[0a9449]: / docs / build / doctrees / notes / introduction.doctree

Download this file

35 lines (28 with data), 11.7 kB

€•-Œdocutils.nodes”Œdocument”“”)”}”(Œ	rawsource”Œ”Œchildren”]”hŒsection”“”)”}”(hhh]”(hŒtitle”“”)”}”(hŒFeatures of DeepPurpose”h]”hŒText”“”ŒFeatures of DeepPurpose”…””}”(hhŒparent”hhhŒsource”NŒline”NubaŒ
attributes”}”(Œids”]”Œclasses”]”Œnames”]”Œdupnames”]”Œbackrefs”]”uŒtagname”hhhhhhŒT/Users/futianfan/Downloads/spring2020/DeepPurpose/docs/source/notes/introduction.rst”hKubhŒ	paragraph”“”)”}”(hXíDeepPurpose is a Deep Learning Based Drug Repurposing and Virtual Screening Toolkit (using PyTorch).
It allows very easy usage (only one line of code!) for non-computational domain researchers to be able to obtain a list of potential drugs using deep learning while facilitating deep learning method research in this topic by providing a flexible framework (less than 10 lines of codes!) and baselines.
The Github repository is located `here <https://github.com/kexinhuang12345/DeepPurpose>`_.”h]”(hX´DeepPurpose is a Deep Learning Based Drug Repurposing and Virtual Screening Toolkit (using PyTorch).
It allows very easy usage (only one line of code!) for non-computational domain researchers to be able to obtain a list of potential drugs using deep learning while facilitating deep learning method research in this topic by providing a flexible framework (less than 10 lines of codes!) and baselines.
The Github repository is located ”…””}”(hX´DeepPurpose is a Deep Learning Based Drug Repurposing and Virtual Screening Toolkit (using PyTorch).
It allows very easy usage (only one line of code!) for non-computational domain researchers to be able to obtain a list of potential drugs using deep learning while facilitating deep learning method research in this topic by providing a flexible framework (less than 10 lines of codes!) and baselines.
The Github repository is located ”hh-hhhNhNubhŒ	reference”“”)”}”(hŒ8`here <https://github.com/kexinhuang12345/DeepPurpose>`_”h]”hŒhere”…””}”(hŒhere”hh8ubah}”(h]”h!]”h#]”h%]”h']”Œname”h@Œrefuri”Œ.https://github.com/kexinhuang12345/DeepPurpose”uh)h6hh-ubhŒtarget”“”)”}”(hŒ1 <https://github.com/kexinhuang12345/DeepPurpose>”h]”h}”(h]”Œhere”ah!]”h#]”Œhere”ah%]”h']”Œrefuri”hIuh)hJŒ
referenced”Khh-ubhŒ.”…””}”(hŒ.”hh-hhhNhNubeh}”(h]”h!]”h#]”h%]”h']”uh)h+hh*hKhhhhubh
)”}”(hhh]”(h)”}”(hŒFeatures”h]”hŒFeatures”…””}”(hhjhhhhhhNhNubah}”(h]”h!]”h#]”h%]”h']”uh)hhhehhhh*hK	ubhŒbullet_list”“”)”}”(hhh]”(hŒ	list_item”“”)”}”(hXFor non-computational researchers, ONE line of code from raw data to output drug repurposing/virtual screening result, aiming to allow wet-lab biochemists to leverage the power of deep learning. The result is ensembled from five pretrained deep learning models!
”h]”h,)”}”(hXFor non-computational researchers, ONE line of code from raw data to output drug repurposing/virtual screening result, aiming to allow wet-lab biochemists to leverage the power of deep learning. The result is ensembled from five pretrained deep learning models!”h]”hXFor non-computational researchers, ONE line of code from raw data to output drug repurposing/virtual screening result, aiming to allow wet-lab biochemists to leverage the power of deep learning. The result is ensembled from five pretrained deep learning models!”…””}”(hhƒhhubah}”(h]”h!]”h#]”h%]”h']”uh)h+hh*hKhh}ubah}”(h]”h!]”h#]”h%]”h']”uh)h{hhxhhhh*hNubh|)”}”(hX°For computational researchers, 15+ powerful encodings for drugs and proteins, ranging from deep neural network on classic cheminformatics fingerprints, CNN, transformers to message passing graph neural network, with 50+ combined models! Most of the combinations of the encodings are not yet in existing works. All of these under 10 lines but with lots of flexibility! Switching encoding is as simple as changing the encoding names!
”h]”h,)”}”(hXŻFor computational researchers, 15+ powerful encodings for drugs and proteins, ranging from deep neural network on classic cheminformatics fingerprints, CNN, transformers to message passing graph neural network, with 50+ combined models! Most of the combinations of the encodings are not yet in existing works. All of these under 10 lines but with lots of flexibility! Switching encoding is as simple as changing the encoding names!”h]”hXŻFor computational researchers, 15+ powerful encodings for drugs and proteins, ranging from deep neural network on classic cheminformatics fingerprints, CNN, transformers to message passing graph neural network, with 50+ combined models! Most of the combinations of the encodings are not yet in existing works. All of these under 10 lines but with lots of flexibility! Switching encoding is as simple as changing the encoding names!”…””}”(hh›hh™ubah}”(h]”h!]”h#]”h%]”h']”uh)h+hh*hK
hh•ubah}”(h]”h!]”h#]”h%]”h']”uh)h{hhxhhhh*hNubh|)”}”(hXęRealistic and user-friendly design:

* automatic identification to do drug target binding affinity (regression) or drug target interaction prediction (binary) task.
* support cold target, cold drug settings for robust model evaluations and support single-target high throughput sequencing assay data setup.
* many dataset loading/downloading/unzipping scripts to ease the tedious preprocessing, including antiviral, COVID19 targets, BindingDB, DAVIS, KIBA, ...
* many pretrained checkpoints.
* easy monitoring of training process with detailed training metrics output such as test set figures (AUCs) and tables, also support early stopping.
* detailed output records such as rank list for repurposing result.
* various evaluation metrics: ROC-AUC, PR-AUC, F1 for binary task, MSE, R-squared, Concordance Index for regression task.
* label unit conversion for skewed label distribution such as Kd.
* time reference for computational expensive encoding.
* PyTorch based, support CPU, GPU, Multi-GPUs.



”h]”(h,)”}”(hŒ#Realistic and user-friendly design:”h]”hŒ#Realistic and user-friendly design:”…””}”(hhłhhąubah}”(h]”h!]”h#]”h%]”h']”uh)h+hh*hKhh­ubhw)”}”(hhh]”(h|)”}”(hŒ}automatic identification to do drug target binding affinity (regression) or drug target interaction prediction (binary) task.”h]”h,)”}”(hhÄh]”hŒ}automatic identification to do drug target binding affinity (regression) or drug target interaction prediction (binary) task.”…””}”(hhÄhhĆubah}”(h]”h!]”h#]”h%]”h']”uh)h+hh*hKhhÂubah}”(h]”h!]”h#]”h%]”h']”uh)h{hhżubh|)”}”(hŒ‹support cold target, cold drug settings for robust model evaluations and support single-target high throughput sequencing assay data setup.”h]”h,)”}”(hhŰh]”hŒ‹support cold target, cold drug settings for robust model evaluations and support single-target high throughput sequencing assay data setup.”…””}”(hhŰhhÝubah}”(h]”h!]”h#]”h%]”h']”uh)h+hh*hKhhŮubah}”(h]”h!]”h#]”h%]”h']”uh)h{hhżubh|)”}”(hŒ—many dataset loading/downloading/unzipping scripts to ease the tedious preprocessing, including antiviral, COVID19 targets, BindingDB, DAVIS, KIBA, ...”h]”h,)”}”(hhňh]”hŒ—many dataset loading/downloading/unzipping scripts to ease the tedious preprocessing, including antiviral, COVID19 targets, BindingDB, DAVIS, KIBA, …”…””}”(hhňhhôubah}”(h]”h!]”h#]”h%]”h']”uh)h+hh*hKhhđubah}”(h]”h!]”h#]”h%]”h']”uh)h{hhżubh|)”}”(hŒmany pretrained checkpoints.”h]”h,)”}”(hj	h]”hŒmany pretrained checkpoints.”…””}”(hj	hjubah}”(h]”h!]”h#]”h%]”h']”uh)h+hh*hKhjubah}”(h]”h!]”h#]”h%]”h']”uh)h{hhżubh|)”}”(hŒ’easy monitoring of training process with detailed training metrics output such as test set figures (AUCs) and tables, also support early stopping.”h]”h,)”}”(hj h]”hŒ’easy monitoring of training process with detailed training metrics output such as test set figures (AUCs) and tables, also support early stopping.”…””}”(hj hj"ubah}”(h]”h!]”h#]”h%]”h']”uh)h+hh*hKhjubah}”(h]”h!]”h#]”h%]”h']”uh)h{hhżubh|)”}”(hŒAdetailed output records such as rank list for repurposing result.”h]”h,)”}”(hj7h]”hŒAdetailed output records such as rank list for repurposing result.”…””}”(hj7hj9ubah}”(h]”h!]”h#]”h%]”h']”uh)h+hh*hKhj5ubah}”(h]”h!]”h#]”h%]”h']”uh)h{hhżubh|)”}”(hŒwvarious evaluation metrics: ROC-AUC, PR-AUC, F1 for binary task, MSE, R-squared, Concordance Index for regression task.”h]”h,)”}”(hjNh]”hŒwvarious evaluation metrics: ROC-AUC, PR-AUC, F1 for binary task, MSE, R-squared, Concordance Index for regression task.”…””}”(hjNhjPubah}”(h]”h!]”h#]”h%]”h']”uh)h+hh*hKhjLubah}”(h]”h!]”h#]”h%]”h']”uh)h{hhżubh|)”}”(hŒ?label unit conversion for skewed label distribution such as Kd.”h]”h,)”}”(hjeh]”hŒ?label unit conversion for skewed label distribution such as Kd.”…””}”(hjehjgubah}”(h]”h!]”h#]”h%]”h']”uh)h+hh*hKhjcubah}”(h]”h!]”h#]”h%]”h']”uh)h{hhżubh|)”}”(hŒ4time reference for computational expensive encoding.”h]”h,)”}”(hj|h]”hŒ4time reference for computational expensive encoding.”…””}”(hj|hj~ubah}”(h]”h!]”h#]”h%]”h']”uh)h+hh*hKhjzubah}”(h]”h!]”h#]”h%]”h']”uh)h{hhżubh|)”}”(hŒ0PyTorch based, support CPU, GPU, Multi-GPUs.



