Switch to side-by-side view

--- a
+++ b/docs/build/html/notes/casestudy.html
@@ -0,0 +1,429 @@
+
+
+<!DOCTYPE html>
+<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
+<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
+<head>
+  <meta charset="utf-8">
+  
+  <meta name="viewport" content="width=device-width, initial-scale=1.0">
+  
+  <title>Case Study &mdash; DeepPurpose 0.0.1 documentation</title>
+  
+
+  
+  
+  
+  
+
+  
+  <script type="text/javascript" src="../_static/js/modernizr.min.js"></script>
+  
+    
+      <script type="text/javascript" id="documentation_options" data-url_root="../" src="../_static/documentation_options.js"></script>
+        <script src="../_static/jquery.js"></script>
+        <script src="../_static/underscore.js"></script>
+        <script src="../_static/doctools.js"></script>
+        <script src="../_static/language_data.js"></script>
+    
+    <script type="text/javascript" src="../_static/js/theme.js"></script>
+
+    
+
+  
+  <link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
+  <link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
+  <link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Raleway" type="text/css" />
+  <link rel="stylesheet" href="../../build/html/_static/css/deeppurpose_docs_theme.css" type="text/css" />
+    <link rel="index" title="Index" href="../genindex.html" />
+    <link rel="search" title="Search" href="../search.html" />
+    <link rel="next" title="DeepPurpose.models" href="models.html" />
+    <link rel="prev" title="Download Code &amp; Install" href="download.html" /> 
+</head>
+
+<body class="wy-body-for-nav">
+
+   
+  <div class="wy-grid-for-nav">
+    
+    <nav data-toggle="wy-nav-shift" class="wy-nav-side">
+      <div class="wy-side-scroll">
+        <div class="wy-side-nav-search" >
+          
+
+          
+            <a href="../index.html" class="icon icon-home"> DeepPurpose
+          
+
+          
+            
+            <img src="../_static/logo_dp_2.png" class="logo" alt="Logo"/>
+          
+          </a>
+
+          
+            
+            
+          
+
+          
+<div role="search">
+  <form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
+    <input type="text" name="q" placeholder="Search docs" />
+    <input type="hidden" name="check_keywords" value="yes" />
+    <input type="hidden" name="area" value="default" />
+  </form>
+</div>
+
+          
+        </div>
+
+        <div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
+          
+            
+            
+              
+            
+            
+              <p class="caption"><span class="caption-text">Background</span></p>
+<ul>
+<li class="toctree-l1"><a class="reference internal" href="introduction.html">Features of DeepPurpose</a><ul>
+<li class="toctree-l2"><a class="reference internal" href="introduction.html#features">Features</a></li>
+</ul>
+</li>
+<li class="toctree-l1"><a class="reference internal" href="DTI.html">What is drug repurposing, virtual screening and drug-target interaction prediction?</a><ul>
+<li class="toctree-l2"><a class="reference internal" href="DTI.html#drug-repurposing">Drug Repurposing</a></li>
+<li class="toctree-l2"><a class="reference internal" href="DTI.html#virtual-screening">Virtual Screening</a></li>
+<li class="toctree-l2"><a class="reference internal" href="DTI.html#drug-target-interaction">Drug-Target Interaction</a></li>
+</ul>
+</li>
+</ul>
+<p class="caption"><span class="caption-text">How to run</span></p>
+<ul class="current">
+<li class="toctree-l1"><a class="reference internal" href="download.html">Download Code &amp; Install</a><ul>
