[0a9449]: / docs / build / html / _sources / notes / configuration.rst.txt

Download this file

81 lines (67 with data), 2.8 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
Configuration
========================
**generate_config** generate all the configuration that can be used in learning and inference.
.. code-block:: python
utils.generate_config(
drug_encoding,
target_encoding,
result_folder = "./result/",
input_dim_drug = 1024,
input_dim_protein = 8420,
hidden_dim_drug = 256,
hidden_dim_protein = 256,
cls_hidden_dims = [1024, 1024, 512],
mlp_hidden_dims_drug = [1024, 256, 64],
mlp_hidden_dims_target = [1024, 256, 64],
batch_size = 256,
train_epoch = 10,
test_every_X_epoch = 20,
LR = 1e-4,
transformer_emb_size_drug = 128,
transformer_intermediate_size_drug = 512,
transformer_num_attention_heads_drug = 8,
transformer_n_layer_drug = 8,
transformer_emb_size_target = 128,
transformer_intermediate_size_target = 512,
transformer_num_attention_heads_target = 8,
transformer_n_layer_target = 4,
transformer_dropout_rate = 0.1,
transformer_attention_probs_dropout = 0.1,
transformer_hidden_dropout_rate = 0.1,
mpnn_hidden_size = 50,
mpnn_depth = 3,
cnn_drug_filters = [32,64,96],
cnn_drug_kernels = [4,6,8],
cnn_target_filters = [32,64,96],
cnn_target_kernels = [4,8,12],
rnn_Use_GRU_LSTM_drug = 'GRU',
rnn_drug_hid_dim = 64,
rnn_drug_n_layers = 2,
rnn_drug_bidirectional = True,
rnn_Use_GRU_LSTM_target = 'GRU',
rnn_target_hid_dim = 64,
rnn_target_n_layers = 2,
rnn_target_bidirectional = True
)
* **drug_encoding** (str) - Encoder mode for drug. It can be "transformer", "MPNN", "CNN", "CNN_RNN" ...,
* **target_encoding** (str) - Encoder mode for protein. It can be "transformer", "CNN", "CNN_RNN" ...,
* **input_dim_drug** (int) - Dimension of input drug feature.
* **input_dim_protein** (int) - Dimension of input protein feature.
* **hidden_dim_drug** (int) - Dimension of hidden layer of drug feature.
* **hidden_dim_protein** (int) - Dimension of hidden layer of protein feature.
* **batch_size** (int) - batch size
* **train_epoch** (int) - training epoch
* **test_every_X_epoch** (int) - test every X epochs
* **LR** (float) - Learning rate.
* **cls_hidden_dims** (list of int) - hidden dimensions of classifier.
* **mlp_hidden_dims_drug** (list of int) - hidden dimension of MLP when encoding drug.
* **mlp_hidden_dims_target** (list of int) - hidden dimension of MLP when encoding protein.
* **transformer_emb_size_drug** (int) - embedding size of transformer when encoding drug.
* **transformer_intermediate_size_drug** (int) -
* **transformer_num_attention_heads_drug** (int) -
* **transformer_n_layer_drug** (int) -
* **transformer_emb_size_target** (int) -
* **transformer_intermediate_size_target** (int) -
* **transformer_num_attention_heads_target** (int) -
* **transformer_n_layer_target** (int) -
* **transformer_dropout_rate** (float) -