|
a |
|
b/docs/source/notes/encoder.rst |
|
|
1 |
Drug/Target Encoder |
|
|
2 |
================================================ |
|
|
3 |
|
|
|
4 |
|
|
|
5 |
Drug encoding |
|
|
6 |
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
|
|
7 |
|
|
|
8 |
====================== =================================================== |
|
|
9 |
Drug Encodings Description |
|
|
10 |
====================== =================================================== |
|
|
11 |
Morgan Extended-Connectivity Fingerprints |
|
|
12 |
Pubchem Pubchem Substructure-based Fingerprints |
|
|
13 |
Daylight Daylight-type fingerprints |
|
|
14 |
rdkit_2d_normalized Normalized Descriptastorus |
|
|
15 |
CNN Convolutional Neural Network on SMILES |
|
|
16 |
CNN_RNN A GRU/LSTM on top of a CNN on SMILES |
|
|
17 |
Transformer Transformer Encoder on ESPF |
|
|
18 |
MPNN Message-passing neural network |
|
|
19 |
====================== =================================================== |
|
|
20 |
|
|
|
21 |
|
|
|
22 |
Target encoding |
|
|
23 |
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
|
|
24 |
|
|
|
25 |
==================== =================================================== |
|
|
26 |
Target Encodings Description |
|
|
27 |
==================== =================================================== |
|
|
28 |
AAC Amino acid composition up to 3-mers |
|
|
29 |
PseudoAAC Pseudo amino acid composition |
|
|
30 |
Conjoint_triad Conjoint triad features |
|
|
31 |
Quasi-seq Quasi-sequence order descriptor |
|
|
32 |
CNN Convolutional Neural Network on target seq |
|
|
33 |
CNN_RNN A GRU/LSTM on top of a CNN on target seq |
|
|
34 |
Transformer Transformer Encoder on ESPF |
|
|
35 |
==================== =================================================== |
|
|
36 |
|
|
|
37 |
|
|
|
38 |
Encoder Model |
|
|
39 |
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
|
|
40 |
|
|
|
41 |
==================== =================================================================== |
|
|
42 |
Encoder Model Description |
|
|
43 |
==================== =================================================================== |
|
|
44 |
CNN Convolutional Neural Network on SMILES |
|
|
45 |
CNN_RNN A GRU/LSTM on top of a CNN on SMILES |
|
|
46 |
Transformer Transformer Encoder on SMILES |
|
|
47 |
MPNN Message Passing Neural Network on Molecular Graph |
|
|
48 |
MLP MultiLayer Perceptron on fix-dim feature vector |
|
|
49 |
==================== =================================================================== |
|
|
50 |
|
|
|
51 |
|
|
|
52 |
|
|
|
53 |
|
|
|
54 |
|
|
|
55 |
|
|
|
56 |
|
|
|
57 |
|
|
|
58 |
|
|
|
59 |
Technical Details |
|
|
60 |
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
|
|
61 |
|
|
|
62 |
|
|
|
63 |
First, we describe the common modules we import in DeepPurpose. |
|
|
64 |
|
|
|
65 |
|
|
|
66 |
|
|
|
67 |
.. code-block:: python |
|
|
68 |
|
|
|
69 |
import torch |
|
|
70 |
from torch.autograd import Variable |
|
|
71 |
import torch.nn.functional as F |
|
|
72 |
from torch import nn |
|
|
73 |
import numpy as np |
|
|
74 |
import pandas as pd |
|
|
75 |
|
|
|
76 |
|
|
|
77 |
|
|
|
78 |
|
|
|
79 |
|
|
|
80 |
|
|
|
81 |
.. toctree:: |
|
|
82 |
:glob: |
|
|
83 |
:maxdepth: 1 |
|
|
84 |
:caption: Links of details of various encoders |
|
|
85 |
|
|
|
86 |
encoders/transformer |
|
|
87 |
encoders/mpnn |
|
|
88 |
encoders/cnnrnn |
|
|
89 |
encoders/cnn |
|
|
90 |
encoders/mlp |
|
|
91 |
|
|
|
92 |
|
|
|
93 |
|
|
|
94 |
|
|
|
95 |
|
|
|
96 |
|
|
|
97 |
|
|
|
98 |
|
|
|
99 |
|
|
|
100 |
|
|
|
101 |
|
|
|
102 |
|
|
|
103 |
|
|
|
104 |
|
|
|
105 |
|
|
|
106 |
|
|
|
107 |
|
|
|
108 |
|
|
|
109 |
|
|
|
110 |
|
|
|
111 |
|
|
|
112 |
|
|
|
113 |
|