+<li class="toctree-l2"><a class="reference internal" href="download.html#download-code">Download Code</a></li>
+<li class="toctree-l2"><a class="reference internal" href="download.html#first-time-usage-setup-conda-environment">First time usage: setup conda environment</a></li>
+<li class="toctree-l2"><a class="reference internal" href="download.html#second-time-and-later">Second time and later</a></li>
+</ul>
+</li>
+<li class="toctree-l1 current"><a class="current reference internal" href="#">Case Study</a></li>
+</ul>
+<p class="caption"><span class="caption-text">Package Reference</span></p>
+<ul>
+<li class="toctree-l1"><a class="reference internal" href="models.html">DeepPurpose.models</a><ul>
+<li class="toctree-l2"><a class="reference internal" href="dtba/classifier.html">Classifier</a></li>
+<li class="toctree-l2"><a class="reference internal" href="dtba/dbta.html">Drug Target Binding Affinity (DTBA) Model</a></li>
+<li class="toctree-l2"><a class="reference internal" href="encoders/transformer.html">Transformer</a></li>
+<li class="toctree-l2"><a class="reference internal" href="encoders/mpnn.html">Message Passing Neural Network (MPNN)</a></li>
+<li class="toctree-l2"><a class="reference internal" href="encoders/cnnrnn.html">CNN+RNN</a></li>
+<li class="toctree-l2"><a class="reference internal" href="encoders/cnn.html">CNN</a></li>
+<li class="toctree-l2"><a class="reference internal" href="encoders/mlp.html">MLP</a></li>
+</ul>
+</li>
+<li class="toctree-l1"><a class="reference internal" href="dataset.html">DeepPurpose.dataset</a><ul>
+<li class="toctree-l2"><a class="reference internal" href="data/read_file_training_dataset_bioassay.html">read_file_training_dataset_bioassay</a></li>
+<li class="toctree-l2"><a class="reference internal" href="data/read_file_training_dataset_drug_target_pairs.html">read_file_training_dataset_drug_target_pairs</a></li>
+<li class="toctree-l2"><a class="reference internal" href="data/read_file_virtual_screening_drug_target_pairs.html">read_file_virtual_screening_drug_target_pairs</a></li>
+<li class="toctree-l2"><a class="reference internal" href="data/read_file_repurposing_library.html">load bioarray dataset (read_file_training_dataset_bioassay)</a></li>
+<li class="toctree-l2"><a class="reference internal" href="data/read_file_target_sequence.html">read_file_target_sequence</a></li>
+<li class="toctree-l2"><a class="reference internal" href="data/download_BindingDB.html">download_DrugTargetCommons</a></li>
+<li class="toctree-l2"><a class="reference internal" href="data/process_BindingDB.html">process_BindingDB</a></li>
+<li class="toctree-l2"><a class="reference internal" href="data/load_process_DAVIS.html">load_process_DAVIS</a></li>
+<li class="toctree-l2"><a class="reference internal" href="data/load_process_KIBA.html">load_process_KIBA</a></li>
+<li class="toctree-l2"><a class="reference internal" href="data/load_AID1706_txt_file.html">load_AID1706_txt_file</a></li>
+<li class="toctree-l2"><a class="reference internal" href="data/load_AID1706_SARS_CoV_3CL.html">load_AID1706_SARS_CoV_3CL</a></li>
+<li class="toctree-l2"><a class="reference internal" href="data/load_antiviral_drugs.html">load_antiviral_drugs</a></li>
+<li class="toctree-l2"><a class="reference internal" href="data/load_broad_repurposing_hub.html">load_broad_repurposing_hub</a></li>
+</ul>
+</li>
+<li class="toctree-l1"><a class="reference internal" href="chemutils.html">DeepPurpose.chemutils</a><ul>
+<li class="toctree-l2"><a class="reference internal" href="chem/onek_encoding_unk.html">DeepPurpose.chemutils.onek_encoding_unk</a></li>
+<li class="toctree-l2"><a class="reference internal" href="chem/atom_features.html">DeepPurpose.chemutils.atom_features</a></li>