”h]”h,)”}”(hŒ,PyTorch based, support CPU, GPU, Multi-GPUs.”h]”hŒ,PyTorch based, support CPU, GPU, Multi-GPUs.”…””}”(hj—hj•ubah}”(h]”h!]”h#]”h%]”h']”uh)h+hh*hKhj‘ubah}”(h]”h!]”h#]”h%]”h']”uh)h{hhżubeh}”(h]”h!]”h#]”h%]”h']”Œbullet”Œ*”uh)hvhh*hKhh­ubeh}”(h]”h!]”h#]”h%]”h']”uh)h{hhxhhhNhNubeh}”(h]”h!]”h#]”h%]”h']”jŻj°uh)hvhh*hKhhehhubeh}”(h]”Œfeatures”ah!]”h#]”Œfeatures”ah%]”h']”uh)h	hhhhhh*hK	ubeh}”(h]”Œfeatures-of-deeppurpose”ah!]”h#]”Œfeatures of deeppurpose”ah%]”h']”uh)h	hhhhhh*hKubah}”(h]”h!]”h#]”h%]”h']”Œsource”h*uh)hŒcurrent_source”NŒcurrent_line”NŒsettings”Œdocutils.frontend”ŒValues”“”)”}”(hNŒ	generator”NŒ	datestamp”NŒsource_link”NŒ
source_url”NŒ
toc_backlinks”Œentry”Œfootnote_backlinks”KŒ
sectnum_xform”KŒstrip_comments”NŒstrip_elements_with_classes”NŒ
strip_classes”NŒreport_level”KŒ
halt_level”KŒexit_status_level”KŒdebug”NŒwarning_stream”NŒ	traceback”ˆŒinput_encoding”Œ	utf-8-sig”Œinput_encoding_error_handler”Œstrict”Œoutput_encoding”Œutf-8”Œoutput_encoding_error_handler”jđŒerror_encoding”ŒUTF-8”Œerror_encoding_error_handler”Œbackslashreplace”Œ
language_code”Œen”Œrecord_dependencies”NŒconfig”NŒ	id_prefix”hŒauto_id_prefix”Œid”Œ
dump_settings”NŒdump_internals”NŒdump_transforms”NŒdump_pseudo_xml”NŒexpose_internals”NŒstrict_visitor”NŒ_disable_config”NŒ_source”h*Œ_destination”NŒ
_config_files”]”Œpep_references”NŒpep_base_url”Œ https://www.python.org/dev/peps/”Œpep_file_url_template”Œpep-%04d”Œrfc_references”NŒrfc_base_url”Œhttps://tools.ietf.org/html/”Œ	tab_width”KŒtrim_footnote_reference_space”‰Œfile_insertion_enabled”ˆŒraw_enabled”KŒsyntax_highlight”Œlong”Œsmart_quotes”ˆŒsmartquotes_locales”]”Œcharacter_level_inline_markup”‰Œdoctitle_xform”‰Œ
docinfo_xform”KŒsectsubtitle_xform”‰Œembed_stylesheet”‰Œcloak_email_addresses”ˆŒenv”NubŒreporter”NŒindirect_targets”]”Œsubstitution_defs”}”Œsubstitution_names”}”Œrefnames”}”Œrefids”}”Œnameids”}”(jĘjÇhUhRjÂjżuŒ	nametypes”}”(jĘNhUˆjÂNuh}”(jÇhhRhLjżheuŒ
footnote_refs”}”Œ
citation_refs”}”Œ
autofootnotes”]”Œautofootnote_refs”]”Œsymbol_footnotes”]”Œsymbol_footnote_refs”]”Œ	footnotes”]”Œ	citations”]”Œautofootnote_start”KŒsymbol_footnote_start”KŒ
id_counter”Œcollections”ŒCounter”“”}”…”R”Œparse_messages”]”Œtransform_messages”]”Œtransformer”NŒ
decoration”Nhhub.