid_dim = 64, rnn_target_n_layers = 2, rnn_target_bidirectional = True )