+<li class="toctree-l2"><a class="reference internal" href="chem/bond_features.html">DeepPurpose.chemutils.bond_features</a></li>
+</ul>
+</li>
+<li class="toctree-l1"><a class="reference internal" href="oneliner.html">DeepPurpose.oneliner</a><ul>
+<li class="toctree-l2"><a class="reference internal" href="oneliner_folder/repurpose.html">DeepPurpose.oneliner.repurpose</a></li>
+<li class="toctree-l2"><a class="reference internal" href="oneliner_folder/virtual_screening.html">DeepPurpose.oneliner.virtual_screening</a></li>
+</ul>
+</li>
+<li class="toctree-l1"><a class="reference internal" href="model_helper.html">DeepPurpose.model_helper</a></li>
+<li class="toctree-l1"><a class="reference internal" href="utils.html">DeepPurpose.utils</a></li>
+</ul>
+<p class="caption"><span class="caption-text">Importance Function</span></p>
+<ul>
+<li class="toctree-l1"><a class="reference internal" href="model.html">Drug Target Binding Affinity (DTBA) Model</a><ul>
+<li class="toctree-l2"><a class="reference internal" href="dtba/classifier.html">Classifier</a></li>
+<li class="toctree-l2"><a class="reference internal" href="dtba/dbta.html">Drug Target Binding Affinity (DTBA) Model</a></li>
+</ul>
+</li>
+<li class="toctree-l1"><a class="reference internal" href="encoder.html">Drug/Target Encoder</a><ul>
+<li class="toctree-l2"><a class="reference internal" href="encoder.html#drug-encoding">Drug encoding</a></li>
+<li class="toctree-l2"><a class="reference internal" href="encoder.html#target-encoding">Target encoding</a></li>
+<li class="toctree-l2"><a class="reference internal" href="encoder.html#encoder-model">Encoder Model</a></li>
+<li class="toctree-l2"><a class="reference internal" href="encoder.html#technical-details">Technical Details</a><ul>
+<li class="toctree-l3"><a class="reference internal" href="encoders/transformer.html">Transformer</a></li>
+<li class="toctree-l3"><a class="reference internal" href="encoders/mpnn.html">Message Passing Neural Network (MPNN)</a></li>
+<li class="toctree-l3"><a class="reference internal" href="encoders/cnnrnn.html">CNN+RNN</a></li>
+<li class="toctree-l3"><a class="reference internal" href="encoders/cnn.html">CNN</a></li>
+<li class="toctree-l3"><a class="reference internal" href="encoders/mlp.html">MLP</a></li>
+</ul>
+</li>
+</ul>
+</li>
+<li class="toctree-l1"><a class="reference internal" href="process_data.html">Processing Data</a><ul>
+<li class="toctree-l2"><a class="reference internal" href="process_data.html#drug-target-binding-benchmark-dataset">Drug-Target Binding Benchmark Dataset</a></li>
+<li class="toctree-l2"><a class="reference internal" href="process_data.html#repurposing-dataset">Repurposing Dataset</a></li>
+<li class="toctree-l2"><a class="reference internal" href="process_data.html#bioassay-data-for-covid-19">Bioassay Data for COVID-19</a></li>
+<li class="toctree-l2"><a class="reference internal" href="process_data.html#covid-19-targets">COVID-19 Targets</a><ul>
+<li class="toctree-l3"><a class="reference internal" href="data/read_file_training_dataset_bioassay.html">read_file_training_dataset_bioassay</a></li>
+<li class="toctree-l3"><a class="reference internal" href="data/read_file_training_dataset_drug_target_pairs.html">read_file_training_dataset_drug_target_pairs</a></li>
+<li class="toctree-l3"><a class="reference internal" href="data/read_file_virtual_screening_drug_target_pairs.html">read_file_virtual_screening_drug_target_pairs</a></li>
+<li class="toctree-l3"><a class="reference internal" href="data/read_file_repurposing_library.html">load bioarray dataset (read_file_training_dataset_bioassay)</a></li>
+<li class="toctree-l3"><a class="reference internal" href="data/read_file_target_sequence.html">read_file_target_sequence</a></li>
