[0a9449]: / docs / build / html / notes / cnnrnn.html

Download this file

161 lines (124 with data), 7.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8" />
<title>CNN+RNN &#8212; DeepPurpose 0.0.1 documentation</title>
<link rel="stylesheet" href="../_static/alabaster.css" type="text/css" />
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<script id="documentation_options" data-url_root="../" src="../_static/documentation_options.js"></script>
<script src="../_static/jquery.js"></script>
<script src="../_static/underscore.js"></script>
<script src="../_static/doctools.js"></script>
<script src="../_static/language_data.js"></script>
<link rel="index" title="Index" href="../genindex.html" />
<link rel="search" title="Search" href="../search.html" />
<link rel="next" title="CNN" href="cnn.html" />
<link rel="prev" title="Message Passing Neural Network (MPNN)" href="mpnn.html" />
<link rel="stylesheet" href="../_static/custom.css" type="text/css" />
<meta name="viewport" content="width=device-width, initial-scale=0.9, maximum-scale=0.9" />
</head><body>
<div class="document">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body" role="main">
<div class="section" id="cnn-rnn">
<h1>CNN+RNN<a class="headerlink" href="#cnn-rnn" title="Permalink to this headline"></a></h1>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">DeepPurpose</span><span class="o">.</span><span class="n">models</span><span class="o">.</span><span class="n">CNN_RNN</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">)</span>
</pre></div>
</div>
<p>CNN_RNN means a GRU/LSTM on top of a CNN on <a class="reference external" href="https://en.wikipedia.org/wiki/Simplified_molecular-input_line-entry_system">SMILES</a>.</p>
<p><strong>constructor</strong> create CNN_RNN</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">encoding</span><span class="p">,</span> <span class="o">**</span><span class="n">config</span><span class="p">)</span>
</pre></div>
</div>
<ul class="simple">
<li><p><strong>encoding</strong> (string, “drug” or “protein”) - specify input type, “drug” or “protein”.</p></li>
<li><dl class="simple">
<dt><strong>config</strong> (kwargs, keyword arguments) - specify the parameter of transformer. The keys include</dt><dd><ul>
<li><p>cnn_drug_filters (list, each element is int) - specify the size of filter when encoding drug, e.g., cnn_drug_filters = [32,64,96].</p></li>
<li><p>cnn_drug_kernels (list, each element is int) - specify the size of kernel when encoding drug, e.g., cnn_drug_kernels = [4,6,8].</p></li>
<li><p>rnn_drug_hid_dim (int) - specify the hidden dimension of RNN when encoding drug, e.g., rnn_drug_hid_dim = 64.</p></li>
<li><p>rnn_drug_n_layers (int) - specify number of layer in RNN when encoding drug, .e.g, rnn_drug_n_layers = 2.</p></li>
<li><p>rnn_drug_bidirectional (bool) - specify if RNN is bidirectional when encoding drug, .e.g, rnn_drug_bidirectional = True.</p></li>
<li><p>hidden_dim_drug (int) - specify the hidden dimension when encoding drug, e.g., hidden_dim_drug = 256.</p></li>
<li><p>cnn_target_filters (list, each element is int) - specify the size of filter when encoding protein, e.g, cnn_target_filters = [32,64,96].</p></li>
<li><p>cnn_target_kernels (list, each element is int) - specify the size of kernel when encoding protein, e.g, cnn_target_kernels = [4,8,12].</p></li>
<li><p>hidden_dim_protein (int) - specify the hidden dimension when encoding protein, e.g., hidden_dim_protein = 256.</p></li>
<li><p>rnn_target_hid_dim (int) - specify hidden dimension of RNN when encoding protein, e.g., rnn_target_hid_dim = 64.</p></li>
<li><p>rnn_target_n_layers (int) - specify the number of layer in RNN when encoding protein, e.g., rnn_target_n_layers = 2.</p></li>
<li><p>rnn_target_bidirectional (bool) - specify if RNN is bidirectional when encoding protein, e.g., rnn_target_bidirectional = True</p></li>
</ul>
</dd>
</dl>
</li>
</ul>
<p><strong>Calling functions</strong> implement the feedforward procedure of CNN_RNN.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">v</span><span class="p">)</span>
</pre></div>
</div>
<ul class="simple">
<li><p><strong>v</strong> (torch.Tensor) - input feature of CNN_RNN.</p></li>
</ul>
</div>
</div>
</div>
</div>
<div class="sphinxsidebar" role="navigation" aria-label="main navigation">
<div class="sphinxsidebarwrapper">
<h1 class="logo"><a href="../index.html">DeepPurpose</a></h1>
<h3>Navigation</h3>
<p class="caption"><span class="caption-text">Background</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="introduction.html">Feature of DeepPurpose</a></li>
<li class="toctree-l1"><a class="reference internal" href="DTI.html">What is Drug Target Interaction?</a></li>
</ul>
<p class="caption"><span class="caption-text">How to run</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="download.html">Download</a></li>
<li class="toctree-l1"><a class="reference internal" href="installation.html">Installation</a></li>
<li class="toctree-l1"><a class="reference internal" href="casestudy.html">Case Study</a></li>
</ul>
<p class="caption"><span class="caption-text">Package Reference</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="model.html">Model</a></li>
<li class="toctree-l1 current"><a class="reference internal" href="encoder.html">Drug/Target Encoder</a></li>
<li class="toctree-l1"><a class="reference internal" href="process_data.html">Processing Data</a></li>
<li class="toctree-l1"><a class="reference internal" href="configuration.html">Configuration</a></li>
<li class="toctree-l1"><a class="reference internal" href="utility_function.html">Utility Function</a></li>
</ul>
<div class="relations">
<h3>Related Topics</h3>
<ul>
<li><a href="../index.html">Documentation overview</a><ul>
<li><a href="encoder.html">Drug/Target Encoder</a><ul>
<li>Previous: <a href="mpnn.html" title="previous chapter">Message Passing Neural Network (MPNN)</a></li>
<li>Next: <a href="cnn.html" title="next chapter">CNN</a></li>
</ul></li>
</ul></li>
</ul>
</div>
<div id="searchbox" style="display: none" role="search">
<h3 id="searchlabel">Quick search</h3>
<div class="searchformwrapper">
<form class="search" action="../search.html" method="get">
<input type="text" name="q" aria-labelledby="searchlabel" />
<input type="submit" value="Go" />
</form>
</div>
</div>
<script>$('#searchbox').show(0);</script>
</div>
</div>
<div class="clearer"></div>
</div>
<div class="footer">
&copy;2020, Kexin Huang, Tianfan Fu.
|
Powered by <a href="http://sphinx-doc.org/">Sphinx 3.0.0</a>
&amp; <a href="https://github.com/bitprophet/alabaster">Alabaster 0.7.12</a>
|
<a href="../_sources/notes/cnnrnn.rst.txt"
rel="nofollow">Page source</a>
</div>
</body>
</html>