[4717e2]: / docs / build / doctrees / notes / DTI.doctree

Download this file

66 lines (64 with data), 8.7 kB

ÇĽ╦!îdocutils.nodesöîdocumentöôö)üö}ö(î	rawsourceöîöîchildrenö]öhîsectionöôö)üö}ö(hhh]ö(hîtitleöôö)üö}ö(hîSWhat is drug repurposing, virtual screening and drug-target interaction prediction?öh]öhîTextöôöîSWhat is drug repurposing, virtual screening and drug-target interaction prediction?öůöüö}ö(hhîparentöhhhîsourceöNîlineöNubaî
attributesö}ö(îidsö]öîclassesö]öînamesö]öîdupnamesö]öîbackrefsö]öuîtagnameöhhhhhhîK/Users/futianfan/Downloads/spring2020/DeepPurpose/docs/source/notes/DTI.rstöhKubh
)üö}ö(hhh]ö(h)üö}ö(hîDrug Repurposingöh]öhîDrug Repurposingöůöüö}ö(hh0hh.hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öuh)hhh+hhhh*hKubhî	paragraphöôö)üö}ö(hîCDrug repurposing aims to repivot an existing drug to a new therapy.öh]öhîCDrug repurposing aims to repivot an existing drug to a new therapy.öůöüö}ö(hh@hh>hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öuh)h<hh*hKhh+hhubeh}ö(h]öîdrug-repurposingöah!]öh#]öîdrug repurposingöah%]öh']öuh)h	hhhhhh*hKubh
)üö}ö(hhh]ö(h)üö}ö(hîVirtual Screeningöh]öhîVirtual Screeningöůöüö}ö(hhYhhWhhhNhNubah}ö(h]öh!]öh#]öh%]öh']öuh)hhhThhhh*hKubhîdefinition_listöôö)üö}ö(hhh]öhîdefinition_list_itemöôö)üö}ö(hîťVirtual screening means to use computer software to automatically screen
a huge space of potential drug-target pairs to obtain a predicted binding score.