+<li class="toctree-l3"><a class="reference internal" href="data/download_BindingDB.html">download_DrugTargetCommons</a></li>
+<li class="toctree-l3"><a class="reference internal" href="data/process_BindingDB.html">process_BindingDB</a></li>
+<li class="toctree-l3"><a class="reference internal" href="data/load_process_DAVIS.html">load_process_DAVIS</a></li>
+<li class="toctree-l3"><a class="reference internal" href="data/load_process_KIBA.html">load_process_KIBA</a></li>
+<li class="toctree-l3"><a class="reference internal" href="data/load_AID1706_txt_file.html">load_AID1706_txt_file</a></li>
+<li class="toctree-l3"><a class="reference internal" href="data/load_AID1706_SARS_CoV_3CL.html">load_AID1706_SARS_CoV_3CL</a></li>
+<li class="toctree-l3"><a class="reference internal" href="data/load_antiviral_drugs.html">load_antiviral_drugs</a></li>
+<li class="toctree-l3"><a class="reference internal" href="data/load_broad_repurposing_hub.html">load_broad_repurposing_hub</a></li>
+</ul>
+</li>
+</ul>
+</li>
+<li class="toctree-l1"><a class="reference internal" href="configuration.html">Configuration</a></li>
+<li class="toctree-l1"><a class="reference internal" href="utility_function.html">Utility Function</a></li>
+</ul>
+
+            
+          
+        </div>
+      </div>
+    </nav>
+
+    <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
+
+      
+      <nav class="wy-nav-top" aria-label="top navigation">
+        
+          <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
+          <a href="../index.html">DeepPurpose</a>
+        
+      </nav>
+
+
+      <div class="wy-nav-content">
+        
+        <div class="rst-content">
+        
+          
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+<div role="navigation" aria-label="breadcrumbs navigation">
+
+  <ul class="wy-breadcrumbs">
+    
+      <li><a href="../index.html">Docs</a> &raquo;</li>
+        
+      <li>Case Study</li>
+    
+    
+      <li class="wy-breadcrumbs-aside">
+        
+            
+            <a href="../_sources/notes/casestudy.rst.txt" rel="nofollow"> View page source</a>
+          
+        
+      </li>
+    
+  </ul>
+
+  
+  <hr/>
+</div>
+          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
+           <div itemprop="articleBody">
+            
+  <div class="section" id="case-study">
+<h1>Case Study<a class="headerlink" href="#case-study" title="Permalink to this headline">¶</a></h1>
+<ul class="simple">
+<li><p><strong>1a. Antiviral Drugs Repurposing for SARS-CoV2 3CLPro, using One Line.</strong></p></li>
+</ul>
+<p>Given a new target sequence (e.g. SARS-CoV2 3CL Protease),
+retrieve a list of repurposing drugs from a curated drug library of 81 antiviral drugs.
+The Binding Score is the Kd values.
+Results aggregated from five pretrained model on BindingDB dataset!</p>
+<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">DeepPurpose</span> <span class="kn">import</span> <span class="n">oneliner</span>
+<span class="n">oneliner</span><span class="o">.</span><span class="n">repurpose</span><span class="p">(</span><span class="o">*</span><span class="n">load_SARS_CoV2_Protease_3CL</span><span class="p">(),</span> <span class="o">*</span><span class="n">load_antiviral_drugs</span><span class="p">())</span>
+</pre></div>
+</div>
+<ul class="simple">
+<li><p><strong>1b. New Target Repurposing using Broad Drug Repurposing Hub, with One Line.</strong></p></li>
+</ul>
+<p>Given a new target sequence (e.g. MMP9),
+retrieve a list of repurposing drugs from Broad Drug Repurposing Hub,
+which is the default.
+Results also aggregated from five pretrained model!
