90 lines (89 with data), 2.5 kB
{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Dataset already downloaded in the local system...\n",
"Running locally at: http://127.0.0.1:7860/\n",
"Running on External URL: https://37678.gradio.app\n"
]
},
{
"data": {
"text/html": [
"\n",
" <iframe\n",
" width=\"1000\"\n",
" height=\"500\"\n",
" src=\"http://127.0.0.1:7860/\"\n",
" frameborder=\"0\"\n",
" allowfullscreen\n",
" ></iframe>\n",
" "
],
"text/plain": [
"<IPython.lib.display.IFrame at 0x7fba2f2a2e90>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"(<gradio.networking.serve_files_in_background.<locals>.HTTPServer at 0x7fba2cc15250>,\n",
" 'http://127.0.0.1:7860/',\n",
" 'https://37678.gradio.app')"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import os\n",
"os.chdir('../')\n",
"from DeepPurpose import utils\n",
"from DeepPurpose import DTI as models\n",
"import gradio\n",
"\n",
"model = models.model_pretrained(model = 'MPNN_CNN_BindingDB')\n",
"\n",
"def DTI_pred(drug, target):\n",
" X_pred = utils.data_process(X_drug = [drug], X_target = [target], y = [0],\n",
" drug_encoding = 'MPNN', target_encoding = 'CNN', \n",
" split_method='no_split')\n",
" y_pred = model.predict(X_pred)\n",
" return str(y_pred[0])\n",
"\n",
"gradio.Interface(DTI_pred, \n",
" [gradio.inputs.Textbox(lines = 5, label = \"Drug SMILES\"),\n",
" gradio.inputs.Textbox(lines = 5, label = \"Target Amino Acid Sequence\")], \n",
" gradio.outputs.Textbox(label = \"Predicted Affinity\")).launch(share=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python [conda env:DeepPurpose]",
"language": "python",
"name": "conda-env-DeepPurpose-py"
}
},
"nbformat": 4,
"nbformat_minor": 4
}