--- a +++ b/docs/source/notes/configuration.rst @@ -0,0 +1,80 @@ +Configuration +======================== + + + +**generate_config** generate all the configuration that can be used in learning and inference. + + +.. code-block:: python + + utils.generate_config( + drug_encoding, + target_encoding, + result_folder = "./result/", + input_dim_drug = 1024, + input_dim_protein = 8420, + hidden_dim_drug = 256, + hidden_dim_protein = 256, + cls_hidden_dims = [1024, 1024, 512], + mlp_hidden_dims_drug = [1024, 256, 64], + mlp_hidden_dims_target = [1024, 256, 64], + batch_size = 256, + train_epoch = 10, + test_every_X_epoch = 20, + LR = 1e-4, + transformer_emb_size_drug = 128, + transformer_intermediate_size_drug = 512, + transformer_num_attention_heads_drug = 8, + transformer_n_layer_drug = 8, + transformer_emb_size_target = 128, + transformer_intermediate_size_target = 512, + transformer_num_attention_heads_target = 8, + transformer_n_layer_target = 4, + transformer_dropout_rate = 0.1, + transformer_attention_probs_dropout = 0.1, + transformer_hidden_dropout_rate = 0.1, + mpnn_hidden_size = 50, + mpnn_depth = 3, + cnn_drug_filters = [32,64,96], + cnn_drug_kernels = [4,6,8], + cnn_target_filters = [32,64,96], + cnn_target_kernels = [4,8,12], + rnn_Use_GRU_LSTM_drug = 'GRU', + rnn_drug_hid_dim = 64, + rnn_drug_n_layers = 2, + rnn_drug_bidirectional = True, + rnn_Use_GRU_LSTM_target = 'GRU', + rnn_target_hid_dim = 64, + rnn_target_n_layers = 2, + rnn_target_bidirectional = True + ) + + +* **drug_encoding** (str) - Encoder mode for drug. It can be "transformer", "MPNN", "CNN", "CNN_RNN" ..., +* **target_encoding** (str) - Encoder mode for protein. It can be "transformer", "CNN", "CNN_RNN" ..., +* **input_dim_drug** (int) - Dimension of input drug feature. +* **input_dim_protein** (int) - Dimension of input protein feature. +* **hidden_dim_drug** (int) - Dimension of hidden layer of drug feature. +* **hidden_dim_protein** (int) - Dimension of hidden layer of protein feature. +* **batch_size** (int) - batch size +* **train_epoch** (int) - training epoch +* **test_every_X_epoch** (int) - test every X epochs +* **LR** (float) - Learning rate. +* **cls_hidden_dims** (list of int) - hidden dimensions of classifier. +* **mlp_hidden_dims_drug** (list of int) - hidden dimension of MLP when encoding drug. +* **mlp_hidden_dims_target** (list of int) - hidden dimension of MLP when encoding protein. +* **transformer_emb_size_drug** (int) - embedding size of transformer when encoding drug. +* **transformer_intermediate_size_drug** (int) - +* **transformer_num_attention_heads_drug** (int) - +* **transformer_n_layer_drug** (int) - +* **transformer_emb_size_target** (int) - +* **transformer_intermediate_size_target** (int) - +* **transformer_num_attention_heads_target** (int) - +* **transformer_n_layer_target** (int) - +* **transformer_dropout_rate** (float) - + + + + +