+Note the drug name here is the Pubchem CID since some drug names in Broad is too long.</p>
+<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">DeepPurpose</span> <span class="kn">import</span> <span class="n">oneliner</span>
+<span class="n">oneliner</span><span class="o">.</span><span class="n">repurpose</span><span class="p">(</span><span class="o">*</span><span class="n">load_MMP9</span><span class="p">())</span>
+</pre></div>
+</div>
+<ul class="simple">
+<li><p><strong>2. Repurposing using Customized training data, with One Line.</strong></p></li>
+</ul>
+<p>Given a new target sequence (e.g. SARS-CoV 3CL Pro),
+training on new data (AID1706 Bioassay),
+and then retrieve a list of repurposing drugs from a proprietary library (e.g. antiviral drugs).
+The model can be trained from scratch or finetuned from the pretraining checkpoint!</p>
+<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">DeepPurpose</span> <span class="kn">import</span> <span class="n">oneliner</span>
+<span class="kn">from</span> <span class="nn">DeepPurpose.dataset</span> <span class="kn">import</span> <span class="o">*</span>
+
+<span class="n">oneliner</span><span class="o">.</span><span class="n">repurpose</span><span class="p">(</span><span class="o">*</span><span class="n">load_SARS_CoV_Protease_3CL</span><span class="p">(),</span> <span class="o">*</span><span class="n">load_antiviral_drugs</span><span class="p">(</span><span class="n">no_cid</span> <span class="o">=</span> <span class="kc">True</span><span class="p">),</span>  <span class="o">*</span><span class="n">load_AID1706_SARS_CoV_3CL</span><span class="p">(),</span> \
+        <span class="n">split</span><span class="o">=</span><span class="s1">&#39;HTS&#39;</span><span class="p">,</span> <span class="n">convert_y</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span> <span class="n">frac</span><span class="o">=</span><span class="p">[</span><span class="mf">0.8</span><span class="p">,</span><span class="mf">0.1</span><span class="p">,</span><span class="mf">0.1</span><span class="p">],</span> <span class="n">pretrained</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span> <span class="n">agg</span> <span class="o">=</span> <span class="s1">&#39;max_effect&#39;</span><span class="p">)</span>
+</pre></div>
+</div>
+<ul class="simple">
+<li><ol class="arabic simple" start="3">
+<li><p><strong>A Framework for Drug Target Interaction Prediction, with less than 10 lines of codes.</strong></p></li>
+</ol>
+</li>
+</ul>
+<p>Under the hood of one model from scratch, a flexible framework for method researchers:</p>
+<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">DeepPurpose</span> <span class="kn">import</span> <span class="n">models</span>
+<span class="kn">from</span> <span class="nn">DeepPurpose.utils</span> <span class="kn">import</span> <span class="o">*</span>
+<span class="kn">from</span> <span class="nn">DeepPurpose.dataset</span> <span class="kn">import</span> <span class="o">*</span>
+
+<span class="c1"># Load Data, an array of SMILES for drug,</span>
+<span class="c1"># an array of Amino Acid Sequence for Target</span>
+<span class="c1"># and an array of binding values/0-1 label.</span>
+<span class="c1"># e.g. [&#39;Cc1ccc(CNS(=O)(=O)c2ccc(s2)S(N)(=O)=O)cc1&#39;, ...],</span>
+<span class="c1">#      [&#39;MSHHWGYGKHNGPEHWHKDFPIAKGERQSPVDIDTH...&#39;, ...],</span>
+<span class="c1">#      [0.46, 0.49, ...]</span>
+<span class="c1"># In this example, BindingDB with Kd binding score is used.</span>
+<span class="n">X_drug</span><span class="p">,</span> <span class="n">X_target</span><span class="p">,</span> <span class="n">y</span>  <span class="o">=</span> <span class="n">process_BindingDB</span><span class="p">(</span><span class="n">download_BindingDB</span><span class="p">(</span><span class="n">SAVE_PATH</span><span class="p">),</span>
+                                         <span class="n">y</span> <span class="o">=</span> <span class="s1">&#39;Kd&#39;</span><span class="p">,</span>