öh]ö(hîtermöôö)üö}ö(hîHVirtual screening means to use computer software to automatically screenöh]öhîHVirtual screening means to use computer software to automatically screenöůöüö}ö(hhthhrubah}ö(h]öh!]öh#]öh%]öh']öuh)hphh*hKhhlubhî
definitionöôö)üö}ö(hhh]öh=)üö}ö(hîPa huge space of potential drug-target pairs to obtain a predicted binding score.öh]öhîPa huge space of potential drug-target pairs to obtain a predicted binding score.öůöüö}ö(hhçhhůubah}ö(h]öh!]öh#]öh%]öh']öuh)h<hh*hKhhéubah}ö(h]öh!]öh#]öh%]öh']öuh)hÇhhlubeh}ö(h]öh!]öh#]öh%]öh']öuh)hjhh*hKhhgubah}ö(h]öh!]öh#]öh%]öh']öuh)hehhThhhh*hNubeh}ö(h]öîvirtual-screeningöah!]öh#]öîvirtual screeningöah%]öh']öuh)h	hhhhhh*hKubh
)üö}ö(hhh]ö(h)üö}ö(hîDrug-Target Interactionöh]öhîDrug-Target Interactionöůöüö}ö(hh▓hh░hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öuh)hhhşhhhh*hKubh=)üö}ö(hXŁBoth of these tasks are able to save cost, time, and facilitate drug discovery.
Deep learning has shown strong performance in repurposing and screening.
It relies on the accurate and fast prediction of a fundamental task:
drug-target interaction prediction.
DTI prediction task aims to predict the input drug target pairÔÇÖs interaction probability or binding score.
Given a powerful DTI model that is able to generalize over a new unseen dataset,
we can then extend to repurposing/screening.
For repurposing, given a new target of interest,
we can first pair it to a repurposing drug library.
Then this list of input drug-target pairs is fed into the trained DTI model,
which will output the predicted binding score.
Similarly, for virtual screening, given a list of screening drug-target pairs we want,
the DTI model can output the predicted interaction binding scores.
We can then rank the predicted outcome based on their binding scores and
test the top-k options in the wet lab after manual inspection.
DeepPurpose automates this process. By only requiring one line of code,
it aggregates five pretrained deep learning models and retrieves a list of ranked potential outcomes.öh]öhXŁBoth of these tasks are able to save cost, time, and facilitate drug discovery.
Deep learning has shown strong performance in repurposing and screening.
It relies on the accurate and fast prediction of a fundamental task:
drug-target interaction prediction.
DTI prediction task aims to predict the input drug target pairÔÇÖs interaction probability or binding score.
Given a powerful DTI model that is able to generalize over a new unseen dataset,
we can then extend to repurposing/screening.
For repurposing, given a new target of interest,
we can first pair it to a repurposing drug library.
Then this list of input drug-target pairs is fed into the trained DTI model,
which will output the predicted binding score.
Similarly, for virtual screening, given a list of screening drug-target pairs we want,
the DTI model can output the predicted interaction binding scores.
We can then rank the predicted outcome based on their binding scores and
test the top-k options in the wet lab after manual inspection.
DeepPurpose automates this process. By only requiring one line of code,
it aggregates five pretrained deep learning models and retrieves a list of ranked potential outcomes.öůöüö}ö(hh└hhżhhhNhNubah}ö(h]öh!]öh#]öh%]öh']öuh)h<hh*hKhhşhhubh=)üö}ö(hXÁIdentifying Drug-Target Interactions (DTI) will greatly narrow down
the scope of search of candidate medications,
and thus can plays a pivotal role in drug discovery.
Drugs usually interact with one or more proteins to achieve their functions.
However, discovering novel interactions between drugs
and target proteins is crucial for the development of new drugs,
since the aberrant expression of proteins may cause side effects of drugs.öh]öhXÁIdentifying Drug-Target Interactions (DTI) will greatly narrow down
the scope of search of candidate medications,
and thus can plays a pivotal role in drug discovery.
Drugs usually interact with one or more proteins to achieve their functions.
However, discovering novel interactions between drugs
and target proteins is crucial for the development of new drugs,
since the aberrant expression of proteins may cause side effects of drugs.öůöüö}ö(hh╬hh╠hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öuh)h<hh*hK,hhşhhubh=)üö}ö(hXAConsidering that in vitro experiments are extremely costly and time-consuming,
high efficiency computational prediction methods could
serve as promising strategies for drug-target interaction (DTI) prediction.
In this project, our goal is to focus on deep learning approaches
for drug-target interaction (DTI) prediction.öh]öhXAConsidering that in vitro experiments are extremely costly and time-consuming,
high efficiency computational prediction methods could
serve as promising strategies for drug-target interaction (DTI) prediction.
In this project, our goal is to focus on deep learning approaches
for drug-target interaction (DTI) prediction.öůöüö}ö(hh▄hh┌hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öuh)h<hh*hK6hhşhhubeh}ö(h]öîdrug-target-interactionöah!]öh#]öîdrug-target interactionöah%]öh']öuh)h	hhhhhh*hKubeh}ö(h]öîQwhat-is-drug-repurposing-virtual-screening-and-drug-target-interaction-predictionöah!]öh#]öîSwhat is drug repurposing, virtual screening and drug-target interaction prediction?öah%]öh']öuh)h	hhhhhh*hKubah}ö(h]öh!]öh#]öh%]öh']öîsourceöh*uh)hîcurrent_sourceöNîcurrent_lineöNîsettingsöîdocutils.frontendöîValuesöôö)üö}ö(hNî	generatoröNî	datestampöNîsource_linköNî
source_urlöNî
toc_backlinksöîentryöîfootnote_backlinksöKî
sectnum_xformöKîstrip_commentsöNîstrip_elements_with_classesöNî
strip_classesöNîreport_levelöKî
halt_levelöKîexit_status_levelöKîdebugöNîwarning_streamöNî	tracebacköłîinput_encodingöî	utf-8-sigöîinput_encoding_error_handleröîstrictöîoutput_encodingöîutf-8öîoutput_encoding_error_handleröjîerror_encodingöîUTF-8öîerror_encoding_error_handleröîbackslashreplaceöî
language_codeöîenöîrecord_dependenciesöNîconfigöNî	id_prefixöhîauto_id_prefixöîidöî
dump_settingsöNîdump_internalsöNîdump_transformsöNîdump_pseudo_xmlöNîexpose_internalsöNîstrict_visitoröNî_disable_configöNî_sourceöh*î_destinationöNî
_config_filesö]öîpep_referencesöNîpep_base_urlöî https://www.python.org/dev/peps/öîpep_file_url_templateöîpep-%04döîrfc_referencesöNîrfc_base_urlöîhttps://tools.ietf.org/html/öî	tab_widthöKîtrim_footnote_reference_spaceöëîfile_insertion_enabledöłîraw_enabledöKîsyntax_highlightöîlongöîsmart_quotesöłîsmartquotes_localesö]öîcharacter_level_inline_markupöëîdoctitle_xformöëî
docinfo_xformöKîsectsubtitle_xformöëîembed_stylesheetöëîcloak_email_addressesöłîenvöNubîreporteröNîindirect_targetsö]öîsubstitution_defsö}öîsubstitution_namesö}öîrefnamesö}öîrefidsö}öînameidsö}ö(h§h˛hQhNh¬hžhÝhŕuî	nametypesö}ö(h§NhQNh¬NhÝNuh}ö(h˛hhNh+hžhThŕhşuî
footnote_refsö}öî
citation_refsö}öî
autofootnotesö]öîautofootnote_refsö]öîsymbol_footnotesö]öîsymbol_footnote_refsö]öî	footnotesö]öî	citationsö]öîautofootnote_startöKîsymbol_footnote_startöKî
id_counteröîcollectionsöîCounteröôö}öůöRöîparse_messagesö]öîtransform_messagesö]öîtransformeröNî
decorationöNhhub.