+                                         <span class="n">binary</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
+                                         <span class="n">convert_to_log</span> <span class="o">=</span> <span class="kc">True</span><span class="p">)</span>
+
+<span class="c1"># Type in the encoding names for drug/protein.</span>
+<span class="n">drug_encoding</span><span class="p">,</span> <span class="n">target_encoding</span> <span class="o">=</span> <span class="s1">&#39;MPNN&#39;</span><span class="p">,</span> <span class="s1">&#39;Transformer&#39;</span>
+
+<span class="c1"># Data processing, here we select cold protein split setup.</span>
+<span class="n">train</span><span class="p">,</span> <span class="n">val</span><span class="p">,</span> <span class="n">test</span> <span class="o">=</span> <span class="n">data_process</span><span class="p">(</span><span class="n">X_drug</span><span class="p">,</span> <span class="n">X_target</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span>
+                                <span class="n">drug_encoding</span><span class="p">,</span> <span class="n">target_encoding</span><span class="p">,</span>
+                                <span class="n">split_method</span><span class="o">=</span><span class="s1">&#39;cold_protein&#39;</span><span class="p">,</span>
+                                <span class="n">frac</span><span class="o">=</span><span class="p">[</span><span class="mf">0.7</span><span class="p">,</span><span class="mf">0.1</span><span class="p">,</span><span class="mf">0.2</span><span class="p">])</span>
+
+<span class="c1"># Generate new model using default parameters;</span>
+<span class="c1"># also allow model tuning via input parameters.</span>
+<span class="n">config</span> <span class="o">=</span> <span class="n">generate_config</span><span class="p">(</span><span class="n">drug_encoding</span><span class="p">,</span> <span class="n">target_encoding</span><span class="p">,</span> \
+                                                 <span class="n">transformer_n_layer_target</span> <span class="o">=</span> <span class="mi">8</span><span class="p">)</span>
+<span class="n">net</span> <span class="o">=</span> <span class="n">models</span><span class="o">.</span><span class="n">model_initialize</span><span class="p">(</span><span class="o">**</span><span class="n">config</span><span class="p">)</span>
+
+<span class="c1"># Train the new model.</span>
+<span class="c1"># Detailed output including a tidy table storing</span>
+<span class="c1">#    validation loss, metrics, AUC curves figures and etc.</span>
+<span class="c1">#    are stored in the ./result folder.</span>
+<span class="n">net</span><span class="o">.</span><span class="n">train</span><span class="p">(</span><span class="n">train</span><span class="p">,</span> <span class="n">val</span><span class="p">,</span> <span class="n">test</span><span class="p">)</span>
+
+<span class="c1"># or simply load pretrained model from a model directory path</span>
+<span class="c1">#   or reproduced model name such as DeepDTA</span>
+<span class="n">net</span> <span class="o">=</span> <span class="n">models</span><span class="o">.</span><span class="n">model_pretrained</span><span class="p">(</span><span class="n">MODEL_PATH_DIR</span> <span class="ow">or</span> <span class="n">MODEL_NAME</span><span class="p">)</span>
+
+<span class="c1"># Repurpose using the trained model or pre-trained model</span>
+<span class="c1"># In this example, loading repurposing dataset using</span>
+<span class="c1"># Broad Repurposing Hub and SARS-CoV 3CL Protease Target.</span>
+<span class="n">X_repurpose</span><span class="p">,</span> <span class="n">drug_name</span><span class="p">,</span> <span class="n">drug_cid</span> <span class="o">=</span> <span class="n">load_broad_repurposing_hub</span><span class="p">(</span><span class="n">SAVE_PATH</span><span class="p">)</span>
+<span class="n">target</span><span class="p">,</span> <span class="n">target_name</span> <span class="o">=</span> <span class="n">load_SARS_CoV_Protease_3CL</span><span class="p">()</span>
+
+<span class="n">_</span> <span class="o">=</span> <span class="n">models</span><span class="o">.</span><span class="n">repurpose</span><span class="p">(</span><span class="n">X_repurpose</span><span class="p">,</span> <span class="n">target</span><span class="p">,</span> <span class="n">net</span><span class="p">,</span> <span class="n">drug_name</span><span class="p">,</span> <span class="n">target_name</span><span class="p">)</span>
+
+<span class="c1"># Virtual screening using the trained model or pre-trained model</span>
+<span class="n">X_repurpose</span><span class="p">,</span> <span class="n">drug_name</span><span class="p">,</span> <span class="n">target</span><span class="p">,</span> <span class="n">target_name</span> <span class="o">=</span> \
+                <span class="p">[</span><span class="s1">&#39;CCCCCCCOc1cccc(c1)C([O-])=O&#39;</span><span class="p">,</span> <span class="o">...</span><span class="p">],</span> <span class="p">[</span><span class="s1">&#39;16007391&#39;</span><span class="p">,</span> <span class="o">...</span><span class="p">],</span> \
+                <span class="p">[</span><span class="s1">&#39;MLARRKPVLPALTINPTIAEGPSPTSEGASEANLVDLQKKLEEL...&#39;</span><span class="p">,</span> <span class="o">...</span><span class="p">],</span>\
+                <span class="p">[</span><span class="s1">&#39;P36896&#39;</span><span class="p">,</span> <span class="s1">&#39;P00374&#39;</span><span class="p">]</span>
+
+<span class="n">_</span> <span class="o">=</span> <span class="n">models</span><span class="o">.</span><span class="n">virtual_screening</span><span class="p">(</span><span class="n">X_repurpose</span><span class="p">,</span> <span class="n">target</span><span class="p">,</span> <span class="n">net</span><span class="p">,</span> <span class="n">drug_name</span><span class="p">,</span> <span class="n">target_name</span><span class="p">)</span>
+</pre></div>
+</div>
+<ul class="simple">
+<li><ol class="arabic simple" start="4">
+<li><p><strong>Virtual Screening with Customized Training Data with One Line</strong></p></li>
+</ol>
+</li>
+</ul>
+<p>Given a list of new drug-target pairs to be screened,
+retrieve a list of drug-target pairs with top predicted binding scores.</p>
+<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">DeepPurpose</span> <span class="kn">import</span> <span class="n">oneliner</span>
+<span class="n">oneliner</span><span class="o">.</span><span class="n">virtual_screening</span><span class="p">([</span><span class="s1">&#39;MKK...LIDL&#39;</span><span class="p">,</span> <span class="o">...</span><span class="p">],</span> <span class="p">[</span><span class="s1">&#39;CC1=C...C4)N&#39;</span><span class="p">,</span> <span class="o">...</span><span class="p">])</span>
+</pre></div>
+</div>
+</div>
+
+
+           </div>
+           
+          </div>
+          <footer>
+  
+    <div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
+      
+        <a href="models.html" class="btn btn-neutral float-right" title="DeepPurpose.models" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right"></span></a>
+      
+      
+        <a href="download.html" class="btn btn-neutral float-left" title="Download Code &amp; Install" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left"></span> Previous</a>
+      
+    </div>
+  
+
+  <hr/>
+
+  <div role="contentinfo">
+    <p>
+        &copy; Copyright 2020, Kexin Huang, Tianfan Fu
+
+    </p>
+  </div>
+  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 
+
+</footer>
+
+        </div>
+      </div>
+
+    </section>
+
+  </div>
+  
+
+
+  <script type="text/javascript">
+      jQuery(function () {
+          SphinxRtdTheme.Navigation.enable(true);
+      });
+  </script>
+
+  
+  
+    
+   
+
+</body>
+</html>
\ No newline at end of file